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Abstract

In this paper, we propose a new Identity-based sign-
cryption (IBSC) scheme in the standard model. Our
scheme shows an improvement of approximately 40%
reduction in the ciphertext size when compared to the
previously proposed IBSC schemes in the standard
model. Further, we argue that the previous IBSC
schemes do not provide su�cient simulation ability
in the security game. We show that with some mi-
nor overhead, we are able to correct this. The se-
curity reduction of our scheme is based on the hard-
ness of the hashed modi�ed decision bilinear Di�e-
Hellman problem and the modi�ed computational
Di�e-Hellman problem.

1 Introduction

Signcryption which was initially proposed by Zheng
(1997), is a public key cryptographic primitive which
combines encryption and signing as a single logical
operation. The main motivation is to lower the com-
putational and storage cost compared to performing
a sequence of encryption and signing.

Later, Boneh & Franklin (2001) gave the �rst e�-
cient construction of Identity-based encryption (IBE)
in the random oracle model. Its ability to derive a
public key from an identity string simpli�ed the in-
herent public key authentication issue in public key
encryption. Thus, this naturally led the movement
towards the adaptation of signcryption in IBE set-
ting.

Since the initial work on Identity-based signcryp-
tion (IBSC) by Malone-Lee (2002), there have been
numerous IBSC schemes proposed in the random or-
acle model (Barreto et al. 2005, Boyen 2003, Chen &
Malone-Lee 2005, Chow et el. 2003, Libert & Quisqua-
tor 2003, Libert & Quisquater 2004, McCullagh &
Barreto 2004, Nalla & Reddy 2003, Yuen & Wei 2005,
Zhang, Gao, Chen & Geng 2009, Zhang, Yang, Zhu
& Zhang 2010). Although the random oracle model
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is an accepted proving methodology and enables e�-
cient constructions, it has also been criticized due to
its practical issue that the security of a scheme can
be broken when an idealized hash function is replaced
with a real world hash function (Goldwasser & Kalai
2003).

However, constructing a secure IBSC scheme in
the standard model is non-trivial and many previ-
ous attempts have resulted in failures. For instance,
Ren & Gu (2007) proposed the �rst IBSC scheme
in the standard model which was later shown to be
broken by Wang et al. (2010). Yu et al. (2009) pro-
posed another IBSC scheme in the standard model.
Again, Zhang (2010) and Jin et al. (2010) indepen-
dently showed that Yu et al.'s scheme is broken and
attempted at correcting the security �aw. However,
it turns out both of these attempts have failed (see
Section 2.7 for details). Thus, it still remains as an in-
teresting problem to construct a secure IBSC scheme
in the standard model.

1.1 Contribution

In this paper, we propose a new IBSC scheme in the
standard model. Our contributions can be divided
into e�ciency improvement and stronger security re-
sult.

E�ciency improvement: Our scheme performs
similarly in terms of computational cost com-
pared to that of Jin et al. (2010) and Zhang
(2010). In terms of ciphertext size, we reduce
it by approximately 40% compared to the previ-
ous schemes. This is due to the complexity as-
sumption that we rely on called the hashed mod-
i�ed decision bilinear Di�e-Hellman assumption
which enables us to remove the inclusion of an
extension �eld element from the ciphertext.

Stronger security result: Our security proof
shows a stronger result than those of the
previously presented IBSC schemes (Jin et al.
2010, Yu et al. 2009, Zhang 2010) in the
standard model. In the previous schemes the
simulator aborts during the security game when
the adversary issues failing queries, which are
signcrypt/unsigncrypt queries for which the
simulator is unable to generate the private
keys. This is due to the simulation abort during
extract queries in Waters IBE (Waters 2006)
which is also used in their schemes. Although
the abort does not a�ect the CPA security of
Waters IBE, this allows an adversary to trivially
distinguish a simulated envrionment from a real
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environment if used directly to provide CCA
security as in the previous IBSC schemes. For
instance, the reduction requires the challenge
identities �xed at the challenge phase be the ones
for which the simulator is unable to generate
the private keys. Then, in phase 2 the adversary
can simply issue signcrypt/unsigncrypt queries
involving the challenged identites which will
always cause the simulator to abort. We stress
that failing queries should be answered and we
achieve this at the cost of an additional group
operation in each of signcrypt and unsigncrypt,
and a group element in the private key.

