
Drawing Bipartite Graphs as Anchored Maps

Kazuo Misue
Graduate School of Systems and Information Engineering

University of Tsukuba
1-1-1 Tennoudai, Tsukuba, 305-8573 Japan

misue@cs.tsukuba.ac.jp

Abstract
A method of drawing anchored maps for bipartite graphs is
presented. Suppose that the node set of a bipartite graph is
divided into set A and set B. On an anchored map of the
bipartite graph, the nodes in A, which are called “anchor
nodes,” are arranged on the circumference, and the nodes
in B, which are called “free nodes,” are arranged at
suitable positions in relation to the adjacent anchor nodes.
This article describes aesthetic criteria that are employed
according to the purpose of drawing anchored maps and a
method to arrange the anchor nodes so that they satisfy the
criteria. The effectiveness of the proposed method is
discussed in terms of the aesthetics of drawing results. .

Keywords: graph drawing, anchored map, bipartite graph

1 Introduction
Bipartite graphs can be found in various fields. Examples
include graphs that show relationships between documents
and the words included in them, graphs that show
relationships between customers and goods they bought,
and graphs that show relationships between communities
and their members.

Such relationships are often used to compute similarities.
For example, when customer A and customer B have
bought a lot of the same goods, we may think that A and B
share similar properties. On the other hand, when a lot of
customers bought goods X together with goods Y, we may
think X and Y have some similarities. Such similarities
are used for information retrieval, E-commerce
recommendations, and so on.

The purpose of this research is visualization of the
relations represented by bipartite graphs. In particular, its
target is to facilitate an understanding of the node clusters’
meaning and the relationships among the clusters. In the
examples mentioned above, we expect that bipartite
graphs can help us to understand the relational structures
such as the scale of clusters of similar goods, the
relationships among clusters of goods, and the
relationships among clusters of goods and customers.

Copyright © 2006, Australian Computer Society, Inc. This paper
appeared at Asia Pacific Symposium on Information
Visualization 2006 (APVIS 2006), Tokyo, Japan, February 2006.
Conferences in Research and Practice in Information Technology,
Vol. 60. K. Misue, K. Sugiyama and J. Tanaka, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

We developed a drawing technique for expressing
bipartite graphs called “anchored maps.” It has two kinds
of node: “anchors” and “free nodes.” The anchors are
arranged on the circumference at equal intervals, and the
free nodes are arranged at suitable positions in relation to
the adjacent anchor nodes. The problem is how to decide
the order of anchor nodes on the circumference and the
positions of free nodes. We do not need to worry about the
routing of edges because we use straight-line drawing.

In this article, we describe the technique for drawing
anchored maps. We explain the aesthetic criteria that are
employed according to the map’s purpose and a method to
arrange anchor nodes to fulfill the criteria. We also show
the technique’s effectiveness in an aesthetic evaluation of
its drawing results.

2 Anchored maps of bipartite graphs

2.1 Bipartite graphs
Suppose that),(EBAG ∪= is a bipartite graph. A and B
are finite sets of vertices, and A and B are disjoint. E is a
finite set of edges, and E is a subset of BA× .

2.2 Expression styles of bipartite graphs
Figure 1 shows various styles of expressing bipartite
graphs. Virtual data is used as an example. Suppose that
there is a bipartite graph that represents relationships
between five communities and ten members. Figure 1(a)
shows the matrix representation. Each row corresponds to
a community, and each column corresponds to a member.
A “1” in a cell indicates that a member belongs to a
community; for example, member m01 belongs to
communities C1 and C2. This matrix cannot intuitively
show relational structures because it is not visual. Figure
1(b) shows a two-layer graphical representation of the
same bipartite graph. The five nodes on the left-hand side
represent communities, and the ten nodes on the
right-hand side represent its members. A line between a
community and a member shows that the member belongs
to the community. Figure 1(c) shows the same graph as
laid out by using spring embedding (Eades 1984). While
Figure 1(b) gives the impression that the arrangement is
more orderly than (c)’s, it doesn’t emphasize the relations
between communities and members. On the other hand,
while (c) illustrates these relationships, its distinction
between communities and members is not clear because
the two kinds of node exist together.

2.3 Anchored Maps
An anchored map restricts some nodes to certain positions,
but leaves other nodes so they may be arranged freely.
The restricted nodes are fixed like anchors, hence the
terms “anchors” and “free nodes.”

