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Abstract

The software architecture of a computing system is
an abstracted structure of the system in terms of
elements and relationships. Such structures may
be viewed from a number of viewpoints including
static/module, dynamic/execution, and deployment
viewpoints. Software architecture fundamentally in-
fluences systems from all of these viewpoints and de-
signing and implementing proper software architec-
tures is thus critical in many problem domain areas,
including the ones that pertain to safety-critical sys-
tems.

With respect to safety-critical systems, a partic-
ular problem with focusing on software architecture
is that there may be a large abstraction gap between
an architectural description and an executing system
or a formal model thereof thus potentially leading to
inconsistencies between models and implementation.
Addressing this problem, this paper presents tools
and techniques for specifying executable software ar-
chitectures and for validating these with formal mod-
els such as statecharts and Petri nets.

1 Introduction

Safety-critical systems are systems that can cause un-
desired loss or damage to life, property, or the envi-
ronment, and safety-critical software is any software
that can contribute to such loss or damage [20]. Since
safety-critical systems have the potential to cause ex-
tensive damage, there are many standards and guide-
lines describing processes, techniques, and methods
for developing such systems. For example, the IEC
61508 [14] is a standard for achieving functional
safety of programmable electronic safety-related sys-
tems, and the Australian Defence standard 5679 [9]
is concerned with the procurement of computer-based
safety critical systems. Such standards contain rec-
ommendations regarding which techniques and mea-
sures should be used when developing software.

One of the techniques that these and other stan-
dards recommend or even require is the use of semi-
formal or formal methods through various develop-
ment phases for improving the quality of the safety-
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critical software. The use of formal methods and sup-
porting tools ”provide increased repeatability of ana-
lyis, increased soundness and extra assurance” [9].
The IEC 61508 standard recommends that (semi-
)formal methods should be used at various develop-
ment states, including software safety requirement
specification, software architecture design, detailed
software design and development, and software safety
validation. The recommended methods include (semi-
) formal models for representing both static and dy-
namic characteristics of the software. Here we are
only interested in models for representing dynamic
behaviour of systems. Such models can be used for
either specifying desired behaviour of software and/or
for validating and verifying that modelled software
behaves has desired.

While the standards advocate the use of (semi-)
formal models, they do not necessarily make any rec-
ommendations about how to ensure consistency be-
tween models of software behaviour and the corre-
sponding executable software. It is clearly a good idea
to model software behaviour, however, the usefulness
of such models will be compromised if it is not pos-
sible to ensure some consistency between the model
of the behaviour, and the behaviour of the executable
software. This paper presents tools and techniques
for validating the behaviour of executable software
against models of the behaviour of the software, and
thereby for reducing the gap between the software and
the model.

1.1 Modelling Software Behaviour

Models of software behaviour can be used for many
different purposes, such as for specifying software re-
quirements, for designing software, and for analysing
the behaviour of software. Since the majority of ac-
cidents in which software was involved can be traced
to requirements flaws [20], it is of particular impor-
tance to develop complete and unambiguous require-
ment specifications for safety-critical software. Sev-
eral standards recommend that requirements be spec-
ified as (semi-)formal models, and there is even rigor-
ous language and tool support for checking complete-
ness and consistency of software specifications [11].
The behaviour of software can be modelled both by
static models, such as decision tables and Unified
Modeling Language (UML) sequence diagrams and
by dynamic models with executable behaviour, such
as finite and timed automata, statecharts, and Petri
nets. One of the advantages of using dynamic mod-
els is that it is possible to investigate and, in some
cases, even verify the behaviour of the model in an
appropriate tool.

Dynamic models that represent states of a system
and transitions from one state to another can rep-
resent either discrete or continuous changes between
states. When modelling the behaviour of (safety-



critical) software, it is rarely interesting to have an
accurate model of continuous state changes, and in
most cases it is sufficient to consider a set of discrete
state changes. For example, when modelling software
that controls the speed of a conveyor belt, it would
not be necessary to model all possible speeds of the
conveyor belt, but it would be sufficient to consider a
number of different discrete classes of speeds, such as
stopped, within range, and above acceptable range.

In this paper we consider only discrete-state mod-
els which are state-based models with discrete transi-
tions between states. Transitions between states will
also be called events. A more formal definition of the
kind of models that we are interested in will be pro-
vided in Sect. 3.2. As always, when using models it is
important to find an appropriate level of abstraction
for the models. If the models are too detailed, then
it may be too time-consuming to develop them, and
it may be difficult, if not impossible, to do reasonable
analysis of the behaviour of the model. Discrete-state
models are well-suited for specifying fairly high-level
requirements, and for analysing the behaviour of rel-
atively small systems.

A variety of tools provide support for creating
and analysing different kinds of discrete-state models
of software behaviour. For example, SPIN [13] and
UPPAAL [19] support model checking of finite and
timed automata respectively, visualSTATE [25] and
STATEMATE [10] support analysis of statecharts,
and CPN Tools [7] supports analysis of a kind of high-
level Petri nets which will be introduced in Sect. 4.
With some of these tools, it is possible to generate
executable code from the models, in which case, it is
possible to ensure that there is consistency between
the model and the code (assuming that the code is re-
generated or updated if the model is modified). How-
ever, if code is not or cannot be generated from mod-
els, then there is likely to be a large gap between the
models of software behaviour and the executable code
that is modelled. And in particular, even though code
may be generated, it is not certain that it corresponds
to a required or desired software architecture. This
lets us to consider the concept of software architec-
ture.

1.2 Software Architecture

Software architecture is concerned with abstracted
structures of software systems. A generally accepted
definition of the term ‘software architecture’ is

Definition 1 (Software Architecture) The soft-
ware architecture of a program or computing system is
the structure or structures of the system, which com-
prise software elements, the externally visible proper-
ties of those elements, and the relationships among

them [4]

The definition implies a number of characteris-
tics of software architecture. First, a system has
many structures/views of interest (e.g., module struc-
ture, dynamic structure at runtime in terms of pro-
cesses and communication, and deployment structure
in terms of processors and components deployed) [18].
Secondly, software architecture is abstract in the
sense that it is only concerned with externally vis-
ible properties of elements and relations and thus
not concerned with the inner structure of compo-
nents. Thirdly, all systems have a software architec-
ture whether intended or not.