1.2 Organization

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the necessary background mate-
rial. Then, in Section 3 we present our scheme fol-
lowed by its security proof in Section 4. Next, we
give an e�ciency comparison in Section 5 and �nally
conclude in Section 6.

2 Preliminaries

2.1 Identity Based Signcryption (IBSC)
Scheme

An IBSC scheme consists of the following four algo-
rithms (Malone-Lee 2002).

Setup(1K): Given 1K for a security parameter K ∈
Z+, outputs the system public key Mpk and the
secret key Msk.

Exract(u): Given an identity u, outputs the private
key du.

Signcrypt(duA
,uB ,M): Given a message M , a re-

ceiver identity uB and the private key of a sender
duA

, outputs the signcryption CT.

Unsigncrypt(uA, duB
,CT): Given a ciphertext CT,

the sender identity uA and the private key of the
receiver duB

, outputs the original message M or
⊥.

2.2 Security Model

We restate the two security requirements for an IBSC
scheme namely, message con�dentiality and unforge-
ability which appear in (Malone-Lee 2002).

Con�dentiality: In order to achieve con�dential-
ity, an IBSC scheme must provide indistin-
guishability of identity-based signcryptions under
adaptive chosen ciphertext attack(IND-IBSC-
CCA2), which is a natural adaptation of indistin-
guishability of encryptions under adaptive cho-
sen ciphertext attack for public key encryption
schemes. Now, we describe the game which is
played between a challenger C and an adversary
A.

Setup: C runs Setup(1K) for a security param-
eter K ∈ Z+ and passes the system public
key Mpk to the adversary A and keeps the
master secret Msk to himself.

Phase 1: A may issue a polynomial number of
the following queries:

Extraction queries on ui: Given
an identity ui, C computes
dui

= Extract(ui) and gives the
generated private key dui to A.

Signcrypt queries on (ui,uj ,M):
Given a sender identity ui, a receiver
identity uj and a message M , C gener-
ates the ciphertext CT and passes it to
A.

Unsigncrypt queries on (ui,uj ,CT):
Given a sender identity ui, a receiver
identity uj and a ciphertext CT, C
unsigncrypts it and passes the result
to A.

Challenge: A chooses two messages M0,M1
and two identities uA,u

∗
B on which he

wishes to be challenged on. Note that the
choice of uA is �exible where as u∗B must be
an identity for which A has not asked the
private key for.

Phase 2: Same as Phase 1, except that
A is not allowed issue the fol-
lowing queries Extract(u∗B) and
Unsigncrypt(uA,u

∗
B ,CT).

Guess: Finally, A outputs its guess bit b′ and
wins the game if b′ = b.

De�nition 1. We say that an identity-based signcryp-
tion scheme is IND-IBSC-CCA2 secure if no polyno-
mially bounded adversary has non-negligible advan-
tage in the game described above.

Unforgeability: Similar to con�dentiality, existen-
tial unforgeability of identity based signcryptions
under chosen message attack (EUF-IBSC-CMA)
is a natural adaptation of existential unforgeabil-
ity under adaptive chosen message attack for sig-
nature schemes.

Again the game is played between a challenger C
and an adversary A.

Setup: C runs Setup(1K) for a security param-
eter K ∈ Z+ and passes the system public
key Mpk to the adversary A and keeps the
master secret Msk to himself.

Attack: A may issue a polynomially bounded
number of the following queries:

Extraction queries on ui: Given an
identity ui runs dui = Extract(ui)
and gives the generated private key dui

to A.
Signcrypt queries on (ui,uj ,M):

Given a sender identity ui, a receiver
identity uj and a messageM , generates
the ciphertext CT and passes it to A.

Unsigncrypt queries on (ui,uj ,CT):
Given a sender identity ui, a receiver
identity uj and a ciphertext CT,
unsigncrypts it and passes the result
to A.

Forge: Finally A outputs (CT∗,u∗A,uB), where
u∗A is not an identity for which A issued
extract query during Attack. A wins if
Unsigncrypt(u∗A, duB

,CT∗) does not re-
turn ⊥. Note that there is no restriction
on uB unlike u∗A.

The advantage of A is Adv(A) = Pr[A wins].

