
Developing the Software Engineering Team

James M. Hogan and Richard Thomas

Centre for Information Technology Innovation

Queensland University of Technology

GPO Box 2434, Brisbane, Qld. 4001

j.hogan@qut.edu.au and r.thomas@qut.edu.au

Abstract

Teamwork is often considered one of the most important

“generic skills” that we can provide to graduates entering

the information technology profession. Often though,

through the rush of covering important content, we short

change our students by giving them limited opportunities

to learn how to work effectively in teams. Students also

often complain that although they are expected to work in

teams on projects, they are never given any advice or

guidance on how to work in a team (Hart and Stone,

2002). Or, if they are given guidance, it is often from a

business perspective that students find difficult to

integrate into their software development practice.

In this paper we discuss a course-spanning initiative to

help students learn teamwork skills. This initiative starts

in first year by emphasising a core set of skills directly

related to working in teams. These skills are applied in

small software development teams, with close tutor

supervision focusing students on teamwork rather than

upon individual software development. The theme then

continues into second and third year where the growing

sophistication of the students’ teamwork skills is comple-

mented by increasing their independence and requiring

students to apply a professional software engineering

process as a development team. By the end of their course

students are then in a position to work together effectively

solving complex problems for a real industry client.

Keywords: teamwork, software engineering, problem

based learning1

1. Introduction

To the uninitiated – and especially to the enthusiastic

amateur – software development is often seen as an indi-

vidual pursuit involving long hours of direct interaction

with a computer. This image is reinforced by introduc-

tory programming subjects in both secondary and tertiary

education, with students assigned simple programming

projects to be completed entirely on their own. Indeed it

is common to punish group collaboration as a form of

plagiarism. In contrast, professional practice is dominated

by the team environment: it is the team that enables pro-

ductive software development. Many projects are too

Copyright © 2005, Australian Computer Society, Inc. This

paper appeared at the Australasian Computing Education Con-

ference 2005, Newcastle, Australia. Conferences in Research

and Practice in Information Technology, Vol. 42. Alison Young

and Denise Tolhurst, Eds. Reproduction for academic, not-for

profit purposes permitted provided this text is included.

large to be completed by an individual; some of the

largest projects have their cumulative effort measured in

thousands of person years. Even in small projects it is

normal practice to use a team to leverage the (hopefully)

complementary set of skills that a group of developers

may bring to a project.

In consequence, the ability of each person to collaborate

effectively within a team may govern the viability of a

software house. One person working at cross purposes to

the team or undermining its cohesion can dramatically

reduce its effectiveness. To better prepare our students

for professional practice, the Faculty of Information

Technology (FIT) at QUT has introduced a range of

initiatives in teaching and learning centred upon

teamwork. These innovations commence in the second

semester of first year and continue throughout the three

year undergraduate degree, progressing from carefully

controlled and simulated practice to direct exposure to a

professional environment, with only partial mitigation of

its risks and variability.

In this paper we consider the progression of team devel-

opment within two complementary frameworks: the edu-

cational blueprint of problem based learning (PBL), and

the professional guidance provided by a modern software

engineering process – here the Real World Software

Process (RWSP) (Hogan et. al. 2002), developed in-house

specifically for this role. Each approach has a role to play

throughout the degree, but the balance between them

shifts subtly as the course progresses, reflecting the

growing social and professional maturity of the students.

Within PBL, students learn to take responsibility for their

own learning within a carefully structured team environ-

ment. Independent research and presentation skills

reinforce the workings of the team, but the assigned task

cannot be completed without successful interaction with

other team members, and – critically – reliance upon their

contributions. Process-oriented project teams build upon

the skills acquired through PBL, working collaboratively

within the novel framework of a defined software

engineering process to produce a significant piece of

working software. Elements of this process appear within

the first year offerings, but it is only in the more advanced

subjects that it takes a central role. Students rely upon the

developing team environment to support their under-

standing of the process; and the process, in turn, to

support the development of a professional and effective

team2.