All of these characteristics are relevant in relation
to software safety. Software architecture highly influ-
ences various system quality attributes such as per-
formance, modifiability, and testability because these
are influenced by structures in various views [4]. A

consequence of the second characteristic is that soft-
ware architecture descriptions may be more manage-
able than the actual system (or a less abstract de-
scription thereof) making the descriptions amenable
to, e.g., analyses and communication. And a con-
sequence of the third characteristics (in combination
with the above) is that software architecture is well
worth to be concerned with in safety-critical system
development.

A large number of techniques for software archi-
tecture requirements analysis such as Quality At-
tribute Workshops [1] and Global Analysis [12];
techniques for software architecture design such as
Attribute-Driven Design [5] and architecture pattern-
base design[6]; and techniques for software architec-
ture evaluation such as the Architecture Tradeoff
Analysis Method and Architecture Level Prediction
of Software Maintenance [8] have been developed and
tested. One characteristic of these are that they are
almost all specification-based in that they use and
produce descriptions of software architectures rather
than software architectures of actual systems. Some
problematic consequences of basing software archi-
tecture work solely on such descriptions can be that
the architecture-as-built differs from the architecture-
as-designed, that quality attributes are not properly
addressed, or that software architects tend to design
conservatively even if the conservative choice may not
be appropriate.

As a way to mitigate some of these problems, and
as a supplement to existing well-documented tech-
niques related to software architecture, we have pre-
viously introduced the concept of architectural proto-

typing (2, 3]:

Definition 2 (Architectural Prototype) An ar-
chitectural prototype consists of a set of executables
created to investigate architectural qualities related to
concerns raised by stakeholders of a system under de-
velopment. Architectural prototyping is the process of
designing, building, and evaluating architectural pro-

totypes [2]

Architectural prototypes are characterized by having
no functionality per se and thus often being cheap
to implement. Often architectural prototypes exper-
iment with and evaluate infrastructure and middle-
ware, e.g., to decide whether a push or a pull message
passing architecture is most suitable for an embedded
control system [2]. Section 2.4 presents an architec-
tural prototype constructed in a safety-critical system
development context.

In this paper we claim that architectural proto-
types are useful in safety-critical software develop-
ment in that the technique promises a cost-effective
way to implement various architectural alternatives.
Further, we provide a way of validating such exe-
cutable software architectures. In doing this, we are
in line with the views of [21]: what matters more than
how or by which principles it was developed is that
the designed software architecture is safe.

1.3 Software Architectures and Discrete-

State Models

Given the above discussion, there are a number of is-
sues in combining the use of software architecture and
discrete-state model in the development of (critical)
software systems.

Most fundamental is that software architecture
is concerned with structures (of systems) whereas
discrete-state models are concerned with behaviour.
Further, discrete-state models typically provide one,
behavioural view of a system whereas software archi-
tecture provides several as discussed in Section 1.2.



An example of why this may be an issue is that a de-
ployment decision (such as about the type of network
used in a concrete distributed system) may impact
behavioural characteristics such as performance.

This also means that discrete-state models are
mostly concerned with runtime system quality at-
tributes (e.g., logical correctness, reliability, perfor-
mance, or scalability) whereas software architecture
is also concerned with development time system qual-
itie)s (e.g., modifiability, testability, or interoperabil-
ity).

Finally, discrete-state models and software archi-
tectures may also often be orthogonal abstractions
of a system. In our case study, presented in Sec-
tion 2, discrete-state models were used to model re-
quirements of the system where a software architec-
ture is used to represent the system per se.

These problems make, e.g., traceability between
software architectures and discrete-state models and
reasoning about whether software architectures fulfill
requirements modeled by discrete-state models hard.
Section 3 introduces our approach to handling parts
of these problems.

1.4 Contributions

The main contribution of this paper is the introduc-
tion of the Heimdall' tool. The tool enables the
validation of sequences of program execution events
against a discrete-state model. We present a real-
life case study in which Heimdall is applied by using
aspect-oriented instrumentation to an architectural
prototype of a frequency converter for safety-critical
applications for which program execution events are
then mapped to a formal model of requirements de-
scribed by a Coloured Petri Net [15].

The rest of the paper is structured as follows. Sec-
tion 2 describes the case study which emphasised the
need for tools like the Heimdall tool. Section 3 de-
scribes the architecture and functionality of the Heim-
dall tool, and it also illustrates the current implemen-
tation of the tool. Section 5 discusses ideas for future
work and concludes the paper.

2 Frequency Converter Case

Several of the problems and issues that were discussed
above were encountered in a collaborative research
project between Danfoss Drives?, Systematic Soft-
ware Engineering®, and the Computer Science De-
partment, University of Aarhus*. Danfoss Drives pro-
duces frequency converters which are used to control
the speed of motors, e.g. for elevators, cranes, and
conveyor belts. A new generation of frequency con-
verters is being developed in accordance with IEC
61508. One part of the project investigated different
(semi-)formal methods for specifying software safety
requirements. Another part of the project focused
on the design of the software architecture for the fre-
quency converter. In this project we experienced the
problem of a large gap between the models specifying
the software safety requirements and the executable
prototype of the software architecture. This section
will briefly present the case study which is described
in more detail in [26].

1Heimdall is the watchman of the Gods in Norse mythology. Us-
ing his excellent hearing and vision he watches the rainbow, Bifrost,
that leads to Asgard, the home of the gods, sounding his alarming
horn when danger approaches

%http://drives.danfoss.com

Shttp://www.systematic.dk

*http://uww.daini.au.dk
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2.1 Hardware and Software

In the new generation of frequency converters, safety-
critical software runs on two microprocessors. The
hardware structure of the frequency converter is
shown in Figure 1. The two blocks PWM Genera-
tor and Power Electronics control the speed of the
attached motor, and they make up the normal, “non
safety-related” part of a frequency converter.