De�nition 2. We say that an identity-based signcryp-
tion scheme is EUF-IBSC-CMA secure if no polyno-
mially bounded adversary has non-negligible advan-
tage in the above game.
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2.3 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of
prime order q. Let Z∗q denote the set of all non-zero
integers modulo prime q. A mapping e : G×G→ GT ,
satisfying the following properties is a bilinear map.

Bilinearity: ∀g1, g2 ∈ G, a, b ∈ Z∗q : e(ga1 , g
b
2) =

e(g1, g2)ab.

Non-degeneracy: e(g1, g2) 6= 1.

Computability: e is e�ciently computable.

2.4 Complexity Assumptions

Assumption 1 (Hashed Modi�ed Decision Bi-
linear Di�e-Hellman (HmDBDH) (Gagné et al.
2010)). Let H : GT → {0, 1}nm+|g| × Z∗q be
a hash function. Given the two distributions
〈g, ga, ga2 , gb, gc, H(e(g, g)abc)〉 ∈ G5 × {0, 1}nm+|g| ×
Z∗q and 〈g, ga, ga

2

, gb, gc, R〉 ∈ G5×{0, 1}nm+|g|×Z∗q ,
where nm denotes plaintext length, nu denotes iden-
tity string length, g is a generator of G, a, b, c ∈R
(Z∗q)3, R ∈R {0, 1}nm+|g| × Z∗q and e(g, g) ∈ GT . The
HmDBDH problem is to distinguish the two distribu-
tions. We de�ne the advantage ε of an adversary B
in solving the HmDBDH problem as,

Pr[B(G,GT , e, g, ga, ga
2

, gb, gc, H(e(g, g)abc)) = 1]

−Pr[B(G,GT , e, g, ga, ga
2

, gb, gc, R) = 1],

where the probability is over randomly chosen
a, b, c, R. We say the HmDBDH assumption holds
if ε is negligible for all adversaries B.
Assumption 2 (Modi�ed Computational Di�e-Hell-

man(mCDH)). Given 〈g, ga, ga2 , gb〉 ∈ G4, where g
is a generator of G and a, b ∈R (Z∗q)2, the mCDH

problem is to compute gab.
We de�ne the advantage ε of an adversary B in

solving the mCDH problem as,

Pr[B(G,GT , e, g, ga, ga
2

, gb) = gab)],

where the probability is over randomly chosen a, b.
We say that the mCDH assumption holds if ε is neg-
ligible for all adversaries B.

2.5 The Hashed Modi�ed Decision Bilinear
Di�e-Hellman (HmDBDH) Assumption

The HmDBDH assumption �rst appeared in (Gagné
et al. 2010) is inspired from the hashed Di�e-
Hellman (HDH) problem by Abdalla et al. (Ab-
dalla et al. 2001). The HDH problem states that
it is hard to distinguish between the two distribu-
tions 〈g, ga, gb, H(gab)〉 and 〈g, ga, gb, R〉, where a, b
are random numbers between 1 and the size of the
group, and R is a random element in the range of the
hash function H.

The HmDBDH assumption is then obtained by
directly applying the HDH problem to the modi-
�ed decision bilinear Di�e-Hellman (mDBDH) prob-
lem by Kiltz & Vahlis (2008). As noted in the
work of Abdalla et al. (2001), the HDH assump-
tion is weaker than the DDH assumption and analo-
gously, the HmDBDH assumption is weaker than the
mDBDH assumption.

Moreover, we assume the existence of the hash
function H : GT → {0, 1}n × Z∗q , where n de-
notes a bit-length. This can be realized by taking
a cryptographic hash function H ′ : GT → {0, 1}n in
conjunction with a pseudorandom number generator
(PRNG). Then, the output of H ′ can be used as the
seed to the PRNG. Note that our scheme requires
n = nm + |g| which is may be larger than what is
provided by a standard cryptographic hash function
(eg. SHA-2 supports upto 512 bits). Skein (Ferguson
et al. 2010), which is one of the �nalists in the NIST
hash function competition for the SHA-3 standard,
supports arbitrary output size and can be useful for
our purpose.