Each of these aspects of our curriculum is geared toward

simulating – and in the later subjects, realising – a

healthy, well-functioning team environment. While there

has been robust debate about the precise characteristics of

the most successful software development teams, there is

broad agreement (as is shown by even the most casual

review of software engineering textbooks and course

descriptions) that certain key areas must be addressed,

principally communication and time management. These

selections are somewhat brutally reinforced by even a

casual exploration of the literature of large-scale project

failure, but they are also important factors when schedule

and cost over-runs and unacceptable defect rates appear

on a smaller scale. Thus, development of skills in these

areas forms the core of our approach, and much of this

paper concerns our attempts to integrate this material

within a broader practical context, and to incorporate the

related notions of leadership and decision making, self-

directed learning, and a capacity for review and

reflection.

These issues are explored in some detail in section two,

leading us naturally to consider their instantiation within

the information technology curriculum – including a

detailed examination of the PBL and process-centric

initiatives we have undertaken within the Faculty (section

three). The success of these approaches and their effect

on student learning is considered in section four, and we

conclude with some discussion of the future and our plans

for longer term studies of the learning outcomes.

2. Aspects of Teamwork

It is self-evident that an enormous range of factors may

influence the effectiveness of a professional team, and

that only a fraction of these may be addressed within an

undergraduate environment. Our initiatives are centred

around communication and time management, but the

approach is more broadly drawn, incorporating the com-

plementary skills of decision making and leadership, and

building the student’s capacity for self-directed learning

and reflection. Such generic skills are necessary for

successful teamwork in many fields, but they are critical

in the software development team.

Effective communication is imperative in any team-ori-

ented enterprise, and flawed communication has emerged

as a root-cause in many of the documented case studies of

industry failure (McConnell, 1996). A key factor in

effective communication is the recognition that success

2
 All genuinely professional software developers guide their

activities – from the initial interactions with the client through to

the maintenance of the system after delivery – according to a

defined software engineering process. Healthy interactions of

the type described require a commitment from the team to work

according to the process, and to improve their performance

through reflection and revision for subsequent projects. Such

commitments seldom emerge if there is a poor match between

the process and the style and experience level of the team. These

issues are considered later as we examine process infrastructure

as a guide for team development.

requires “two-way” interaction. Transmission of an idea

is not sufficient: it must be received and understood accu-

rately, and the necessary confirmation is often missing

from informal team meetings. Miscommunication can be

the result of the receiver not understanding the message

content, or being unwilling to accept it from the particular

source. Egoless programming is an ideal seldom achieved

in practice, but team members must be able to express

concerns about the progress of a project, and have those

concerns considered professionally. Indeed, McConnell

concludes that many of the problems which beset

development teams are the result of wishful thinking

maintained in the face of mounting evidence, and frank

communication is critical in challenging this comfortable

fantasy.

In each case, communication failure may have significant

consequences and team members must learn to communi-

cate their ideas successfully. These skills are established

early through the PBL approach and through formalised

support for team meetings as part of the software engi-

neering process.

Successful communication, together with a willingness to

take responsibility for a defined component of a project,

is an essential prerequisite for managing team activities

and working within a project schedule. Time management

is crucial for team success, and the foundations are laid in

our approach through a mix of external control and inter-

nal flexibility. While PBL teams must work within a

rigid, externally imposed schedule, students must them-

selves allocate tasks across their team to ensure deadlines

are met. In later subjects, students are given progressively

more responsibility for creating their own task estimates

and project schedules, and for managing the conflicts

which arise as slippages occur. Yet effective time man-

agement, like communication, cannot develop without

adequate scaffolding, here provided through formal

guidance on project planning and time estimation, and

templates for documenting assigned tasks and the success

of team members in completing them on time.

Slippages in schedule are not the only source of conflict

among developers, and concerns over the allocation of

component tasks are especially prevalent among student

teams, in which no line management accountability has

been established. Successful decision making within a

project team requires both leadership and the willingness

of each team member to support the decision and to take

responsibility for their assigned component. While a

formal command structure may not be appropriate in the

professional environment, leaderless teams lack direction

and waste time coming to decisions. The leader need not

be a strong driving force with a large influence; effective

leadership may come from a coordinator or mediator who

helps the team to accomplish tasks in an efficient manner.

Regardless of the style, however, our experience has

shown that teams which include a leader “personality”

type tend to be more successful and harmonious than

those which do not (Thomas, 1999).