The safety functionality is achieved by an addi-
tional subsystem on the Safe Board composed of
Channels 1 and 2, each containing a microproces-
sor (uP), a Switch-off path, and three Digital In-
puts. The two microprocessors can, independently
from each other, activate its own switch-off path to
stop the motor. The two Channels cross-monitor each
other through Feedbacks 1 and 2 and through the
Cross Communication connection.

A number of so-called designated safety functions
(DSF, or safety function) are implemented in soft-
ware that runs on the two microprocessors on the
Safe Board. The simplest safety function is a so-called
‘uncontrolled stop’ which immediately stops power
supply to the motor. Another safety function is a
‘controlled stop’ or ’safe delay’, where the stopping
of the power supply to the motor is delayed, allow-
ing the non-safety-related part of the frequency con-
verter to ramp the motor down in a controlled way.
A more complex example is the ’safe speed’ where an
uncontrolled stop is made if the motor speed exceeds
a set limit. A frequency converter is configurable, and
users can determine which safety function is associ-
ated with each of the n=38 digital inputs. A specific
safety function is activated upon reception of signals
at the appropriate digital input at each of the Chan-
nels.

All diagnostic functionality with respect to cross
monitoring and self monitoring of the Channels is im-
plemented in software. On detection of a dangerous
failure, an appropriate fault reaction is initiated, and
the motor is stopped.

2.2 Specifying Safety Requirements

The software that runs on the two microprocessors on
the Safe Board is safety-critical since it can contribute
to loss or damage to the environment of the frequency
converter through its effect on the speed and con-
trol of the attached motor. System-level safety re-
quirements were already defined at the outset of the
project. These requirements addressed issues such as,
when output to the motor should be enabled, what
should happen when an error occurs (either in hard-
ware or software), how requests for safety functions
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Figure 2: Informal statechart specification of system-
level safety requirements.

should be made and handled, and what should hap-
pen after a safety function completes.

As mentioned previously, one of the recommenda-
tions of standard IEC 61508 is that semi-formal meth-
ods should be used to specify safety requirements.
In order to comply with this recommendation, Dan-
foss developed an informal statechart model (shown
in Figure 2) that was included in the initial product
proposal that was approved by the certification au-
thorities. The model is informal in that it was drawn
in a generic drawing tool, and the states, transitions,
and event triggers are described separately in simple,
natural-language texts. It is not important to under-
stand the details of the behaviour specified by the
statechart, but it will be briefly explained.

The statechart specifies that the frequency con-
verter must always be in one of three top-level states,
namely No dangerous failure, Fail-safe or the Final state
(denoted by a dot in a circle in the upper right-hand
corner of the figure). If any kind of error is detected,
then the frequency converter must enter Fail-safe state,
and the power supply to the motor must be stopped.
The only way to leave Fail-safe state is to turn the fre-
quency converter off ( Transition 14), and thereby enter
Final state. If no errors are detected, then the frequency
converter must be in No dangerous failure state, and
more specifically, in one of its three composed states:
Normal operation, DSF activated Oor Safe stop. In Safe stop
state, output to the motor is always disabled.

One of the goals of the project was to specify soft-
ware safety requirements based on the informal stat-
echart of the system safety requirements. The soft-
ware safety requirements were a refinement of the sys-
tem safety requirements. Again, the IEC 61508 stan-
dard highly recommended that semi-formal methods
should be used to define software safety requirements.

2.3 CPN Model of Requirements

A very detailed model of software safety require-
ments was developed in the formal modelling lan-
guage Coloured Petri Nets (CPN or CP-nets) [15, 17].
This section will provide a brief overview of the CPN
model of the frequency converter, and the formal def-
inition of CPN will be introduced in Sect. 4. All
of the requirements that were specified in the stat-
echart model from Figure 2 are included in the CPN
model. Those requirements have been specified more
formally, and the specification is much more detailed.
In addition, the CPN model specifies requirements
that are not addressed in the statechart model, such
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as diagnositics and synchronisation of the state of the
software on the two microprocessors.

Figure 3 provides an overview of the CPN model
which was created in CPN Tools. Each node in Fig-
ure 3 represents a module in the model, and an arc
from one node to another indicates that the source
node contains an abstract representation of some be-
haviour that is specified in more detail in the module
of the destination node.

The Application module (at the top of Figure 3)
is the most abstract representation of the frequency
converter and its environment. This module has two
submodule, namely User 10 and Safe Inverter, modelling
the means for user input/output, i.e. the digital in-
puts (module Digital 10) shown in Figure 1, and the
frequency converter itself, respectively. The software
for the two microprocessors is modelled by the mod-
ules MicroProcl Lg and MicroProc2 Sm. Both of these
modules share some common functionality as speci-
fied by the module Common and its submodules. The
two microprocessors send different kinds of messages
and have different diagnostic algorithms, which is why
there are separate modules for modelling these char-
acteristics.

Figure 4 shows a simplified version of the Digital IO
module of the model. Requests for activating safety
functions are modelled in this module. The behaviour
of the module will be discussed in detail in Sect. 4.1.

Simulations of the model were run for three main
purposes: for debugging the model, for analysing the
behaviour of the model, and for discussing the soft-
ware requirement specification with the project team.
Even though an exhaustive investigation of the be-
haviour of the model was not performed, a number
of important problems were identified through the
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construction and simulation of the model. Examples
of these problems were: a simple diagnostic algor-
thim could lead to deadlock, and outdated messages
in message queues could lead to hazards, such as en-
abling power supply to the motor after an error had
been detected in one of the microprocessors.

2.4 Executable Architecture Prototype

Another goal of this project was to investigate and de-
velop techniques for ensuring that safety-critical soft-
ware fulfills the corresponding software safety require-
ments. In other words, we were interested in closing
the gap between a semi-formal requirement specifi-
cation and a software implementation. We focused
on techniques for specifying and validating a software
architecture (rather than the final software) for the
frequency converter. A software architecture was de-
veloped and documented using a technique similar to
Kruchten’s 4+1 technique [18] in which an architec-
ture is described in different views.