2.6 Target Collision Resistant Hash Function
(TCR)

Let M and {0, 1}n be �nite sets where n is an inte-
ger and let K be a key space. Then, target collision
resistant hash functions are a family of keyed hash
functions {TCRK : M → {0, 1}n : K ∈ K}. We say
such hash functions are target collision resistant if
any polynomial-time adversary A has only a negligi-
ble advantage in the following case: Given a message
M ∈ M, �nd another message M ′ ∈ M such that
(M ′ 6= M) ∧ (HK(M ′) = HK(M)).

We de�ne the advantage εTCR of A against TCR as

εTCR = Pr[A �nds a collision in TCR].

Constructing target collision resistant hash functions
is considered to be relatively easier than constructing
collision resistant hash functions where an attacker
is required to �nd any pair of messages M,M ′ such
that HK(M) = HK(M ′). Although we do not discuss
here in detail, it has been shown that target collision
resistant hash functions can be built from standard
hash functions (Bellare & Rogaway 1997).

2.7 Attacks against IBSC schemes by Zhang
and Jin et al.

In the following, we describe how the security of the
IBSC schemes by Zhang (Zhang 2010) and Jin et al.
(Jin et al. 2010) can be broken. For details of their
scheme, please refer to their original papers.

2.7.1 Zhang's scheme

In Zhang's scheme, A is able to correctly distin-
guish which message has been encrypted as fol-
lows. In the security game, A submits two mes-
sages M0,M1. Then, B randomly chooses a bit b
and encrypts Mb to generate the challenge ciphertext
CT∗ = 〈CT∗1,CT

∗
2,CT

∗
3,CT

∗
4,CT

∗
5,CT

∗
6〉. A upon re-

ceiving CT∗, simply guesses b = 0 and computes R′′ =
CT1/M0. Next, A further computes t′′ = TCR(M0 ‖
R′′) and m′′ = H2(gt

′′
hCT

∗
6 ). Then, A checks if

e(CT∗4, g) = e(g1, g2)e(Hu(u),CT∗5)e(Hm(m′′),CT∗2).
If the veri�cation succeeds, then the encrypted mes-
sage was M0, otherwise M1.

The fundamental reason why Zhang's scheme is
insecure is that the value of R, which is supposedly
only computable by using the private key of the in-
tended receiver, is trivially computable by A. Once
A obtains R, then A has all the necessary compo-
nents to create a valid signature. Then, A can use its
veri�cation result to distinguish the correct message.
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2.7.2 Jin et al.'s scheme

In Jin et al.'s scheme, A can break the IND-IBSC-
CCA security of the scheme as follows. Let CT∗ =
〈CT∗1,CT

∗
2,CT

∗
3,CT

∗
4,CT

∗
5〉 be the challenge cipher-

text created given by B. Then, A successfully creates
a forgery by choosing a random r′ ∈ Zq then com-

puting CT′ = 〈CT′1,CT
′
2,CT

′
3,CT

′
4Hu(u)r

′
,CT′5g

r′〉.
Since CT′ 6= CT∗, A may issue an Unsigncrypt
query on CT′ which will cause A to abnormally abort.

3 Our Scheme

We now describe our IBSC scheme in the standard
model. The security of our scheme is based on the
hardness of HmDBDH problem and mCDH problem.
Note that nm and nu denote the maximum length of
a plaintext and an identity respectively.

Setup(1K) : Given 1K for a security parameter K ∈
Z+, generates the system public keyMpk and the
master key Msk as follows:

1. Generate two groups G,GT of prime order
q and a bilinear map e : G×G→ GT .

2. Choose a secret s ∈R Zq.
3. Choose three generators g, g2, h ∈R G
4. Compute g1 = gs, Y = e(g1, g2).

5. Choose u′, u1, ..., unu ∈R G.
6. Choose m′,m1, ...,mnm ∈R G.
7. Choose a cryptographic hash function

which satis�es the HmDBDH assumption
H : GT → {0, 1}nm+|g| × Z∗q .

8. Choose a target collision resistant hash
function TCR : G→ Z∗q

Finally, the master public key Mpk and the mas-
ter secret key for the system are as follows

Mpk =〈q,G,GT , e, g, g1, g2, h, u′, u1, ..., unu
,

m′,m1, ...,mnm , Y,H,TCR〉
Msk =〈s〉

For notational convenience, we further de�ne the
following functions.