The existence of a leader should not allow the remaining

developers to discard all responsibility for the team

direction. Even with a leader in the team it is still

important for each member to understand and agree to a

specific decision making style. This provides an avenue

for any developer to solicit a decision, and helps to

reinforce support for unpopular decisions once they are

made. Both formal and informal leadership roles may

exist within a team. In most subjects involving teamwork,

formal leadership roles are defined and allocated to

students. Tutorial staff may provide advice and monitor

progress – although in our programme the degree of

supervision declines markedly after first year – but the

decisions and their consequences remain the respon-

sibility of the students. In a number of cases we have also

worked with students to help them identify and use these

informal leadership “personalities” within the team3.

Ideally, the diverse range of professional experience

within the development team will inform the allocation of

tasks, and limit the risk of disputes among its members.

Inevitably, however, a precise match between task and

experience is unlikely. Given the dynamic nature of the

IT industry and the consequent limited shelf life of tech-

nical experience, all successful developers must be able to

recognise their deficiencies and must have the facility to

acquire new technical knowledge rapidly and independ-

ently. Arguably more so than in any other discipline, life-

long learning skills are imperative for the IT professional

who wishes to remain employable. The problem based

learning approach within first year is designed principally

to establish self-directed learning skills within the student

body, but its mechanisms offer an additional advantage

for the development of teamwork. A central tenet of the

PBL methodology is that learning is greatly enhanced

when the student has an additional role as teacher, the

newly established specialist communicating new-found

knowledge to the remainder of the group. This process

has deep echoes in the professional development team, as

novel software technologies are absorbed as preparation

for new projects, and it is some measure of the success of

the first year preparation that student developers recog-

nise this responsibility to their team mates, providing ad

hoc informal tutorials as appropriate.

Problem based learning also provides the groundwork for

the most important skill that a developer can bring to the

professional team: the ability to reflect upon performance

during a project – upon their own performance as an indi-

vidual developer, upon their individual contribution to the

cohesiveness of the group, and upon the quality of the

team work and the process which governs their approach.

Reflection is an important aspect of learning; at the indi-

vidual level it is necessary for students to reflect on newly

acquired knowledge and to integrate it within a larger

cognitive framework. Reflection upon their learning

activities may similarly improve and expand their

capacity for learning, and its extension from the

classroom to professional practice is a significant factor

in managing a constantly changing environment.

3
 Defined roles within the team appear to be an important aspect

of the student experience, whether or not they are associated

directly with leadership. We shall return to this issue later in the

paper.

To highlight the importance of reflection, all subjects that

involve teamwork require students to reflect on the team

and process. In their first PBL subject, students are

expected to devote a significant amount of time and effort

to reflection each week. In later subjects, the formal

requirements are more limited, but student teams must

minimally reflect upon their teamwork and their process

at the end of each project cycle – an approach which

directly mirrors successful industry practice.

3. Teamwork in FIT

Group projects have long been common practice in soft-

ware engineering degree programmes (Shaw and

Tomayko, 1991), typically being scheduled towards the

end of the course and treated as a “capstone” project. This

approach is reflected in both the ACM/IEEE joint model

curriculum in computer science and software engineering

(Chang et al, 2001 and LeBlanc et al, 2004) and in the

model curriculum devised by the Software Engineering

Institute (Bagert et al, 1999). While teamwork skills are

usually acknowledged as important learning objectives

for group projects, in many cases these outcomes are

assumed to emerge automatically, and little direct em-

phasis is placed on ensuring that the skills are developed.

Traditional capstone projects have often followed a

waterfall lifecycle model, proceeding in turn through each

of the standard activities of the development process (see

for example Sommerville, 2001). The single pass inherent

in this model focuses teaching and student attention on

the process, providing no formal learning opportunities

for teamwork skills. Newer approaches such as the Agile

Methodologies (Agile, 2001) rely upon frequent iterations

of a lightweight process, with reflection and review at the

end of each cycle a key aspect of the methodology.

Iterative approaches thus provide a ready-made oppor-

tunity for teamwork to be addressed directly.