The architecture was defined largely by UML dia-
grams, including class, package, deployment, and se-
quence diagrams. Figure 5 shows the package dia-
gram for the software architecture. The Control pack-
age contains classses for ensuring strict scheduling re-
quirements for the frequency converter, including reg-
ular checks for requests on digital inputs, diagnostics,
and checking microprocessor state consistency. The
Safety Functions package contains classes for the safety
functions. The classes in the Diagnosis package initi-
ate, coordinate, and perform diagnostics. The State
package is used by software on the two microproces-
sors to regularly communicate and compare their in-
ternal states. The External package contains classes
for reading and setting digital input/output values.

An executable architecture prototype was imple-
mented as skeleton classes in Java. Figure 6 shows an
abstract class from the Safety Functions package for the
architecture prototype. Classes for each of the differ-
ent safety functions are defined as specialisations of
this abstract class. A number of important use sce-
narios were described as sequence diagrams, such as
initialisation during power-up and requesting safety
functions. These use scenarios were implemented as
simple Java programs that exercised the architecture
prototype by emulating external events of the fre-
quency converter, e.g. pressing the power button or
requesting a safety function by activating a digital in-
put, by calling appropriate methods in the executable
architecture prototype. Given this architecture proto-
type, Danfoss was interested in developing techniques
for ensuring that the architecture fulfilled the software
safety requirements, including those specified by the
CPN model. An early prototype of the Heimdall tool

public abstract class SafetyFunction {
State state;
boolean isrequested = false;

public SafetyFunction (State state) {
this.state = state;
selfCheck();

}

public abstract void activate();
public abstract void selfCheck();
public abstract boolean isRequested();

Figure 6: Java skeleton class from executable software
architecture.

was developed during this project. We introduce the
Heimdall tool next.

3 The Heimdall Tool

Informally, the intented function of the Heimdall tool
is to map a sequence of well-defined program execu-
tion events to a sequence of well-defined model events
of a discrete-state model (Figure 7).

Mapping

Program Model

Execution Execution

Feedback

Figure 7: Conceptual overview of the Heimdall tool

The mapping is introduced more formally in Sec-
tion 3.2 and concrete examples of the specification
of mappings is given in Section 4.3. The mapping
should be done in such a way that for an implemen-
tation that violates the model, the execution should
at some point lead to a corresponding sequence of
model events that are illegal with respect to require-
ments and feedback should be given. Conversely, the
execution of a correct implementation should not lead
to violations in the corresponding sequence of model
events.

In the following sections we first present an
overview of the architecture of Heimdall followed by
a more precise introduction of the mapping of exe-
cution events to model events. Next, we present our
concrete instantiation of the architecture to be used
with Coloured Petri Nets and show how the Heimdall
tool has been applied to architectural prototypes in
the frequency converter case.

3.1 Heimdall Software Architecture

Heimdall 8]

Program
Execution

-

:Model Tool
Communicator

:Progran |
Executable

:Program
Execution

Mapper

Figure 8: UML deployment overview of software ar-
chitecture of the Heimdall tool

An overview of the architecture of the Heimdall
tool is shown in Figure 8. A Model Tool is a tool
which can execute and analyse a discrete-state model
of the behaviour of an executable program. A set of



Program Ezxecutables are instrumented to send execu-
tion events to the Program Ezecution Listener of the
Heimdall tool. Instrumentation may be done, e.g.,
by using a debugger, by instrumenting source code
with tracing functions, or by using an aspect-oriented
approach (such as AspectC++ [24] for C/C++, As-
pectJ [16] for Java, or (eventually) AspectAda [23]
for Ada95). The instrumentation sends information
about relevant program execution events to the Heim-
dall tool instance using a TCP /IP-based protocol.

The Heimdall tool instantiates a Program FEzecu-
tion Mapper based on a description of the mapping
of execution events to model events. This mapping
is described in an XML format of which Figure 10
gives an example. Whenever the Program Execu-
tion Listener receives an event from a program ex-
ecution, it consults the Program Execution Mapper.
The Program Execution Mapper maintains traces of
program execution events and returns corresponding
model events as appropriate (cf. Definition 8 in Sec-
tion 3.2). Given a match, the Model Tool Communi-
cator is used to communicate with a Model Tool in
order to examine whether the mapped model events
are legal in the model that the program execution is
validated against.

The Model Tool Communicators are tool-specific.
The requirements on Model Tools that are to be
used with Heimdall is provisions for tool integra-
tion, e.g., through plug-in capabilities, trace replay,
or using a tool-specific protocol. Our current status
is that CPN Tools can interact with the Heimdall
tool (see Section 4). Also traces of execution events
need not be replayed immediately, but may be saved
and (re)executed later, meaning that different map-
ping could be tested against the same program execu-
tion trace. Correspondingly, mapped model elements
could also be saved for later transfer.

3.2 Mapping from Execution Events to
Model Events

The intent in Heimdall is to validate that a sequence
of execution events corresponds to a valid sequence of
model events. This is achieved, in part, by mapping
sequences of join points [16] in a program ezecution to
a sequence of valid events in a discrete-state model.
A join point is a well-defined point in the execution
of a program. We are primarily interested in join
points corresponding to method/procedure calls, set-
ting field/data values, and getting field/data values.

In Sect. 1.1 we informally described discrete-state
models, now we will provide a formal definition of
the models in which we are interested. A discrete-
state model is a model that is equivalent to a labelled
transition system:

Definition 3 (Labelled Transition System) A
labelled transition system is a tuple LTS=(S,1,A,T)
where S is a set of states, i€S is the initial state, A
is a set of labels, and T C (SxAxS) is the set of
labelled transitions.

Note that both the set of states and the set of labels
may be uncountable. An LTS is said to be finite if
its sets of states and labels are finite. For a labelled
transition system with states sq, so, and label [ where

(s1,1,82) € T, we will write s; LN sy and further, for
a set of labels, A, A* denotes the set of all sequences
of labels from A. An element of A* is legal or valid if
it is a trace:

Definition 4 (Trace) Given a labelled transi-
tion system LTS=(S,i,A,T), a sequence of labels
lyls...l, € A* is a trace of LTS if 3s1,82,...,8, €S

.l ! In
s0 that i = 57 =23 S9... =3 S,,.