• Let U ⊆ {1, ..., nu} denote the set of all i
for which u[i] = 1, where u[i] is the i-th
bit of the identity string u. Then, Hu :
{0, 1}nu → G on u is computed as Hu(u) =
u′t1

∏
i∈U u

t1
i . For simplicity, we will denote

the output of Hu(u) as gu.

• Let M ⊆ {1, ..., nm} denote the set of
all j for which M [j] = 1, where M [j] is
the j-th bit of the Message M . Then,
Hm : {0, 1}nm → G on M is computed as
Hm(M) = m′

∏
j∈Mmj . For simplicity, we

will denote the output of Hm(M) as gM .

Extract(u): Given an identity u, generates the cor-
responding private key du as follows:

1. Choose ru ∈R Z∗q .
2. du = {d(u,0) = gs2 · (gu)ru , d(u,1) =
gru , d(u,2) = hru}.

Signcrypt(M,duA
,uB): Given a message M , a

sender's private key duA
and a receiver identity

uB , outputs the signcryption CT as follows:

1. Choose r, r′ ∈R Z∗q .
2. (h1, h2) = H(Y r).

3. t′ = TCR(gr
′
).

4. Z = gh2 ·Hm(M ⊕ t′)r′ · d(uA,0).

5. t = TCR(gr).

6. CT = 〈gr, gr′ , (guB
· ht)r, (M ‖ Z) ⊕

h1, d(uA,1)〉

Unsigncrypt(CT,uA, duB
): Given a ciphertext

CT = 〈CT1,CT2,CT3,CT4,CT5〉, a sender
identity uA and a receiver's private key duB

,
unsigncrypts as follows:

1. t = TCR(CT1).

2. Y =
e(CT1,d(uB,0)·(d(uB,2))

t)
e(CT3,d(uB,1))

=
e(gr,gs2·g

ruB
uB
·hruB

t)
e((guB

·ht)r,gruB )
= e(gr, gs2).

3. (h1, h2) = H(Y ).

4. (M ‖ Z) = CT4 ⊕ h1.
5. Z ′ = Z · g−h2 .

6. t′ = TCR(CT2).

7. Test if e(Z ′, g) = Y · e(CT2, Hm(M ⊕ t′)) ·
e(CT5, guA

) and if it holds, output the mes-
sage M , otherwise ⊥.

4 Security Proof

In this section we prove the security of our scheme
using a series of games. More precisely, we have two
sequences of games Game 0 to Game 8 and Game′ 0 to
Game′ 8, where we prove con�dentiality and unforge-
ability respectively. Each game (eg. Game 0, Game
1, etc) played is complete in the sense that an adver-
sary will interact with a simulator from Setup phase
to Guess phase as de�ned in the security model. For
conciseness however, we will only describe the new
changes made in each game. We de�ne Ei, E ′i to be
the events that B outputs its guess β′ = 1, in the
respective i-th games.

Theorem 4.1. If there exists a polynomial-time
IND-IBSC-CCA2 adversary A against our scheme,
then there exists an algorithm B which can break the
HmDBDH assumption. Speci�cally, for an adversary
A with an advantage ε and running time t which may
issue at most QE Extract queries, B has an ad-
vantage of at least εHmDBDH in solving a HmDBDH
problem in time at most t′.

εHmDBDH ≥
ε− εTCR

8QE(nu + 1)
,

t′ ≤ t+O(ε−2ln(ε−1)λ−1ln(λ)−1))

Proof. The theorem is proved via a series of games
from Game 0 to Game 8. To start with, Game 0
where the scheme is simulated exactly as described
in Section 3 is presented. Then we transit through
the subsequent games based on various events (eg.
simulation abort, hash collision, etc). We conclude
the proof with the overall probability calculation of
the advantage and the running time of our simulation.
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Recall that the HmDBDH problem is to
distinguish between two probability distributions

〈g, ga, ga2 , gb, gc, H(e(g, g)abc)〉 ∈ G5 × {0, 1}nm+|g| ×
Z∗q and 〈g, ga, ga

2

, gb, gc, R〉 ∈ G5×{0, 1}nm+|g|×Z∗q .
We assume that the secrets a, b, c are known to B ini-
tially. Then, in sequel games, B will gradually forget
the secrets and instead they are available in the forms

of ga, ga
2

, gb, gc only.