Yet it is our view that successful reflection requires some

experience and understanding of the dynamics of the

team environment, and that more sustainable outcomes

will result if students enter the development team

adequately equipped. In our programme, this foundation

is provided at the first year level through PBL, with the

skills of communication, reflection and self-directed

learning contributing to the success of the software

project, and being reinforced and extended through

experience. We now discuss this strategy in some detail,

examining particularly the role of the PBL process and its

linkages to subsequent development team practice.

Explicit support for teamwork and for the development of

related skills has been part of FIT’s core software engi-

neering project subject(s) for more than a decade, with

ongoing efforts to improve the quality of the material

offered and its relevance to industry practice. More

recently, these efforts have taken the form of a large-scale

initiative known as the Real World Software (RWS)

Project (Hogan et. al., 2003), which took a structured

approach to developing teamwork throughout the

student’s undergraduate experience.

Through the RWS project, teamwork was introduced in a

first year laboratory unit within the PBL framework; in

subsequent revisions of the first year programme, this has

been extended to encompass three subjects. In each of

these offerings, teamwork skills are among the primary

learning objectives. To support this emphasis, students

are provided with a team process to follow and are given

extensive tutorial support. Each group (usually five to

eight students) is assigned a tutor who works with the

team for one to two hours per week for the entire

semester, focussing upon team and process issues.

In second year, students work within a five-person devel-

opment team on their first genuine software engineering

project (Software Engineering Principles or SEP). The

key learning objectives are here centred on software

engineering theory and its small-scale application, but

there is a strong secondary objective to enhance

teamwork skills. Final year students again work on a

software engineering group project, with the additional

complication of a ‘live’ external client (Advanced

Programming Laboratory or APL). While the primary

learning objectives are again related to the application of

theoretical content, well-developed teamwork skills are

essential if the client’s requirements are to be met, and

interactions managed successfully. We consider each of

these stages in turn.

3.1 Problem Based Learning

One of the aims in implementing PBL was to better

prepare students for professional practice by shifting the

focus of education from teaching to learning (Bowden &

Marton, 1999). PBL has a role in developing the graduate

capabilities of teamwork and communication skills

(Lovie-Kitchin, 1998; Greening, 1998; Petersen, 1997;

Bentley, 2000). However, we recognised that students

cannot be expected to develop these skills by osmosis:

teaching is needed to encourage their development

(Bowden & Marton, 1999).

Following the advice of Boud and Felletti (1998), real-

world “problems” or scenarios were used as a “stimulus

and focus for student activity”. We also recognised the

importance of providing a framework to enable students

to work through PBL problems, and modified the

Maastricht 7-jump model (Schmidt, 1983) to fit our

environment. Here, PBL problems span several weeks –

rather than the more intensive model usually employed

(Rideout & Caprio, 2001) – with one two-hour tutorial

each week. In the first week of a new problem, students

wrap up the previous exercise and commence the new

activity within the one session.

3.1.1 Note Initial Reactions

Student teams begin each PBL problem through an intro-

ductory “trigger”, with their first activity being to note the

reaction of their team to the problem. This step was added

to the process to support the teamwork objectives, assist-

ing team members to understand each others’ emotional

responses to a particular problem, and to help build

empathy within the team. This is especially important if

certain individuals have had unsuccessful “real life”

experiences in a related problem domain.

3.1.2 Analyse Problem

The team’s analysis of the problem begins with an

attempt to clarify terms and concepts. Team members are

able to learn from each other as they explain particular

aspects of the problem that others are having difficulty

comprehending. Students are thus led into the role of

“teacher”, an important step in their development as self-

directed learners and one which builds trust within the

team.

3.1.3 Activate Prior Knowledge

The activating prior knowledge step helps students to

learn the value of each other’s contributions. Each team

member must identify aspects of their knowledge and

experience which may be used to solve parts of the

problem.

3.1.4 Formulate Learning Objectives

Continuing the theme of self-directed learning, the team

identifies learning objectives aligned with aspects of the

problem they cannot solve. Team members must then

allocate learning objectives amongst themselves through

negotiation, supporting the development of communi-

cation and time management skills. Subsequently,

students must take responsibility for their assigned tasks,

and ensure that they are completed before the next

meeting.

