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Abstract 
A method of drawing anchored maps for bipartite graphs is 
presented.  Suppose that the node set of a bipartite graph is 
divided into set A and set B.  On an anchored map of the 
bipartite graph, the nodes in A, which are called “anchor 
nodes,” are arranged on the circumference, and the nodes 
in B, which are called “free nodes,” are arranged at 
suitable positions in relation to the adjacent anchor nodes.  
This article describes aesthetic criteria that are employed 
according to the purpose of drawing anchored maps and a 
method to arrange the anchor nodes so that they satisfy the 
criteria.  The effectiveness of the proposed method is 
discussed in terms of the aesthetics of drawing results. . 
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1 Introduction 
Bipartite graphs can be found in various fields. Examples 
include graphs that show relationships between documents 
and the words included in them, graphs that show 
relationships between customers and goods they bought, 
and graphs that show relationships between communities 
and their members.  

Such relationships are often used to compute similarities.  
For example, when customer A and customer B have 
bought a lot of the same goods, we may think that A and B 
share similar properties.  On the other hand, when a lot of 
customers bought goods X together with goods Y, we may 
think X and Y have some similarities.  Such similarities 
are used for information retrieval, E-commerce 
recommendations, and so on.  

The purpose of this research is visualization of the 
relations represented by bipartite graphs.  In particular, its 
target is to facilitate an understanding of the node clusters’ 
meaning and the relationships among the clusters.  In the 
examples mentioned above, we expect that bipartite 
graphs can help us to understand the relational structures 
such as the scale of clusters of similar goods, the 
relationships among clusters of goods, and the 
relationships among clusters of goods and customers. 
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We developed a drawing technique for expressing 
bipartite graphs called “anchored maps.”  It has two kinds 
of node: “anchors” and “free nodes.”  The anchors are 
arranged on the circumference at equal intervals, and the 
free nodes are arranged at suitable positions in relation to 
the adjacent anchor nodes.  The problem is how to decide 
the order of anchor nodes on the circumference and the 
positions of free nodes.  We do not need to worry about the 
routing of edges because we use straight-line drawing.   

In this article, we describe the technique for drawing 
anchored maps.  We explain the aesthetic criteria that are 
employed according to the map’s purpose and a method to 
arrange anchor nodes to fulfill the criteria.  We also show 
the technique’s effectiveness in an aesthetic evaluation of 
its drawing results. 

2 Anchored maps of bipartite graphs 

2.1 Bipartite graphs 
Suppose that ),( EBAG ∪=  is a bipartite graph. A and B 
are finite sets of vertices, and A and B are disjoint. E is a 
finite set of edges, and E is a subset of BA× . 

2.2 Expression styles of bipartite graphs 
Figure 1 shows various styles of expressing bipartite 
graphs. Virtual data is used as an example.  Suppose that 
there is a bipartite graph that represents relationships 
between five communities and ten members. Figure 1(a) 
shows the matrix representation.  Each row corresponds to 
a community, and each column corresponds to a member.  
A “1” in a cell indicates that a member belongs to a 
community; for example, member m01 belongs to 
communities C1 and C2. This matrix cannot intuitively 
show relational structures because it is not visual. Figure 
1(b) shows a two-layer graphical representation of the 
same bipartite graph.  The five nodes on the left-hand side 
represent communities, and the ten nodes on the 
right-hand side represent its members.  A line between a 
community and a member shows that the member belongs 
to the community.  Figure 1(c) shows the same graph as 
laid out by using spring embedding (Eades 1984). While 
Figure 1(b) gives the impression that the arrangement is 
more orderly than (c)’s, it doesn’t emphasize the relations 
between communities and members. On the other hand, 
while (c) illustrates these relationships, its distinction 
between communities and members is not clear because 
the two kinds of node exist together.  



2.3 Anchored Maps 
An anchored map restricts some nodes to certain positions, 
but leaves other nodes so they may be arranged freely.  
The restricted nodes are fixed like anchors, hence the 
terms “anchors” and “free nodes.” 

There are many variations in the restriction of the anchors.  
In the simplest one, each anchor is fixed to a coordinate.  It 
is also possible to restrict anchors to a certain curve, in a 
certain area, and so on.  Figure 2 shows the same bipartite 
graph shown in Figure 1 as an anchored map.  The 
communities are arranged on the vertices of a pentagon, 
and members are arranged at a suitable position to 
represent their relationship to the communities.  The 
distinction of the nodes is clearer than in Figure 1(c), and it 
is easy to see the relations between members.  