We also consider the set of possible program exe-
cutions of a program as a labelled transition system
where the states are program states of interest (which
may be discerned by heap contents, stack contents
etc.) during execution and where the labels are join
point executions and related state, i.e., events of in-
terest in the program execution:

Definition 5 (Program Execution System) A
program execution system s a labelled transition sys-
tem P = (Sp,ip,Ap,Tp) which is a representation
of all of the possible executions of a program in which
execution states are abstracted into Sp and where
call, set, and get join point executions are abstracted
into Ap

Note that the defintion of a program execution sys-
tem is somewhat imprecise in that the definition of
the set of states and set of labels is left to the dis-
cretion of those who are interested in validating an
executable program against a discrete-state model of
the behaviour of the software. Thus a reasonable set
of “interesting” states and “interesting” join point la-
bels that will be used during the validation process
will have to be defined. Section 4 will discuss the
states and join point labels that were used when val-
idating the executable architecture prototype of the
frequency converter against the CPN model of the
software safety requirements.

Recall that the purpose of the Heimdall tool is
to provide support for validating an executable pro-
gram against a model of the behaviour of the pro-
gram. We have just defined discrete-state models and
program execution systems in terms of labelled tran-
sition systems. LTSs are quite general in that they
allow for non-deterministic behaviour and infinitely
many states and labels. All that we need now is a
way to show that two labelled transition systems are
(more or less) equivalent. A large body of research
is concerned with this issue, and bisimulation and
weak bisimulation can be used to show equivalences
between two LTS. However, the problem with these
techniques is that they are difficult, if not impossible,
to use for large LTSs with (infinitely) many states and
labels.

Many systems, and in particular safety-critical sys-
tems, can be represented by finite labelled transition
systems, which are somewhat more practical to deal
with. Furthermore, the behaviour of safety-critical
systems is generally deterministic, which means that
the set of transitions for the LTS for the system would

e . !
be deterministic, in other words, if s; — s9 and

$1 LN s3 then s, = s3. Finite, deterministic labelled
transition systems are somewhat easier to deal with,
however it is rarely possible to construct and analyse
an LTS for complicated, industrial-sized systems. So
it is still necessary to develop techniques that can be
use to check and validate the behaviour of software
for non-trivial systems.

Given the definitions above, our primary interest is
now to define mappings between program executions
and model ezecutions that will allow us to validate
the behaviour of an executing program against the
behaviour of a discrete-state model. Program and
model executions are defined as traces of an LTS:

Definition 6 (Program and Model Executlons)
Given a program execution system, P
(Sp,ip,Ap,Tp), a program execution for thzs
system is a trace p € A}

Given a discrete—state model, M =
(Sarying, Ang,Tar), a model execution is a trace
m € A},

In this context, a program execution is considered
to be a sequence of execution join points that form a



trace. Similarly, a model execution is a sequence of
legal model events. For such program executions, we
are interested in mappings of these to corresponding
events in the discrete-state model that is an abstract
representation of the behaviour of the program execu-
tion system of the program execution. More precisely,
we define an execution mapping as:

Definition 7 (Execution Mapping) Given a pro-
gram execution system P = (Sp,ip,Ap,Tp) and
a discrete-state model expressed as an LTS M =
(Saryin, An, Tar), an execution mapping for P and
M is a set E C (A} x A%,).

In other words, an element e in an execution map-
ping specifies how sequences of program join points
map to sequences of model events. An example of a
mapping element would be (Ip,lp,lp,, lm, lm,) mean-
ing that I, 1,,l,, € Ap maps to lp,lm, € Aj;. The
goals of the validation process will help to determine
how detailed the execution mapping should be.

Based on program execution systems and mapping
definitions we are now able to define when a program
execution may be considered correct:

Definition 8 (Correctness) A program ezecution
D = lp, ...ly, of a program ezecution system P =
(Sp,ip,Ap,Tp) is correct with respect to a discrete-
state model M = (Spr,iar, Ang, Tar) and an execution
mapping E if

1.3e = (lp, - lpy by - limy,) € E Spy,..,Sp, €
S ! Lo
SPySmis-esSmy € S tip — Sp, — .. 25

)
Im Im

Spy N ing —> Smy —> ...
Iy, ... 1, is a prefix of p and

2.9 =lp,41... 1, of PP = (Sp,sp,,Ap,Tp) is
correct with respect to M' = (Sar, Sm., s Aar, Ti)
and E where p' is the remainder of p after the
prefiz lp, ...1l,, has been removed.

Im
— S, where

Note that P’ and M’ are essentially the same as P
and M — the only difference is the initial states.

In some cases a discrete-state model may contain
events that do not correspond to any “interesting” ex-
ecution events. For example, the model may specify
behaviour that is more detailed than what is currently
implemented in the software, or there may be model
events that are used to initialise parts of the model
at the beginning of an execution. Since the definition
of an execution mapping allows an empty sequence of
join points to be mapped to a non-empty sequence of
model events, it is still possible for unmapped model
events to occur when checking correctness of a pro-
gram execution.

Even though a set of program executions are cor-
rect with respect to a mapping, they are not neces-
sarily “good” in the sense that they cover all states of
the discrete-state model. Ideally, we also want com-
pleteness for this set of program executions:

Definition 9 (Completeness) A set of correct pro-
gram executions are complete with respect to an exe-
cution mapping and a discrete-state model if the set
of all states of the model execution mapped to is the
complete set of states of the discrete-state model.

Ideally we would like to do an exhaustive verifi-
cation of program executions against discrete-system
models, but this is rarely possible in practice which
is why there is a need for tools like Heimdall. In a
safety-critical system setting, we may aim for estab-
lishing that program executions should be correct and
complete with respect to a set of critical states/states
of interest in the labelled transition system.