3.1.5 Research Learning Objectives

Successful team work requires that students recognise the

importance of each individual’s contribution. Learning

objectives are addressed at an individual level, but the

knowledge is required by the entire team. Students thus

learn that all team members contribute to successful team

performance. If even one team member fails to complete

assigned tasks, progress of the entire team may be jeop-

ardised. Reliability of team members is essential if the

team is to function efficiently; otherwise more conscien-

tious team members will end up duplicating work or

over-working to make up for the failings of others.

3.1.6 Report Back

Reporting back supports development of communication

skills, as students explain the results of their research to

the rest of the team. Important new information must be

communicated if it is to be applied in solving the overall

problem. Students are encouraged to use handouts and

walk throughs of program code to support their explana-

tions. This has the additional benefit of improving written

communication skills and providing the team with a

record of the material.

3.1.7 Analyse Additional Issues

Analysis of additional issues allows the team to work as

an “organic whole”, synthesising new material and plan-

ning its application to the problem. This improves the

student’s grasp of new knowledge and facilitates project

scheduling, forcing the team to consider their progress

toward the overall objective. At the completion of this

step, the team should either be in a position to solve the

problem, which would become their next task, or they are

given an additional trigger that leads them back to the

first step in the framework.

3.1.8 Wrap Up

The final step of wrapping up the problem requires

students to demonstrate their solution to other teams in

the same tutorial session, exercising communication skills

and building team cohesion as they receive peer com-

ments. Significantly, students are forced to examine the

quality of their teamwork during the problem – providing

an explicit opportunity to deal with issues within the team

and to optimise team processes.

3.1.9 Framework Discussion

It was intended that teamwork skills be developed

through the learning opportunities provided by the

framework, as described above. But, as implied by Bow-

den and Marton (1999), opportunities do not guarantee

that learning will take place – particularly in a large first

year class with a very diverse cohort of students. Thus,

each team was allocated a tutor to guide them through the

process and closely monitor their progress. Here, the tutor

is less a content expert than a facilitator who acts to

develop teamwork and self-directed learning. This close

interaction between tutors and teams ensured that the vast

majority of students improved their teamwork skills

during the subject (Adams et al, 2001).

3.2 Software Engineering Teams – Software

Engineering Principles (SEP) and Advanced
Programming Laboratory (APL).

By the end of first year, the student’s professional

armoury is well-established, with the fundamentals of

teamwork acquired within PBL. Subsequent team

projects are thus less directed, our focus being to support

young professionals as they improve their skills. In par-

ticular, the close supervision of the PBL tutor is replaced

by the lighter touch of the Development Manager, here a

tutor acting as a professional line manager responsible for

several teams. The apparent supervision deficit is readily

filled by student leadership and the availability of

accessible tutorial and process material to support team

processes.

The core of this material is provided within the Real

World Software Process (Hogan et. al., 2002), an in-

house Agile development methodology introduced as part

of the RWS Project. Agile methodologies have received

considerable attention within the industry, but the critical

driver behind RWSP was our belief that the lightweight

process model offers enormous opportunities for team-

based education.

Agile methodologies are centred upon rapid iteration, in

which the entire software development process is

repeated until the desired functionality is delivered4.

These short cycles are in marked contrast to the

4
 Indeed, in extreme programming (Wells, 2003), the best

known agile approach, such a cycle may occupy less than two

weeks of full time development.

traditional view, in which a single development cycle is

completed over the lifetime of the project. In the

educational context, a repeated lightweight process cycle

involves substantially more work for the academic staff

and a tight schedule for the students, but it allows a

number of important advantages:

• Students gain greater familiarity with the process,

and are faced with more realistic challenges in the

team environment – particularly in the need to man-

age at least two software product releases.

• Students have an opportunity for reflection upon

their effectiveness in using the process and in as-

sessing its usefulness as a guide for their work. This

reflection and discussion of potential improvements

to the process is an essential aspect of process and

developer maturity.