2.4 Drawing Convention 
The drawing convention of anchored maps is as follows:  

(Arrangement convention for the nodes) 

・ Compound coordinate system: For a bipartite graph 
),( EBAG ∪= , the elements of set A (the anchors) 

depend on a circular coordinate system; they are 
arranged on the circumference at equal intervals (in 
other words, they are arranged on the vertices of a 
regular polygon if 3|| ≥A ), while the elements of set 
B  (the free nodes) are independent of the coordinate 
system.  

(Routing convention for the edges) 

・ Straight line wiring: The adjacent nodes are connected 
by a straight line.   

・ Edges are independent of the coordinate system. 

2.5 Features of anchored maps 
The features of the anchored maps depend on how one 
restricts the anchor positions and how one arranges the 
free nodes.  

For example, when anchor nodes are separated by enough 
distance and the free nodes have spring embedding, the 
anchor nodes connected to a common free node pull it in 
different directions.  By the nature of the spring 
embedding, the free node will “move” to an appropriate 
position that expresses its relation to the connected anchor 
nodes.  

Misue and Watanabe showed an example of expressing the 
relations between concepts extracted from a large volume 
of textual data in maps with three anchors (Misue & 
Watanabe 1999).  Compared with simple spring 
embedding, the anchored maps were able to clarify the 
concepts that were worth attention, and thereby facilitate 
an easier analysis of large textual data.  

2.6 Purpose in drawing anchored maps 
The purpose of a bipartite graph visualization obviously 
varies with the application.  However, the essential reasons 
for using anchored maps are as follows.  

(a1) The positions of free nodes are understandable in 
relation to the anchors. 

(b) Two-layer style (c) Spring-embedded style 

Figure 1: Various styles of representing bipartite graphs 

 C1 C2 C3 C4 C5 
m01 1 1    
m02 1   1 1 
m03   1  1 
m04 1 1  1  
m05 1  1 1  
m06 1 1    
m07   1  1 
m08    1 1 
m09 1 1  1  
m10  1 1   

(a) Matrix style 

Figure 2: Anchored-map style 



Free nodes should be arranged close to anchors.  Two or 
more anchors connected to the free node pull it towards 
them.  This is advantageous for understanding which 
anchors are related to which free node.  

 (a2) Clusters of free nodes can be discerned based on their 
relation to the anchors. 

The free nodes are divided into clusters by the connective 
relationships with the anchors (subsets of anchors which 
are connected to the free nodes).  This illustrates what 
kinds of cluster exist and which anchor subset is 
responsible for constructing each cluster.  

3 Drawing anchored maps 

3.1 Aesthetic criteria 
We employed the following aesthetic criteria for our 
anchored map drawing method. Note that some of these 
criteria are employed in many drawing methods.  We also 
judged them to be important in consideration of the 
adaptability to the purpose of drawing of anchored maps. 

(e1) Nodes connected to each other are laid out as closely 
as possible (minimize the total length of edges). 

(e2) The number of crossings among edges is minimized. 

(e3) Anchors connected to common free nodes are laid out 
as closely as possible.  

(e4) Free nodes belonging to the same cluster are laid out 
as closely as possible (free nodes do not belong to the same 
cluster are not laid out closely). 

3.2 Drawing procedure 
The map is laid out in two steps: 

(Step 1) Arrange anchors on the circumference at equal 
intervals.  

(Step 2) Fix the anchors, and arrange the free nodes at the 
positions in which their relationships to the anchors are 
appropriately expressed.  

In Step 1, the size (i.e., radius) of the circumference is 
decided, and the order of the anchors on the circumference 
is decided.  The length of the circumference doesn't 
influence the quality of the layout; it influences only the 
size of the drawing.  Here, the circumference is decided 
according to the size of the drawing area (i.e., window).  
On the other hand, the order of the anchors has a large 
influence on the quality of the layout.  The next section 
describes how to decide the order of the anchors.   

In Step 2, the positions (i.e., coordinates) of the free nodes 
are decided.  Spring embedding with restrictions is used to 
find the positions.  That is to say, in every iteration of 
spring embedding, the anchors are fixed and their 
positions are not changed, and only the free nodes are 
moved toward stable positions.  