There are many variations in the restriction of the anchors.
In the simplest one, each anchor is fixed to a coordinate. It
is also possible to restrict anchors to a certain curve, in a
certain area, and so on. Figure 2 shows the same bipartite
graph shown in Figure 1 as an anchored map. The
communities are arranged on the vertices of a pentagon,
and members are arranged at a suitable position to
represent their relationship to the communities. The
distinction of the nodes is clearer than in Figure 1(c), and it
is easy to see the relations between members.

2.4 Drawing Convention
The drawing convention of anchored maps is as follows:

(Arrangement convention for the nodes)

・ Compound coordinate system: For a bipartite graph
),(EBAG ∪= , the elements of set A (the anchors)

depend on a circular coordinate system; they are
arranged on the circumference at equal intervals (in
other words, they are arranged on the vertices of a
regular polygon if 3|| ≥A), while the elements of set
B (the free nodes) are independent of the coordinate
system.

(Routing convention for the edges)

・ Straight line wiring: The adjacent nodes are connected
by a straight line.

・ Edges are independent of the coordinate system.

2.5 Features of anchored maps
The features of the anchored maps depend on how one
restricts the anchor positions and how one arranges the
free nodes.

For example, when anchor nodes are separated by enough
distance and the free nodes have spring embedding, the
anchor nodes connected to a common free node pull it in
different directions. By the nature of the spring
embedding, the free node will “move” to an appropriate
position that expresses its relation to the connected anchor
nodes.

Misue and Watanabe showed an example of expressing the
relations between concepts extracted from a large volume
of textual data in maps with three anchors (Misue &
Watanabe 1999). Compared with simple spring
embedding, the anchored maps were able to clarify the
concepts that were worth attention, and thereby facilitate
an easier analysis of large textual data.

2.6 Purpose in drawing anchored maps
The purpose of a bipartite graph visualization obviously
varies with the application. However, the essential reasons
for using anchored maps are as follows.

(a1) The positions of free nodes are understandable in
relation to the anchors.

(b) Two-layer style (c) Spring-embedded style

Figure 1: Various styles of representing bipartite graphs

 C1 C2 C3 C4 C5
m01 1 1
m02 1 1 1
m03 1 1
m04 1 1 1
m05 1 1 1
m06 1 1
m07 1 1
m08 1 1
m09 1 1 1
m10 1 1

(a) Matrix style

Figure 2: Anchored-map style

Free nodes should be arranged close to anchors. Two or
more anchors connected to the free node pull it towards
them. This is advantageous for understanding which
anchors are related to which free node.

 (a2) Clusters of free nodes can be discerned based on their
relation to the anchors.

The free nodes are divided into clusters by the connective
relationships with the anchors (subsets of anchors which
are connected to the free nodes). This illustrates what
kinds of cluster exist and which anchor subset is
responsible for constructing each cluster.

3 Drawing anchored maps

3.1 Aesthetic criteria
We employed the following aesthetic criteria for our
anchored map drawing method. Note that some of these
criteria are employed in many drawing methods. We also
judged them to be important in consideration of the
adaptability to the purpose of drawing of anchored maps.

(e1) Nodes connected to each other are laid out as closely
as possible (minimize the total length of edges).

(e2) The number of crossings among edges is minimized.

(e3) Anchors connected to common free nodes are laid out
as closely as possible.

(e4) Free nodes belonging to the same cluster are laid out
as closely as possible (free nodes do not belong to the same
cluster are not laid out closely).

3.2 Drawing procedure
The map is laid out in two steps:

(Step 1) Arrange anchors on the circumference at equal
intervals.

(Step 2) Fix the anchors, and arrange the free nodes at the
positions in which their relationships to the anchors are
appropriately expressed.

In Step 1, the size (i.e., radius) of the circumference is
decided, and the order of the anchors on the circumference
is decided. The length of the circumference doesn't
influence the quality of the layout; it influences only the
size of the drawing. Here, the circumference is decided
according to the size of the drawing area (i.e., window).
On the other hand, the order of the anchors has a large
influence on the quality of the layout. The next section
describes how to decide the order of the anchors.

In Step 2, the positions (i.e., coordinates) of the free nodes
are decided. Spring embedding with restrictions is used to
find the positions. That is to say, in every iteration of
spring embedding, the anchors are fixed and their
positions are not changed, and only the free nodes are
moved toward stable positions.