It is this explicit allowance and mandate for reflection

that allows our development projects to reinforce the

skills acquired during first year, but once again the activ-

ity must be adequately supported. Within the professional

software engineering community, the quest for the perfect

development process has been tempered by the recogni-

tion that the process is effective only if it is used, and

there are abundant anecdotes whose central theme is the

expensive, carefully constructed and ultimately useless

process support material which lies on the bookshelves,

unused during actual development. Such difficulties are

especially pronounced for inexperienced teams, of which

student software engineers are the archetypal example,

and our process material is distinguished by the degree of

tutorial support which is integrated into the process

description.

Teamwork support within RWSP is explicit, encompass-

ing templates for time management and for meetings and

their resultant actions, together with extensive guidance

upon the activity and the use of the appropriate

templates5. Our approach is similar in some respects to

the Personal Software Process (Humphrey, 1994), albeit

with simplified data collection and no direct attempt to

measure productivity. Our focus remains the coherence of

the team, rather than the determination of effort, and the

process material allows a degree of independence that

would not otherwise be possible.

Coherence is additionally fostered through careful atten-

tion to team selection, bounding the risk of conflict by

ensuring that the most experienced and technically able

developers are distributed across the groups, rather than

allowing their concentration through self-selection6.

However, student comment suggests that this approach is

5
 In some respects this material is a natural extension of the

support that the Faculty has provided to undergraduate software

engineering students for many years, but the information

integrated within the process is markedly more elaborate than in

the past, and covers a wide variety of issues – ranging in

sophistication from single paragraph definitions to extended

guidance for particularly troublesome process activities. This

material may be viewed in situ at:

 http://www.fit.qut.edu.au/~rwsp
6
 Much of the present approach is due to Dr. Sam Stainsby.

insufficient of itself, and teams are more likely to be

harmonious if there is a greater concentration on the roles

performed within the team, so that each developer is seen

to provide a valuable service to the project. This natu-

rally reinforces the lessons of 3.1.5, and the value of each

contribution.

RWSP is employed initially within SEP, and student

understanding of the development process and the impor-

tance of teamwork is well-established by the conclusion

of their second development iteration. Reflection within

the team is required explicitly – as part of the assessment

requirements – and implicitly, through the need for re-

finement of failed strategies from the first pass. The ex-

tent to which individual contributions are valued is appar-

ent from peer assessment, with poor scores extremely rare

and usually well justified7. Skills thus developed are a

firm basis for extension to the more substantial and

challenging tasks of APL.

Modern software engineering education is increasingly

driven by an expectation that projects should reflect

industry best practice, and utilise state of the art software

technologies. The use of development projects in

conjunction with an industry partner provides a direct

response to these challenges, enhancing student and team

motivation through the nature of the project and the desire

to perform professionally in front of a potential employer;

significantly, employers are not impressed by dysfunc-

tional development teams.

As one might expect with such strong industry linkages,

there may be radical change in the software technologies

employed from semester to semester, providing an imme-

diate test for the self-directed learning skills developed

across previous subjects – particularly in the degree to

which the team is able to facilitate learning of new tech-

nical material. The preparation provided by PBL

corresponds to commercial practice, in which new tech-

nologies are absorbed and communicated across the

whole of the development team.

Ultimately APL offers the opposite extreme from first

year PBL, with teamwork so ingrained that its develop-

ment is the province of the students. Experienced tutorial

staff will discuss process issues regularly with their

teams, but intervention is extremely rare, ad hoc clarifica-

tion of issues at the request of the students being the most

useful contribution. The APL cohort is dominated by high

achievers, and their skills require polish rather than

remoulding, and this is supplied as necessary from

academic and industry staff alike.

Yet the complexity of the project provides a ruthless

examination for the team, with a successful outcome

critically dependent upon:

7
 Individual contributions are assessed by a combination of two

equally weighted scores, one from the tutor and the other the

mean of assessments from peers. Peer assessment is controlled

in the same manner as Olympic diving or gymnastics, with the

outliers discarded. Thus, a low peer score is almost certain to

reflect a particularly poor contribution.

• Adequate communication between the team and the

industry partner to capture user requirements and

clarify them over time;

• The ability of specialists within the team to acquire

new technical skills and to educate their team-mates;

and

• The ability of team members to rely upon the timely

contributions of others.

It is our experience that poor performance in any of these

areas is sufficient to ensure a substandard project.