3.3 How to decide the order of anchor nodes 
The distance between adjacent nodes (length of the edges) 
and the number of edge crossings are essentially 

influenced by the order of the anchor nodes.  However, 
these features are not deterministically decided from only 
the anchor node order.  The spring embedding in Step 2 
and the initial positions of the free nodes also influence the 
distance.  However, spring embedding has negligible 
influence compared with the influence of the anchor order.   

Thus, the order of the anchors is the most critical problem.  
We can evaluate the goodness of a certain order only after 
the spring embedding has been processed for a certain 
anchor  arrangement, but to do this for all the possible 
candidate orders would require too much computing time.  
Thus, we need an alternative index that is computable in a 
deterministic way and with a low cost.   

We propose to use the distance along the circumference 
between anchors connected to the same free nodes as such 
an index. 

Although the computing cost of this index is not very low, 
we use it as the initial choice because it can be computed 
deterministically.   

3.3.1 Preparation 

Suppose that M is the number of anchors, that is, || AM = .  
The anchors are arranged on the vertices of a regular 
M-gon (a polygon with M vertices).  The vertices of the 
M-gon are labeled clockwise from 1 to M.  It doesn’t 
matter which vertex is chosen to be 1.   

Suppose that )(ap  is the position of anchor a. 

3.3.2 Gap 
The “clockwise distance” between the i-th vertex and the 
j-th vertex is the number of vertices we meet when we 
trace the vertices of the M-gon from the i-th to the j-th 
clockwise.  The clockwise distance Ml  is defined as 

(1) MMijjilM mod)(),( +−=  

Next, we introduce a “gap” for every anchor connected to 
a certain free node.  Suppose that f is a free node and 

},,,{ 21 kaaaA L=′  is a set of anchors connected to f.  
Moreover, suppose that kaa ,,1 L  have been sorted by the 
numbers of vertices of the M-gon.  In other words, 

)()( ts apap <  if ts < .  The gap for each anchor is the 
clockwise distance between one node and the next node 
(the next of ak is a1).  The gap )( sag  of node sa  is 
defined as  

 (2) ))(),(()( mod)1( MssMs apaplag +=  

3.3.3 Penalty 
When k anchors are connected with a certain free node, a 
sequence of k gaps is obtained.  Removing the maximum 
gap from the sequence leaves k-1 smaller gaps.  The 
“penalty” is the sum of powers of k-1 gaps.  A small 
penalty indicates that the anchors connected to the same 
free node should be arranged close to each other.  
Therefore, the penalty could be used as an index of how to 
decide the order of the anchor nodes.   



Suppose that f is a free node and g1, g2, …, gk-1 is the 
remainder sequence that excludes the maximum gap from 
the gap sequence of the anchors connected to f. The 
penalty )( fp  of free node f is expressed as 

(3) ∑
−

=

=
1

1
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k
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Figure 3 illustrates the reason why we employed the power 
of the gaps with the parameter q.  We introduced q to judge 
which of (a) or (b) is better when there is a free node in 
Figure 3.  When 1=q , the penalty 431 11 =+=p  in the 

case of (a), and 422 11 =+=p  in the case of (b).  The 
penalty is the same value in either case; it is a useless index 
for deciding which arrangement is better.  To take account 
of the balance and symmetry and to prefer the case of (b) 
we should have 1>q  (for example, 2=q ).  When 2=q , 

1031 22 =+=p  in the case of (a) and 822 22 =+=p  in 
the case of (b); hence, (b) is chosen for the graph.  

3.3.4 Searching for the optimal order 
It is necessary to search for the anchor order that 
minimizes the penalty.   

A simple technique is to compute the penalties for all the 
possible orders (isomorphism cause by rotation and 
mirroring is negligible), and then finds the order with the 
minimum penalty.  This technique gives the optimal 
solution for the penalty but its computational cost is very 
large.  Moreover, we should recall that the penalty is an 
alternative index.  There is no guarantee that the optimal 
solution for the penalty is the optimal solution for the 
aesthetic criteria.  

We created a quasi-optimal solution for the penalty and 
devised a technique with a lower computational cost.  The 
technique begins with a random anchor order, and 
exchanges two anchor nodes while comparing the penalty 
before and after the exchange.  It continues to choose pairs 
of anchor nodes and it exchanges them if the penalty 
decreases by doing so. The technique is as follows.  