Game 0

Let A be an adversary and B be a simulator. We de-
�ne Game 0 to be an interactive game between A and
B. In short, B will behave as a KGC in our scheme
described in Section 3. Thus B has no limitation in
serving the queries made by A in Game 0 since it
knows the secret exponents a, b, c explicitly. Let E0
be the event that b = b′. Then, by de�nition A's
advantage in Game 0 is |Pr[E0]− 1

2 |.

Game 1 [Transition based on hash collisions]

In Game 1, the simulation is performed identically
to Game 0 except for the case when a hash collision
occurs. We say that a hash collision has occurred
when (CT1 6= gc) ∧ (TCR(CT1) = t∗)). We de�ne
HASHABORT to be the event that the simulator
aborts due to a hash collision. The simulation envi-
ronment remains indistinguishable from the view of
A until HASHABORT occurs. Thus due to the dif-
ference lemma (Shoup 2004) we have,

|Pr[E0]− Pr[E1]| ≤ Pr[HASHABORT ] (1)

Also, we have an adversary against TCR which suc-
ceeds with probability of at least Pr[HASHABORT ].
Then,

Pr[HASHABORT ] ≤ εTCR (2)

Game 2 [Transition based on change in the sys-
tem public key 1]

In Game 2, B modi�es the system public key Mpk as
follows.

Setup: B sets an integer, m = 4QE , where
QE is the number of extract queries,
and chooses an integer, ku, uniformly at
random between 0 and nu. B de�nes
x′, ~x, y′, ~y ∈R Z∗m, three functions Fu(u) =
(q −mku) + x′ +

∑
i∈U xi (mod q), Ju(u) = y′ +∑

i∈U yi (mod q),Ku(u) = 0, if x′ +
∑
i∈U xi ≡

0 (mod m), otherwise 1.

B sets h = g1 ·gα, where α ∈R Z∗q . B then assigns
u′ = gq−kum+x′

2 · gy′ · g−t
∗

1 , where t∗ = TCR(gc)
and u=i g

xi
2 · gyi . Finally, B replaces the parts

of the system public key Mpk with newly com-
puted 〈u′, u1, ..., unu

,m′,m1, ...,mnm
〉 and keeps

the functions Fu, Ju,Ku, Fm, Jm,Km internal to
itself.

B further chooses km randomly between 0

and nm and de�nes m′ = gq−kmm+v′

2 · gw′ ,
mi = gvi2 · gwi , where v′, ~v, w′, ~w ∈R Z∗m.
Further B de�nes three functions Fm(M) =
(q − mkm) + v′ +

∑
i∈M vi (mod q), Jm(M) =

w′ +
∑
i∈M wi (mod q),Km(M) = 0, if v′ +∑

i∈M vi ≡ 0 (mod m) otherwise 1.

The changes made in Mpk as above does not af-
fect the view of A and hence the simulation remains
indistinguishable from Game 1. Therefore,

Pr[E1] = Pr[E2] (3)

Game 3 [Transition based on simulation abort]

Let QE be the maximum number of Extract queries
A may issue. Further, let F1 denote the event that
A issues an Extract query on an identity u such that
Ku(u) = 0 and let F2 denote the event that A chooses
the challenge identity u∗B such that Fu(u∗B) 6= 0.
Then, we de�ne the event forced abort Ffor : F1 ∨F2
and

Pr[¬Ffor] =Pr

[
QE∧
i=1

Ku(ui) = 1

]

· Pr

[
Fu(u∗B) = 0

∣∣∣∣ QE∧
i=1

Ku(ui) = 1

]

We also de�ne η = Pr[¬Ffor] and put λ as a lower
bound on η.

Lemma 4.2. The probability of simulator not abort-
ing by the guess phase is at least λ = 1

8(nu+1)QE
.

The proof of this lemma is postponed until Section
4.1.