4. Student Experience and Reflection

Student experiences across our subjects reflect a gradual

development of communication and time management

skills, and an ability to work cohesively within a team –

although this too is more pronounced with progression

through the degree. Marked improvements in the capacity

for self-directed learning are reported from the end of first

year, and the importance of these skills noted in sub-

sequent offerings. Our discussion of student experience is

based upon (Hogan et. al., 2003), which drew upon focus

groups and written responses from each of the student

cohorts, and an external review of the PBL offering by a

prominent researcher8.

The introduction of a PBL subject within the first year

programme was not without its teething troubles, and

these are considered at length elsewhere. However, by the

third offering of the subject the approach was proving

successful, and subsequent experience has confirmed the

optimism of Farmer’s 2001 report. Much of the initial

student dissatisfaction centred upon the translation of

group assessment into individual grades – an issue

particularly troublesome to some high achieving students.

This was subsequently addressed through a revision to the

assessment scheme, but the lack of contribution from

some team members has remained the principal source of

student concern:

“Some group members have lower expectations and

commitment, ‘shirkers’, group ‘slackers’.”

In relation to teamwork, however, student acceptance of

the approach and its rationale was markedly better:

“It is about teamwork … also about learning pro-

gramming…I have changed my views about [the

importance of] teamwork.”

“[I have learned] how to start from scratch instead

of being spoon fed.”

“It has been a good learning process for the group

especially about professional responsibility issues.”

“I have been so involved especially in making

decisions, in group management and project

management. PBL is useful after graduation.”

8
 The review was conducted by Associate Professor Liz Farmer

of Flinders University, and the focus groups and resulting

reports by Naomi Searle and Jenny Reye.

“Group environment was excellent, got to learn from

others, teamwork is a necessity. Meeting new people

and creating networks.”

This appreciation of teamwork skills and their importance

upon graduation is reflected in reports from subsequent

subjects.

Students of SEP noted the importance of communication

and the need for trust between team members, with com-

promise and negotiated task allocation essential to team

harmony and a successful outcome. In contrast to the

PBL experience, few team members failed to contribute

adequately.

Not unexpectedly, students reported only gradual

development of their time management skills rather than

an immediate, intensive improvement. Here the principal

aids were seen to be an unforgiving project schedule with

extremely regular deliverables, and the PSP-like work

logs and meeting planners which allowed greater tracking

of progress.

At the process level, the responses confirmed our

intuition about the educational advantages of iterative

development, with familiarity and experience reinforcing

and supplementing the lessons of the initial phase. A

number of students commented on the role of reflection in

improving technical practice and team performance.

Within APL, student reports have focused upon the

motivating role of the industry linkages:

“Students enjoyed and were motivated by the real life

project and industry partnership. All of the students

agreed that it was one of the most interesting units

they had done at university, and despite the difficul-

ties, they enjoyed the subject. Students felt that it

prepared them well for work in the IT industry…”

and upon concerns over underperforming team members.

While limited in scope, we believe these latter concerns

reflect a clash between the professional culture which

dominates the cohort and those whose team skills and

commitment have not matured to the same extent.

In closing our discussion, we acknowledge with some

unease our reliance upon student reports of skill develop-

ment without some deeper examination of the factors

underpinning success. Direct assessment of teamwork and

the supporting skills is difficult of itself, and still more

difficult to isolate from content influences. Within the

controlled PBL environment it is possible to capture skill

development through the 4SAT instrument (Zimitat &

Alexander, 1999), and so we are re-assured by the align-

ment of 4SAT results and student reports. However,

4SAT is not applicable within the development team

subjects, and even student project marks must reflect a

multitude of performance criteria.

Ultimately, the long term impact of our work can only be

assessed once student cohorts have progressed success-

fully into the workforce, and been given appropriate

follow up. However informed the student body in making

judgments, there can be no substitute for the reflection

which accompanies actual practice. Until this final

assessment is completed, there remains a modest danger

that we have been too successful in providing a

reinforcing context for the initiatives, and that the student

reports unduly reflect our worldview. Yet, this danger is

mitigated by the sophistication of our student body, their

exposure to numerous additional information sources and

in some cases, there experience as quasi-professional

employees within the industry. We remain confident that

our approach has contributed to the development of out-

standing professional teams.