(a) First, we sequentially exchange adjoining nodes 
clockwise in a manner like bubble sorting.  However, 
unlike bubble sorting, there is no terminal element of a list 
because the nodes are on a circumference.  If the penalty 
does not change after the exchange procedure makes a 

complete circuit around the circumference, it stops.  This 
procedure must stop because the penalty does not keep 
decreasing indefinitely.  However, if we use only this 
condition for stopping, the solution tends to fall into a local 
minimum, which may not yield good results.   

(b) Next, we vary the distance between the compared 
nodes from a large value to a small one.  We start the 
comparison by choosing nodes far from each other, then 
gradually shorten the distance between nodes to be 
compared, and finally compare adjoined nodes at the end.  
For each distance, the comparison stops when the penalty 
does not change.  In this way, it becomes unlikely that the 
solution will fall into a local minimum solution.   

(c) To improve the efficiency of (b) at the end, the distance 
between nodes is made to be half the node distance of (b).   

While the frequency of loop of every distance between 
compared nodes is )|(| 2AO  in (b), we expect that it 
becomes |)|log|(| AAO  in (c).  The procedure is listed as 
Algorithm 1 (the vertices run from 0 to 1|| −A  in the 
algorithm).  

 

4 Evaluation concerning aesthetic criteria 
We implemented the technique described in Section 3 in 
Java and performed an experiment to evaluate its effect in 
terms of aesthetic criteria.  

4.1 Evaluation Items 
We wanted to assess   

(a) the validity of the penalty and 

(b) the effectiveness of the penalty minimization 
algorithm. 

Regarding (a), we obtained layouts of many variations for 
a number of graph instances and examined the correlations 
between the penalty and average edge length and between 
the penalty and the number of edge crossings for each 

int p0 = current penalty; 
int d = |A| / 2; 
while (d > 0) { 
 do { 
  boolean c = false; 
  for (int i = 0; i < |A|; i ++) { 
   int j = (i + d) mod |A|; 
   swap i-th node and j-th node; 
   int p1 = current penalty; 
   if (p1 < p0) { 
    p0 = p1; 
    c = true; 
   } else { 
    swap i-th node and j-th node; 
   } 
  } 
 } while (c); 
 d = d / 2; 
} 

Algorithm 1 

Figure 3: Effect of the parameter q in the penalty 

(a) (b) 

1 
3 

2 
2



graph.  We judged the penalty to be valid as an alternative 
index if there was a certain correlation between the penalty 
and these values.   

Regarding (b), we assumed that the penalty from (a) is 
valid.  We examined how well the solutions obtained by 
the algorithm compared with the optimal solutions.  We 
judged the algorithm to be effective if the quasi-optimal 
solution obtained by the algorithm was closer than a 
random order to the optimal solution.   

4.2 Outline of the evaluation 
Besides the proposed algorithm, we implemented two 
programs in Java; one obtained the optimal order 
concerning the penalty, and the other obtained a random 
order.  We generated six kinds of bipartite graph.  The 
three programs obtained a total of 1000 kinds of layout for 
each of the six graphs.  The 1000 layouts had the following 
properties.   

    1. One optimal arrangement of the penalty 

    2. One Quasi-optimal arrangement of the penalty 
(obtained by Algorithm 1) 

    3. 998 random arrangements 

Although the random arrangements do not need the 
penalty computation, we computed the penalties of all 
layouts as well as the correlations between the penalties 
and total edge lengths and the correlations between the 
penalties and the number of edge crossings.  

Table 1 shows the size of the six bipartite graphs used for 
the evaluation.  Every graph had 10 anchors.  Note that our 
technique does not need to be used when there are only a 
few anchors because it would not take a long time to 
compute all possible orders in this case.  On the other hand, 
when the anchor nodes exceed 10 in number, it becomes 
difficult to obtain optimal solutions for all graphs.   

 

Table 1: Size of the graphs used for the evaluation 

 |A| |B| |E| 

G1 10 16 65 

G2 10 19 84 

G3 10 40 182 

G4 10 48 251 

G5 10 98 473 

G6 10 99 512 

  

4.3 How to generate random graphs 
Let n and p be parameters to generate a random graph.  n 
denotes the number of anchors, and p denotes the 
appearance probability of free nodes.  There can be 2n 
kinds of free node when paying attention to the connecting 
pattern to the anchors (isolated free nodes, which are not 
connected any anchors, are also included in this number).  
The arrangement of free nodes connected to at most one 

anchor is not influenced by the order of the anchor nodes.  
Thus, we generate only random graphs whose free nodes 
have at least degree 2.  We choose free nodes of degree 2 
or more with probability p.  Two graphs generated with the 
same n and p might have different numbers of edges 
because p is not dependent on the connecting patterns to 
the anchor nodes.   