3.3 How to decide the order of anchor nodes
The distance between adjacent nodes (length of the edges)
and the number of edge crossings are essentially

influenced by the order of the anchor nodes. However,
these features are not deterministically decided from only
the anchor node order. The spring embedding in Step 2
and the initial positions of the free nodes also influence the
distance. However, spring embedding has negligible
influence compared with the influence of the anchor order.

Thus, the order of the anchors is the most critical problem.
We can evaluate the goodness of a certain order only after
the spring embedding has been processed for a certain
anchor arrangement, but to do this for all the possible
candidate orders would require too much computing time.
Thus, we need an alternative index that is computable in a
deterministic way and with a low cost.

We propose to use the distance along the circumference
between anchors connected to the same free nodes as such
an index.

Although the computing cost of this index is not very low,
we use it as the initial choice because it can be computed
deterministically.

3.3.1 Preparation

Suppose that M is the number of anchors, that is, || AM = .
The anchors are arranged on the vertices of a regular
M-gon (a polygon with M vertices). The vertices of the
M-gon are labeled clockwise from 1 to M. It doesn’t
matter which vertex is chosen to be 1.

Suppose that)(ap is the position of anchor a.

3.3.2 Gap
The “clockwise distance” between the i-th vertex and the
j-th vertex is the number of vertices we meet when we
trace the vertices of the M-gon from the i-th to the j-th
clockwise. The clockwise distance Ml is defined as

(1) MMijjilM mod)(),(+−=

Next, we introduce a “gap” for every anchor connected to
a certain free node. Suppose that f is a free node and

},,,{ 21 kaaaA L=′ is a set of anchors connected to f.
Moreover, suppose that kaa ,,1 L have been sorted by the
numbers of vertices of the M-gon. In other words,

)()(ts apap < if ts < . The gap for each anchor is the
clockwise distance between one node and the next node
(the next of ak is a1). The gap)(sag of node sa is
defined as

 (2)))(),(()(mod)1(MssMs apaplag +=

3.3.3 Penalty
When k anchors are connected with a certain free node, a
sequence of k gaps is obtained. Removing the maximum
gap from the sequence leaves k-1 smaller gaps. The
“penalty” is the sum of powers of k-1 gaps. A small
penalty indicates that the anchors connected to the same
free node should be arranged close to each other.
Therefore, the penalty could be used as an index of how to
decide the order of the anchor nodes.

Suppose that f is a free node and g1, g2, …, gk-1 is the
remainder sequence that excludes the maximum gap from
the gap sequence of the anchors connected to f. The
penalty)(fp of free node f is expressed as

(3) ∑
−

=

=
1

1
)(

k

i

q
igfp

Figure 3 illustrates the reason why we employed the power
of the gaps with the parameter q. We introduced q to judge
which of (a) or (b) is better when there is a free node in
Figure 3. When 1=q , the penalty 431 11 =+=p in the

case of (a), and 422 11 =+=p in the case of (b). The
penalty is the same value in either case; it is a useless index
for deciding which arrangement is better. To take account
of the balance and symmetry and to prefer the case of (b)
we should have 1>q (for example, 2=q). When 2=q ,

1031 22 =+=p in the case of (a) and 822 22 =+=p in
the case of (b); hence, (b) is chosen for the graph.

3.3.4 Searching for the optimal order
It is necessary to search for the anchor order that
minimizes the penalty.

A simple technique is to compute the penalties for all the
possible orders (isomorphism cause by rotation and
mirroring is negligible), and then finds the order with the
minimum penalty. This technique gives the optimal
solution for the penalty but its computational cost is very
large. Moreover, we should recall that the penalty is an
alternative index. There is no guarantee that the optimal
solution for the penalty is the optimal solution for the
aesthetic criteria.

We created a quasi-optimal solution for the penalty and
devised a technique with a lower computational cost. The
technique begins with a random anchor order, and
exchanges two anchor nodes while comparing the penalty
before and after the exchange. It continues to choose pairs
of anchor nodes and it exchanges them if the penalty
decreases by doing so. The technique is as follows.

(a) First, we sequentially exchange adjoining nodes
clockwise in a manner like bubble sorting. However,
unlike bubble sorting, there is no terminal element of a list
because the nodes are on a circumference. If the penalty
does not change after the exchange procedure makes a

complete circuit around the circumference, it stops. This
procedure must stop because the penalty does not keep
decreasing indefinitely. However, if we use only this
condition for stopping, the solution tends to fall into a local
minimum, which may not yield good results.