The next section will give an example of how this
is realised in practice with the specific program exe-
cutions being executions of Java architectural proto-
types and where the concrete discrete-state model is
a Coloured Petri Net.

4 The Heimdall Tool for Coloured Petri Nets

This section discusses the current implementation of
the Heimdall tool that has been used to validate the
executable architecture prototype for the frequency
converter against the CPN model of the software
safety requirements.

4.1 CPN and CPN Tools

Coloured Petri Nets is a formal, graphical modelling
language with well-defined syntax and semantics. We
will provide a very brief and somewhat informal in-
troduction to CP-nets which is taken from [15]. An
example following the formal definition will be used
to illustrate several concepts from the defnition. The
structure of a non-hierarchical CP-net is formally de-
fined as a tuple:

Definition 10 (Coloured Petri Net) A
non-hierarchical CP-net is a tuple CPN =
(X,P,T,A,N,C,G,E,I), where ¥ is a finite set of
non-empty types called colour sets; P,T, and A are
non-empty finite, disjoint sets of places, transitions,
and arcs, respectively; N is a node function defined
from A into (P xT) U (T x P); C is a colour func-
tion defined from P into X; G is a guard function
defined from T into boolean expressions; E is an arc
expression function defined from A into expressions
such that the arc expression for an arc evaluates to
a multi-set of values from C(p) where p is the place
that the arc is connected to; and I is an initialization
function defined from P into expressions that do
not contain wvariables such that the initialization
expression for place p evaluates to a multi-set of
values from C(p).

Note that arc and guard expressions may contain vari-
ables. A similar definition exists for hierarchical CP-
nets, in which modules are connected via well-defined
interfaces.

Recall that Figure 4 shows a simplified version of
the Digitall0 module for the CPN model described in
Section 2.3. The ellipse UserlO is a place represent-
ing digital inputs and outputs for the two micropro-
cessors. The UserlO place acts an interface for this
particular module. The colour set for the place is
determined by the inscription UserIO to the lower
left of the place. The states of a CP-net are rep-
resented by a number of tokens distributed on the
places in the model. A token on a place carries a
data value, and the type of the data value must cor-
respond the the colour set of the place. Figure 4 shows
a state in which there are eight tokens on place Use-
rl0, as indicated by the small circle with the num-
ber next to the place, and the box next to the small
circle shows the values of the eight tokens. Two to-
kens indicate that the voltage for the digital outputs
(which are not shown in Figure 1) for the user feed-
back (UserFB) at microprocessors 1 and 2 are both
Low. The other six tokens represent the three digital
inputs that are used to request safety functions for
the two microprocessors. The format for such a data
value is DSFRequest ((x,y,voltage)) where x indi-
cates the number of the microprocessor (1 or 2), y
indicates the number of the digital input (1, 2, or 3),
and voltage indicates the voltage of the digital input
where there are three possible values (High, Low, and
Error).



The formal semantics of CP-nets determine which
events can occur in a given state, and how the state
will change when a particular event occurs. Events
in a system are modelled by transitions. The rectan-
gle Request DSF is a transition that represents the re-
quest for the activation of a safety function. The arc
expressions on the arcs between UserlO and Request
DSF determine how the state of the model will change
when the Request DSF transition occurs. The arc ex-
pression on the arc from UserlO to Request DSF con-
tains only one variable which is n, and it determines
that two tokens will be removed from the place when
the transition occurs. A transition together with a
binding of all of its variables is known as a binding
element. This transition can only occur if the voltage
of digital input n at microprocessors 1 and 2 is High.
When the transition occurs, two tokens will be added
to the place, representing the fact that the voltage of
the digital inputs is changed to Low which indicates
that a request is being made for the safety function
that corresponds to input n. In Figure 4 the safety
function corresponding to digital inputs 2 has been
requested (and possibly activated, but this cannot be
seen in this module), but it is currently possible to re-
quest the safety functions that correspond to inputs
1 and 3.

Coloured Petri Nets have been used to specify
software safety requirements, but we have said that
the models that are used with Heimdall must be
discrete-state models that can be expressed as an
LTS. This is not a problem, because it is possible
to define a labelled transition system that is equiva-
lent to a CP-net. Given a CP-net CPN, let LTS~ =
(Scyic, Ao, Te) where Se is the set of states of CPN
that are reachable by sequences of transition occur-
rences from the initial state of CPN, i¢o is the ini-
tial state of CPN, A¢ is the set of binding elements
of CPN, and T¢ is the set {(s,be,s')} where s is a
reachable state of CPN, be is a binding element that
is enabled in s, and s’ is the state that is reached
when be occurs in s.

CPN Tools is a tool supporting the construction
and analysis of CP-nets. There is support for running
two kinds of simulations: interactive and automatic.
In interactive simulations, it is possible for the user
to select which transitions should occur. The choice
of how transition variables should be bound can ei-
ther be left to the simulator or the user can manually
pick among the legal bindings in a given state. In
automatic simulations the simulator randomly picks
among the events that are enabled in a given state.
In either case, the simulator will update the state of
the model after each event occurs.

CPN Tools can execute and analyse models that
are equivalent to labelled transition systems, and it
therefore fulfills some the requirements that must be
met, by the modelling tools that should interact with
Heimdall. In order for the Heimdall tool to work with
CPN Tools, it must be possible to run and control
simulations without (or with very minimal) manual
interaction between a user and the GUI of CPN Tools.
The simulator for CPN Tools is implemented in Stan-
dard ML [22] which means that arbitrary SML func-
tions can be written to control simulations via the
predefined primitives in the simulator. The simula-
tor has primitives for running automatic simulations
and for selecting which transitions should occur in
a simulation, but it lacks a primitive for selecting a
transition together with particular bindings of some
or all of the variables of the transition. The existing
primitives for selecting a particular binding required
manual interaction with the GUI by a user. The sim-
ulator has been modified, and a new primitive makes
it possible to specify that a transition with a par-
ticular binding of some of its variables should occur

public aspect SafeInverterTracer extends HeimdallTracer {
pointcut calls() :
call(x safeinverter..x(..)) &&
lcall(* safeinverter.Factory.*(..)) &&
lcall(* safeinverter..main(..));
pointcut initializers() :
initialization(safeinverter..*.new(..));

Figure 9: Aspect for extracting join points from exe-
cutable software architecture.