The values of p for graphs G1, …, G6 are respectively 0.02, 
0.02, 0.05, 0.05, 0.1, and 0.1.  We assumed that p was at 
most 0.1 because the density of the edges rises too much 
when there are more free nodes, and readable layouts 
cannot be expected for such anchored maps.   

4.4 Evaluation result 
We obtained 1000 sets of penalty, average edge length, 
and edge crossings for each of the six graphs.  Table 2 
shows the correlations calculated from them, and all of 
them are 0.8 or more.  The penalty thus seems to be useful 
as an alternative index as long as we can see the 
correlations between it and the average edge length and 
between it and the number of edge crossings.  We also 
found that scatter charts could represent relations between 
the penalty and the average edge length, and between the 
penalty and the number of edge crossings.  Figure 4 shows 
a scatter chart, which represents the relation between the 
penalty and the number of edge crossings in G4.  Certainly, 
a general trend is that the number of edge crossings is 
small in a layout whose penalty is small.  However, we can 
see that some cases with few edge crossings exist and their 
penalties are not the minimum values.   

 

Table 2: Correlations of the penalty with  the average edge 
length and the number of edge crossings 

 
Correlation between 
penalty and average 

edge length 

Correlation between 
penalty and number 
of edge crossings 

G1 0.884 0.828 

G2 0.872 0.829 

G3 0.893 0.878 

G4 0.831 0.816 

G5 0.904 0.893 

G6 0.875 0.863 

 

Next, we ranked the 1000 kinds of layout according to the 
aesthetic criteria for each graph.  Table 3 shows the ranks 
of the optimal layout and the quasi-optimal layout.  From 
the left, it shows the ranks for the penalty, the ranks for the 
average edge length, and the ranks for the number of edge 
crossings, respectively.  The ranks of the optimal layout 
for the penalty are omitted because these were always the 
first place.  The quasi-optimal solutions give considerably 
good results if we regard only the ranking for the penalty.  
However, some ranks of quasi-optimal layouts are rather 
low in regard to the average edge length or number of edge 
crossings.  All cases except the number of edge crossings 



in G2 are ranked within the 65th place in 1000; the rank of 
the number of edge crossings in G2 is 144th.   

These data led us to conclude that the penalty works 
moderately well.  Moreover, we think that the proposed 
algorithm works well enough.  We guess that the goodness 
(or badness) of the index caused the ranks concerning the 
aesthetic criteria to be a little low.  Therefore, it will be 
necessary for us to look for a better alternative index. 

By the way, the penalty used in the experiment assumed 
that 1=q  in Expression (3).  We also examined a penalty 
of 2=q  and 3=q .  When q becomes large, both the 
correlation between the penalty and the average edge 
length and the correlation between the penalty and the 
number of edge crossings tended to become small, against 
the expected effect of q as described in Section 3.3.3.   

We also computed the correlation between the average 
edge length and the number of edge crossings.  For all six 
graphs, we obtained high correlations of more than 0.94.  
This means that we can use the common measure to 
decrease both of the average edge length and the number 
of edge crossings.   

 

Table 3: Ranks of optimal solutions and quasi-optimal 
solutions concerning penalty, average edge length, and 
number of edge crossings 

penalty Average edge 
length 

Number of edge 
crossings 

 

q.-opt. opt. q.-opt. opt. q.-opt. 

G1 2 1 6 1 33 

G2 3 1 53 1 144 

G3 3 2 18 1 65 

G4 1 3 2 9 4 

G5 2 1 21 1 26 

G6 1 3 4 2 3 

 

5 Application 
Below, we show examples of anchored 
maps that visualize protein interaction 
networks.  

When a protein is generated based on DNA, 
a transcription factor works.  The kind of 
protein that is generated depends on the 
transcription factor.  A transcription factor 
generates one or more kinds of protein, and 
a protein is generated from one or more 
kinds of transcription factor; there is an 
n-to-n relation between the proteins and the 
transcription factors.  We guessed that 
proteins generated from the same 
transcription factor would have a similar 
character and that transcription factors 
generating the same protein would have a 
similar character.  We expected that we 
could intuitively grasp the global relational 

structure between proteins and transcription factors if we 
see such relationships graphically.   