5. References

Adams, M., Clarke, S. and Thomas, R. (2001): Develop-

ing Graduate Capabilities Through PBL. Proceedings

of the Third Asia-Pacific Conference on Problem

Based Learning. PROBLARC, 2001.

The Agile Alliance (2001): Manifesto for Agile Software

Development. http://www.agilemanifesto.org/.

Accessed 26 August 2004.

Bagert, D., Hilburn, T., Hislop, G., Lutz, M., McCracken,

M. and Mengel, S. (1999): Guidelines for software

engineering education version 1.0. Technical Report

CMU/SEI-99-TR-032.

Bentley, J. (2000): Teaching Introduction to Business

Systems Development: A Problem Based Learning

Approach (Working Paper). Melbourne: Victoria

University of Technology.

Boud, D. and Feletti, G. (1998): The Challenge of

Problem-Based Learning. London, Kogan Page.

Bowden, J. and Marton, F. (1999): The University of

Learning. London, Kogan Page.

Chang, C., et al. (2001): Computing Curricula –

Computer Science Volume, http://www.computer.org/

education/cc2001/final/index.htm. Accessed 26 August

2004.

Greening, T. (1998): Scaffolding for Success in PBL.

Medical Education Online, 3(4). http://www.med-ed-

online.org/f0000012.htm. Accessed 26 August 2004.

Hart, G. and Stone, T. (2002): Conversations with

students: The outcomes of focus groups with QUT

students. Proceedings of the 2002 Annual International

Conference of the Higher Education Research and

Development Society of Australasia (HERDSA).

Hogan, J., Smith, G. and Thomas, R. (2002): The Real

World Software Process. Proceedings of the Sixth Asia-

Pacific Software Engineering Conference (APSEC

2002): 366-375.

Hogan, J., Thomas, R., Clarke, S., Smith, G., Adams, M.

and Ho-Stuart, C. (2003): The Real World Software

Project: Improving the professional education of soft-

ware developers through Problem Based Learning, self-

guiding Software Engineering Processes and Software

Quality Tools. Technical Report, Faculty of Informa-

tion Technology, QUT.

Humphrey, W. (1994): A Discipline for Software

Engineering. Boston, Addison Wesley.

LeBlanc, R., Sobel, A., et al. (2004): Computing

Curricula – Software Engineering Volume.

http://sites.computer.org/ccse/. Accessed 16 July 2004.

Lovie Kitchin, J. (1998): Problem-Based Learning in

Optometry. In The Challenge of Problem-Based

Learning. 203-210. BOUD and FELLETTI (eds).

London, Kogan Page.

McConnell, S. (1996): A Case Study of Classic Mistakes.

http://www.stevemcconnell.com/rdmistak.htm.

Accessed 12 September 2003.

Peterson, M. (1997): Skills to Enhance Problem Based

Learning. Medical Education Online, 2(3).

http://www.med-ed-online.org/f0000009.htm.

Accessed 26 August 2004.

Rideout, E. and Carpio, B. (2001): The PBL Model of

Nursing Education. In Transforming Nursing Educa-

tion Through Problem-Based Learning. 21-49.

RIDEOUT, E. (ed.) Sudbury, Jones and Bartlett

Publishers.

Schmidt, H. (1983): Problem-Based Learning: Rationale

and Description. Medical Education 17:11-16.

Shaw, M. and Tomayko, J. (1991): Models for Under-

graduate Project Courses in Software Engineering.

CMU/SEI-91-TR-10 Technical Report. SEI.

Sommerville, I (2001). Software Engineering. 6th

edition. Boston, Addison Wesley.

Thomas, R. (1999): Group Dynamics and Software

Engineering. Addendum to the Proceedings of

OOPSLA’99. ACM Press.

Wells, D. (2003): Extreme Programming: A Gentle

Introduction. http://www.extremeprogramming.org/.

Accessed 26 August 2004.

Zimitat, C and Alexander, H. (1999): The 4 Step

Assessment Task (4SAT). Integrity, Innovation and

Integration, 4:692-697.