(assuming that the corresponding event can occur in
the current state of the model). Support for com-
municating with the Heimdall tool and for running
simulations based on the information received from
Heimdall has been implemented in SML, and it will
be discussed in Section 4.3.

4.2 Aspects for the Architecture Prototype

As mentioned in Section 2.4 the executable architec-
ture prototype for the frequency converter was im-
plemented as skeleton classes in Java. The classes
reflect the design of the software architecture, and
they are very simple. Each class contains a number
of important methods and, in some cases, some im-
portant state variables. The methods are also very
simple — they take few, if any, arguments, and the
only actions that they perform is that they may up-
date local state variables or call other methods in the
architecture prototype.

In order to validate the architecture prototype
of the frequency converter, information about join
points must be extracted from the prototype during
execution, as described in Section 3.1. AspectJ is
used for this purpose. We provide an abstract aspect,
HeimdallTracer, with functionality for communicating
with the Program Execution Listener in the Heim-
dall tool. The aspect allows for tracing of method
calls and object constructors. Object constructors
are traced in order to provide a object id to corre-
lated with method calls which is necessary in order
to distinguish between instances of classes. The de-
fault object id is simply derived from the sequence
in which objects of interest are constructed, a default
approach that may be reasonable in cases where ob-
ject creation order is deterministic.

The aspect named SafelnverterTracer (the new fre-
quency converters are also known as safe inverters),
shown in Figure 9, determines which method call join
points will be sent to the Heimdall tool. Further, it
defines which objects should have their ids tracked.
In this case the join points that are to be validated
are virtually all method calls in the architecture pro-
totype which is defined in the safeinverter pack-
age. However, join points for calls to methods in
the Factory class and calls to main methods will
not be sent to the Heimdall tool. The abstract class
SafetyFunction from Figure 6 has three method
call join points that may be validated, namely when
the selfCheck is performed during initialization of
the frequency converter, whenever a call is made to
activate the safety function, and whenever a check
is made to see if a safety function isRequested.

We will now turn our attention to the execution
mapping for the architecture prototype and the CPN
model.

4.3 Mapping Execution Events to Model
Events

In the architecture prototype for the frequency con-
verter, the only join points of interest are method call
join points. These join points (and join points for the



<element>
<joinpointevents>
<callevent>
<id>4</id>
<call>safeinverter.external.DigitalI0.requestDSF</call>
</callevent>
</joinpointevents>
<modelevents>
<modelevent><id>DigitalI0’Request_DSF(n,3)</id></modelevent>
</modelevents>
</element>

Figure 10: An excerpt from the execution mapping.

public class Digitall0 extends IO {
private SafetyFunction safetyFunction;

public DigitalI0 (State state,
SafetyFunction safetyFunction) {

super (state) ;
this.safetyFunction = safetyFunction;

}

public void selfCheck() {}

public void requestDSF() {
safetyFunction.activate();

}

Figure 11: The DigitalI0 class from the executable
software architecture.

construction of objects of interest, cf. Section 4.2)
are specified in the aspect in Figure 9. The architec-
ture prototype contains very few join point for getting
or setting fields, and none of these join points need
to be validated. Currently, the XML file specifying
the mapping must be created manually. The map-
ping was created after a careful and systematic ex-
amination of the architecture prototype and the CPN
model.

In the execution mapping for the architecture
prototype, each method call join point is mapped
to one or more events in the CPN model. Many
join points are mapped to just a single transition,
while one of the join points is mapped to ten model
events. Figure 10 shows an excerpt from the exe-
cution mapping. This example shows the XML for-
mat of the mapping of a single method call join
point to a single model event. In this case a call
to the requestDSF method to the object with id 4
from the class safeinverter.external.DigitalI0
is mapped to the model event which is the transi-
tion Request _DSF (shown in Figure 4) in the module
Digitall0, where the variable n of the transition is
bound to 3. In the CPN model, digital input number
3 is associated with the ’controlled stop’ or ’safe de-
lay’ safety function. In the architectural prototype,
the object with id 4 is an instance of DigitallI0 that
is associated with the safe delay safety function. The
DigitiallIO class is shown in Figure 11.

Let us consider what steps are taken when validat-
ing the architecture prototype and the requestDSF
method is called in a DigitalI0 object. When the
method is called, the SafeInverterTracer aspect
will cause the signature for the method call as well
as the id of the target object to be sent to the Pro-
gram Execution Listener in the Heimdall tool. The
Program Execution Listener will then use the Pro-
gram Execution Mapper to locate the model events (if
any) that the program execution event is mapped to.
Given the information in Figure 10, we know that this
join point is mapped to a model event corresponding
to the transition Request DSF with the variable n bound
to 3. The textual representation of this model event
shown near the bottom of Figure 10 is sent from the
Model Tool Communicator to CPN Tools.

A library that allows CPN Tools to interact with

Heimdall has been implemented. This library con-
tains functions for sending and receiving data via a
TCP connection with a Model Tool Communicator in
Heimdall. Additional functions are used to run simu-
lations based on the commands that are received from
the Model Tool Communicator. When a specifica-
tion of a model event is received from the Model Tool
Communicator, there are three possible outcomes. If
the event specification corresponds to an event in the
model and the corresponding event can occur, then
the event will occur in the simulator, and an appro-
priate response will be returned to the Model Tool
Communicator. If the event specification corresponds
to an event but the event cannot occur in the current
state of the model, then the state of the model re-
mains unchanged, and the response to the Model Tool
Communicator indicates that the event cannot occur.
The fact that a particular event cannot occur may in-
dicate that the behaviour of the executable code is not
consistent with the behaviour specified by the model.
Finally, the event specification may not correspond
to any known events in the model, and this indicates
that there is an inconsistency somewhere, i.e. either in
the model, in the executable code, or in the mapping
from the code to the model. If the Model Tool Com-
municator requests that the Request DSF transition
should occur, then this is a known event in the model,
and a response will be sent back to the Model Tool
Communicator indicating either that the event has
occurred, thus validating the most recent sequence of
join points, or that the event cannot occur in the cur-
rent state of the model. If the event does not occur
in the model, then the program execution has per-
formed a sequence of execution events that cannot be
validated, and an error has been found.