We expressed the relationships between the proteins and 
the transcription factors as anchored maps in which the 
transcription factors are anchors.  Note that, in fact, the 
relationships between proteins and transcription factors 
are not bipartite graphs because transcription factors are 
also proteins.  

Figure 5 and Figure 6 show interaction networks of yeast 
proteins.  Figure 5 shows the relationships between nine 
representative transcription factors related to the cell cycle 
and 276 proteins related to the factors.  Figure 6 shows a 
larger example; it shows 63 transcription factors whose 
functions are comparatively clear and 1315 proteins 
related to the factors.  As described above, the relations 
between the proteins and the transcription factors are not 
bipartite graphs.  Here, we deleted the edges toward the 
transcription factors to make the bipartite graphs.  Refer to 
(Harbison et al 2004) for more information about the 
protein data.   

We drew two kinds of diagrams to see the effect of the 
proposed technique.  In Figure 5(a) and in Figure 6(a), the 
anchors are arranged at random.  In Figure 5(b) and in 
Figure 6(b), the orders of the anchor nodes are computed 
by using the proposed technique.   

In the random layouts, we can see that the density of the 
central parts of the diagrams is high, and some 
transcription factors related to the common proteins are 
placed far away from each other.  As the result, proteins 
which might have no relationship with each other (in other 
words, which are generated from quite different 
transcription factors) gather in a central part of the 
diagram; we cannot see features like clusters of proteins 
with similar natures.  In contrast, the effect of the proposed 
technique is obvious.  In Figure 5(b) and in Figure 6(b), 
transcription factors that relate to each other are placed 
together, and the central parts of the diagrams are sparser.  
In addition, it seems that the proteins are moderately 
scattered, and proteins with similar relationships with the 
transcription factors are placed close to each other.   

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

270 275 280 285 290 295 300 305 310 315

# of edge crossings 

the penalty 

Figure 4: Correlation between the penalty 
and the number of edge crossings 



 

(a) Anchor nodes in random order  

Figure 5: Interaction networks of yeast proteins (9 transcription factors) 

(b) Order of anchor nodes computed by using the proposed technique 



 

(a) Anchor nodes in random order  

Figure 6: Interaction networks of yeast proteins (63 transcription factors) 

(b) Order of anchor nodes computed by using the proposed technique 



6 Related work 
Visual Who (Donath 1995) is a tool whose purpose is to 
visualize communities.  The tool visually expresses the 
appearance of the communities based on some mailing 
lists by using information statistically extracted from the 
text data of the mailing lists.  The positions of the nodes 
are computed by spring embedding.  The user can arrange 
an arbitrary mailing list as anchors, and the layout of the 
nodes represent member changes.  This tool is interactive, 
and the user may arrange the anchors manually. It does not 
provide automatic layout facilities for the anchors.   

SQWID (McCreckard & Kehoe 1997) is a Web search tool 
that expresses the retrieval result of WWW by using 
anchored maps.  Terms used in the query are placed on the 
vertices of a triangle as anchor nodes.  Web pages (or sites) 
are placed according to a related level with these terms.  
They limited anchors to three so that the relationships 
between the arranged Web pages and the fixed terms 
should not become vague.  However, we think that there 
are a lot of situations in which four or more anchors are 
needed, and that a automatic technique to find the 
arrangement of anchor nodes should be developed.  

7 Conclusions 
We proposed an anchored map drawing technique for 
bipartite graphs, and explained the two main ideas of the 
technique.  One idea concerns the index to decide the order 
of anchor nodes.  As the index, we defined a penalty based 
on gaps between anchor nodes connected with a common 
free node.  The other idea is an efficient algorithm to 
decide the order of anchor nodes by using the index.  We 
implemented these ideas in Java and evaluated the 
effectiveness of the ideas.  We generated six kinds of 
random bipartite graphs as data for the evaluation 
experiment.  We computed layouts of these graphs by 
using our technique and one using a random ordering of 

anchor nodes, and considered the results according to 
aesthetic criteria.  The penalty seems to be useful as an 
alternative index as long as we can see the correlations 
between it and the average edge length and between it and 
the number of edge crossings.  Moreover, we think that the 
proposed algorithm is good enough.   

We have yet to complete our evaluations for all aesthetic 
criteria.  In addition, we should try to find an alternative 
index that is better than the penalty described in this article, 
and to develop other algorithms to find good orders of 
anchor nodes based on the index.   
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