(b) Next, we vary the distance between the compared
nodes from a large value to a small one. We start the
comparison by choosing nodes far from each other, then
gradually shorten the distance between nodes to be
compared, and finally compare adjoined nodes at the end.
For each distance, the comparison stops when the penalty
does not change. In this way, it becomes unlikely that the
solution will fall into a local minimum solution.

(c) To improve the efficiency of (b) at the end, the distance
between nodes is made to be half the node distance of (b).

While the frequency of loop of every distance between
compared nodes is)|(| 2AO in (b), we expect that it
becomes |)|log|(| AAO in (c). The procedure is listed as
Algorithm 1 (the vertices run from 0 to 1|| −A in the
algorithm).

4 Evaluation concerning aesthetic criteria
We implemented the technique described in Section 3 in
Java and performed an experiment to evaluate its effect in
terms of aesthetic criteria.

4.1 Evaluation Items
We wanted to assess

(a) the validity of the penalty and

(b) the effectiveness of the penalty minimization
algorithm.

Regarding (a), we obtained layouts of many variations for
a number of graph instances and examined the correlations
between the penalty and average edge length and between
the penalty and the number of edge crossings for each

int p0 = current penalty;
int d = |A| / 2;
while (d > 0) {
 do {
 boolean c = false;
 for (int i = 0; i < |A|; i ++) {
 int j = (i + d) mod |A|;
 swap i-th node and j-th node;
 int p1 = current penalty;
 if (p1 < p0) {
 p0 = p1;
 c = true;
 } else {
 swap i-th node and j-th node;
 }
 }
 } while (c);
 d = d / 2;
}

Algorithm 1

Figure 3: Effect of the parameter q in the penalty

(a) (b)

1
3

2
2

graph. We judged the penalty to be valid as an alternative
index if there was a certain correlation between the penalty
and these values.

Regarding (b), we assumed that the penalty from (a) is
valid. We examined how well the solutions obtained by
the algorithm compared with the optimal solutions. We
judged the algorithm to be effective if the quasi-optimal
solution obtained by the algorithm was closer than a
random order to the optimal solution.

4.2 Outline of the evaluation
Besides the proposed algorithm, we implemented two
programs in Java; one obtained the optimal order
concerning the penalty, and the other obtained a random
order. We generated six kinds of bipartite graph. The
three programs obtained a total of 1000 kinds of layout for
each of the six graphs. The 1000 layouts had the following
properties.

 1. One optimal arrangement of the penalty

 2. One Quasi-optimal arrangement of the penalty
(obtained by Algorithm 1)

 3. 998 random arrangements

Although the random arrangements do not need the
penalty computation, we computed the penalties of all
layouts as well as the correlations between the penalties
and total edge lengths and the correlations between the
penalties and the number of edge crossings.

Table 1 shows the size of the six bipartite graphs used for
the evaluation. Every graph had 10 anchors. Note that our
technique does not need to be used when there are only a
few anchors because it would not take a long time to
compute all possible orders in this case. On the other hand,
when the anchor nodes exceed 10 in number, it becomes
difficult to obtain optimal solutions for all graphs.

Table 1: Size of the graphs used for the evaluation

 |A| |B| |E|

G1 10 16 65

G2 10 19 84

G3 10 40 182

G4 10 48 251

G5 10 98 473

G6 10 99 512

4.3 How to generate random graphs
Let n and p be parameters to generate a random graph. n
denotes the number of anchors, and p denotes the
appearance probability of free nodes. There can be 2n
kinds of free node when paying attention to the connecting
pattern to the anchors (isolated free nodes, which are not
connected any anchors, are also included in this number).
The arrangement of free nodes connected to at most one

anchor is not influenced by the order of the anchor nodes.
Thus, we generate only random graphs whose free nodes
have at least degree 2. We choose free nodes of degree 2
or more with probability p. Two graphs generated with the
same n and p might have different numbers of edges
because p is not dependent on the connecting patterns to
the anchor nodes.

The values of p for graphs G1, …, G6 are respectively 0.02,
0.02, 0.05, 0.05, 0.1, and 0.1. We assumed that p was at
most 0.1 because the density of the edges rises too much
when there are more free nodes, and readable layouts
cannot be expected for such anchored maps.