5 Discussion and Conclusion

This paper has introduced the Heimdall tool and
its associated approach to mapping program execu-
tion events to events in a discrete-state model. The
tool has been integrated with CPN Tools and has
been used to validate architectural prototypes. Even
though the evaluations have been made in the context
of a real safety-critical system development project,
the Heimdall tool can still be considered experimental
in nature.

First of all, a full validation during a development
project is needed. This will stress the usability of the
actual mapping mechanism. The current mapping
mechanism is essentially simple since one of our goals
have been to support experimentation with mapping
from architectural prototype executionss and other
types of program executions. One area in which the
mapping mechanism could be improved is in consid-
ering transitions that do not correspond to method
calls. It should be possible for them to occur if they
are enabled: e.g., if a particular transition that is
mapped from a method invocation is not enabled,
then it might become enabled if one or more of the
unmapped transitions/events occur.

Also a more thorough evaluation could potentially
illustrate to which extent architectural prototyping is
actually useful and beneficial in safety-critical system
development.

Secondly, there is a definite lack of proper tool sup-
port for constructing Heimdall mappings. One step
in this direction would be to be able to generate a set
of possible program execution events/model events to
base the mapping construction on. In particular if it-
erations on the software architecture and models are
considered, better tool support is of importance.

Even though the Heimdall tool can in no way prove
that a specific architecture will lead to safe software,



it may help in doing so by allowing architects to ex-
periment with and partly validate their architectural
designs thus potentially leading to better and safer
software architectures.

References

[1]

M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A.
Stafford, C. B. Weinstock, and W. G. Wood.
Quality Attribute Workshops (QAWs), Third
Edition. Technical Report CMU/SEI-2003-TR-
016, Software Engineering Institute, 2003.

J. Bardram, H. B. Christensen, and K. M.
Hansen. Architectural Prototyping: An Ap-
proach for Grounding Architectural Design and
Learning. In Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architec-
ture (WICSA 2004), pages 15-24, Oslo, Norway,
2004.

J. Bardram, H. B. Christensen, and K. M.
Hansen. Exploring quality attributes using archi-
tectural prototyping. In Proceedings of the First
International Conference on the Quality of Soft-
ware Architectures, QoSA 2005, volume 3712 of
LNCS, pages 155-170, Erfurt, Germany, 2005.

L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 2nd
edition, 2003.

L. Bass, M. Klein, and F. Bachmann. Quality at-
tribute design primitives and the attribute driven
design method. In Proceedings of the 4th Interna-
tional Workshop on Product Family Engineering,
2001.

F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, 1996.

CPN Tools.
http://www.daimi.au.dk/CPNTools/.

Online:

L. Dobrica and E. Niemela. A survey on software
architecture analysis methods. IEEFE Transac-
tions on Software Engineering, 28(7):638-653,
2002.

DEF (AUST) 5679: The Procurement of
Computer-based Safety Critical Systems, 1998.
Australian Defence Standard.

D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A working en-
vironment for the development of complex re-

active systems. IEEE Transactions on Software
Engineering, 16(4):403-414, April 1990.

M. Heimdahl and N. Leveson. Completeness
and consistency checking of software require-
ments. IEEE Transactions on Software Engi-
neering, 22(6), 1996.

C. Hofmeister, R. Nord, and D. Soni. Applied
Software Architecture. Addison-Wesley, 1999.

G. J. Holzmann. The model checker SPIN. IEEE
Trans. on Software Engineering, 23(5):279-295,
May 1997.

International  Electrotechnical ~ Commission.
Functional Safety of Electrical/ Electronic/ Pro-
grammable Electronic Safety-Related Systems,
1st edition, 1998-2000. International Standard
IEC 61508, Parts 1-7.

[15]

[16]

[17]

18]

[19]

K. Jensen. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. Vol. 1, Ba-
sic Concepts. Monographs in Theoretical Com-
puter Science. Springer-Verlag, 1997. 2nd cor-
rected printing.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of the ECOOP 2001,
volume 2072 of LNCS, pages 327-353, 2001.

L. M. Kristensen, S. Christensen, and K. Jensen.
The practitioner’s guide to Coloured Petri Nets.
International Journal on Software Tools for
Technology Transfer, 2:98-132, 1998.

P. Kruchten. The 4+1 view model of architec-
ture. IEEE Software, 12(6):42-50, 1995.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL
in a Nutshell. International Journal on Software
Tools for Technology Transfer, 1(1-2):134-152,
Oct. 1997.

N. Leveson. Safeware: System Safety and Com-
puters. Addison-Wesley, 1995.

D. L. Parnas and P. C. Clements. A ra-
tional design process: How and why to fake
it. IEEFE Transactions on Software Engineering,
12(2):251-256, 1986.

L. C. Paulson. ML for the Working Programmer.
Cambridge University Press, 2nd edition, 1996.

K. H. Pedersen and C. Constantinides. Aspec-
tada: Aspect oriented programming for Ada95.
In SigAda °05: Proceedings of the 2005 annual
ACM SIGAda international conference on Ada,
pages 79-92, New York, NY, USA, 2005. ACM
Press.

O. Spinczyk, D. Lohmann, and M. Urban. As-
pectC++: an AOP extension for C++. Software
Developer’s Journal, (5):68-76, 2005.

visualSTATE. Online: http://www.iar.com/vs.

L. Wells and T. Maier. Specifying and an-
alyzing software safety requirements of a fre-
quency converter using coloured Petri nets. In
G. Ciardo and P. Darondeau, editors, Applica-
tions and Theory of Petri Nets 2005, volume
3536 of LNCS, pages 403—422. Springer, 2005.