4.4 Evaluation result
We obtained 1000 sets of penalty, average edge length,
and edge crossings for each of the six graphs. Table 2
shows the correlations calculated from them, and all of
them are 0.8 or more. The penalty thus seems to be useful
as an alternative index as long as we can see the
correlations between it and the average edge length and
between it and the number of edge crossings. We also
found that scatter charts could represent relations between
the penalty and the average edge length, and between the
penalty and the number of edge crossings. Figure 4 shows
a scatter chart, which represents the relation between the
penalty and the number of edge crossings in G4. Certainly,
a general trend is that the number of edge crossings is
small in a layout whose penalty is small. However, we can
see that some cases with few edge crossings exist and their
penalties are not the minimum values.

Table 2: Correlations of the penalty with the average edge
length and the number of edge crossings

Correlation between
penalty and average

edge length

Correlation between
penalty and number
of edge crossings

G1 0.884 0.828

G2 0.872 0.829

G3 0.893 0.878

G4 0.831 0.816

G5 0.904 0.893

G6 0.875 0.863

Next, we ranked the 1000 kinds of layout according to the
aesthetic criteria for each graph. Table 3 shows the ranks
of the optimal layout and the quasi-optimal layout. From
the left, it shows the ranks for the penalty, the ranks for the
average edge length, and the ranks for the number of edge
crossings, respectively. The ranks of the optimal layout
for the penalty are omitted because these were always the
first place. The quasi-optimal solutions give considerably
good results if we regard only the ranking for the penalty.
However, some ranks of quasi-optimal layouts are rather
low in regard to the average edge length or number of edge
crossings. All cases except the number of edge crossings

in G2 are ranked within the 65th place in 1000; the rank of
the number of edge crossings in G2 is 144th.

These data led us to conclude that the penalty works
moderately well. Moreover, we think that the proposed
algorithm works well enough. We guess that the goodness
(or badness) of the index caused the ranks concerning the
aesthetic criteria to be a little low. Therefore, it will be
necessary for us to look for a better alternative index.

By the way, the penalty used in the experiment assumed
that 1=q in Expression (3). We also examined a penalty
of 2=q and 3=q . When q becomes large, both the
correlation between the penalty and the average edge
length and the correlation between the penalty and the
number of edge crossings tended to become small, against
the expected effect of q as described in Section 3.3.3.

We also computed the correlation between the average
edge length and the number of edge crossings. For all six
graphs, we obtained high correlations of more than 0.94.
This means that we can use the common measure to
decrease both of the average edge length and the number
of edge crossings.

Table 3: Ranks of optimal solutions and quasi-optimal
solutions concerning penalty, average edge length, and
number of edge crossings

penalty Average edge
length

Number of edge
crossings

q.-opt. opt. q.-opt. opt. q.-opt.

G1 2 1 6 1 33

G2 3 1 53 1 144

G3 3 2 18 1 65

G4 1 3 2 9 4

G5 2 1 21 1 26

G6 1 3 4 2 3

5 Application
Below, we show examples of anchored
maps that visualize protein interaction
networks.

When a protein is generated based on DNA,
a transcription factor works. The kind of
protein that is generated depends on the
transcription factor. A transcription factor
generates one or more kinds of protein, and
a protein is generated from one or more
kinds of transcription factor; there is an
n-to-n relation between the proteins and the
transcription factors. We guessed that
proteins generated from the same
transcription factor would have a similar
character and that transcription factors
generating the same protein would have a
similar character. We expected that we
could intuitively grasp the global relational

structure between proteins and transcription factors if we
see such relationships graphically.

We expressed the relationships between the proteins and
the transcription factors as anchored maps in which the
transcription factors are anchors. Note that, in fact, the
relationships between proteins and transcription factors
are not bipartite graphs because transcription factors are
also proteins.

Figure 5 and Figure 6 show interaction networks of yeast
proteins. Figure 5 shows the relationships between nine
representative transcription factors related to the cell cycle
and 276 proteins related to the factors. Figure 6 shows a
larger example; it shows 63 transcription factors whose
functions are comparatively clear and 1315 proteins
related to the factors. As described above, the relations
between the proteins and the transcription factors are not
bipartite graphs. Here, we deleted the edges toward the
transcription factors to make the bipartite graphs. Refer to
(Harbison et al 2004) for more information about the
protein data.

We drew two kinds of diagrams to see the effect of the
proposed technique. In Figure 5(a) and in Figure 6(a), the
anchors are arranged at random. In Figure 5(b) and in
Figure 6(b), the orders of the anchor nodes are computed
by using the proposed technique.

In the random layouts, we can see that the density of the
central parts of the diagrams is high, and some
transcription factors related to the common proteins are
placed far away from each other. As the result, proteins
which might have no relationship with each other (in other
words, which are generated from quite different
transcription factors) gather in a central part of the
diagram; we cannot see features like clusters of proteins
with similar natures. In contrast, the effect of the proposed
technique is obvious. In Figure 5(b) and in Figure 6(b),
transcription factors that relate to each other are placed
together, and the central parts of the diagrams are sparser.
In addition, it seems that the proteins are moderately
scattered, and proteins with similar relationships with the
transcription factors are placed close to each other.

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

270 275 280 285 290 295 300 305 310 315

of edge crossings

the penalty

Figure 4: Correlation between the penalty
and the number of edge crossings

(a) Anchor nodes in random order

Figure 5: Interaction networks of yeast proteins (9 transcription factors)

(b) Order of anchor nodes computed by using the proposed technique

(a) Anchor nodes in random order

Figure 6: Interaction networks of yeast proteins (63 transcription factors)

(b) Order of anchor nodes computed by using the proposed technique

6 Related work
Visual Who (Donath 1995) is a tool whose purpose is to
visualize communities. The tool visually expresses the
appearance of the communities based on some mailing
lists by using information statistically extracted from the
text data of the mailing lists. The positions of the nodes
are computed by spring embedding. The user can arrange
an arbitrary mailing list as anchors, and the layout of the
nodes represent member changes. This tool is interactive,
and the user may arrange the anchors manually. It does not
provide automatic layout facilities for the anchors.

SQWID (McCreckard & Kehoe 1997) is a Web search tool
that expresses the retrieval result of WWW by using
anchored maps. Terms used in the query are placed on the
vertices of a triangle as anchor nodes. Web pages (or sites)
are placed according to a related level with these terms.
They limited anchors to three so that the relationships
between the arranged Web pages and the fixed terms
should not become vague. However, we think that there
are a lot of situations in which four or more anchors are
needed, and that a automatic technique to find the
arrangement of anchor nodes should be developed.

7 Conclusions
We proposed an anchored map drawing technique for
bipartite graphs, and explained the two main ideas of the
technique. One idea concerns the index to decide the order
of anchor nodes. As the index, we defined a penalty based
on gaps between anchor nodes connected with a common
free node. The other idea is an efficient algorithm to
decide the order of anchor nodes by using the index. We
implemented these ideas in Java and evaluated the
effectiveness of the ideas. We generated six kinds of
random bipartite graphs as data for the evaluation
experiment. We computed layouts of these graphs by
using our technique and one using a random ordering of

anchor nodes, and considered the results according to
aesthetic criteria. The penalty seems to be useful as an
alternative index as long as we can see the correlations
between it and the average edge length and between it and
the number of edge crossings. Moreover, we think that the
proposed algorithm is good enough.

We have yet to complete our evaluations for all aesthetic
criteria. In addition, we should try to find an alternative
index that is better than the penalty described in this article,
and to develop other algorithms to find good orders of
anchor nodes based on the index.

Acknowledgements
The author would like to thank Professor Yasubumi
Sakakibara and Mr. Yuji Kawada of Keio University for
their valuable advice on the interaction network of proteins.
This research was supported by the Artificial Intelligence
Research Promotion Foundation.

References
Eades, P. (1984), A Heuristic for Graph Drawing,

Congressus Numerantium 42, pp. 149-160.

Harbison, C. T. et al. (2004), Transcriptional regulatory
code of a eukaryotic gnome, Nature, 431, pp. 99-104.

Misue, K. & Watanabe, I. (1999), Visualization of
Keyword Association for Text Mining, In IPSJ SIG
Technical Report 1999-FI-55-8, Information Processing
Society of Japan, pp. 65-72 (in Japanese).

McCrickard, S. D. & Kehoe, C. (1997), Visualizing Search
Results using SQWID, In Proc. of the sixth
International World Wide Web Conference (WWW 6).

Donath, J. S. (1995), Visual Who: Animating the affinities
and activities of an electronic community, ACM
Multimedia 95 – Electronic Proceedings.