As discussed by Waters (2006), arti�cial abort, de-
noted as Fart, is required to ensure that the sim-
ulation abort occurs with almost same probability
(1− λ) over all possible sets of Extract queries made
by A. Let ~u = u1, ...,uQE

be the set of identities
queried for Extract during Phase 1 and Phase 2. We
de�ne the function τ(X ′, ~u,u∗), where X ′ is a set
of simulation values x′, x1, ..., xnu

, as τ(X ′, ~u,u∗) =
0, if ¬F, otherwise 1. We consider the probability
over the simulation values for a given set of queries,
~u,u∗, as η = PrX′ [τ(X ′, ~u,u∗) = 0]. B estimates
η′ by sampling O(ε−2ln(ε−1)λ−1ln(λ)−1)) times the
probability η by choosing a random X ′. Then, if

η′ ≥ λ, B will abort with probability η′−λ
η′ and take

a random guess. Otherwise, B will continue to Guess
phase as usual. Note that �xing X ′, ~u,u∗ gives the
adversary the �xed view of the simulation.

Lemma 4.3. If the simulator takes
O(ε−2ln(ε−1)λ−1ln(λ−1)) samples when comput-
ing the estimate η′, then∣∣∣∣Pr[E2]− 1

2

λ
− Pr[E3]− 1

2

∣∣∣∣ ≤ ε

2

The proof of the above lemma is postponed until
Section 4.2. Note that readers who are familiar with
the work by Kiltz & Galindo (2009) may skip this
proof as this is identical to the proof of Lemma A.3
in their work.

Game 4 [Transition based on private key
derivation]

B answers private key queries made by A as follows.
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Extract Queries: Given an identity u, B chooses
ru ∈R Z∗q and computes du as follows :

du =

{
d(u,0) = g

−Ju(u)
Fu(u)

1 · gruu , d(u,1) = g
−1

F (u)

1 · gru ,

d(u,2) = (A2 · gα1 )
−1

Fu(u) · (g1 · gα)ru
}
.

Letting r̃u = ru − a
Fu(u)

gives us

d(u,0) =g
−Ju(u)
Fu(u)

1 ·A
t∗

Fu(u)

2 · gruu

=g
−Ju(u)
Fu(u)

1 · g
at∗

Fu(u)

1 ·
(
g
Fu(u)
2 · gJu(u) · g−t

∗

1

)ru
=ga2 ·

(
g
Fu(u)
2 · gJu(u) · g−t

∗

1

)− a
Fu(u)

·
(
g
Fu(u)
2 · gJu(u) · g−t

∗

1

)ru
=ga2 · g

ru− a
Fu(u)

u

=ga2 · gr̃uu ,

d(u,1) =g
−1

Fu(u)

1 · gru = gru−
a

Fu(u) = gr̃u ,

d(u,2) =(A2 · gα1 )
−1

Fu(u) · (g1 · gα)ru

=(g1 · gα)
−a

Fu(u) · (g1 · gα)ru

=(g1 · gα)ru−
a

Fu(u)

=hr̃u .

B can perform this computation if and only if
Fu(u) 6= 0. Since we choose q,m, ku such that
q � mku, the only condition that Fu(u) = 0 can
occur is whenmku = x′+~x. Notice thatKu(u) 6=
0 is the su�cient condition for Fu(u) 6= 0, since
Ku(u) 6= 0 implies mku 6= x′ + ~x. Thus the
simulator will only continue when Ku(u) 6= 0.

Game 4 remains indistinguishable from Game 3
and hence,

Pr[E3] = Pr[E4] (4)

Game 5 [Transition based on
Signcrypt/Unsigncrypt computation]

In this game, B answers Signcrypt/Unsigncrypt
queries made by A as follows. Note that B is able to
answer the queries without the explicit knowledge of
a, b ∈ Z∗q .

Signcrypt queries on (uA,uB ,M): There are two
cases:

Ku(uA) 6= 0: B runs Extract(uA) to generate
the private key for uA and signcrypts M as
usual.

Otherwise: B signcrypts M as follows :

1. Choose r, r′r′′ ∈R Z∗q .
2. (h1, h2) = H(Y r).

3. t′ = TCR(gr
′
).

4. Repick r′ and restart from Step 3 until
Km(M ′) 6= 0, where M ′ = M ⊕ t′.

5. Computes the signature Z as follows:

Z =gh2 · g
−Jm(M′)
Fm(M′)

1 ·
(
g
Fm(M ′)
2 · gJm(M ′)

)r′
·
(
gJu(uA) · g−t

∗

1

)r′′
=gh2 · ga2 ·

(
g
Fm(M ′)
2 · gJm(M ′)

) −a
Fm(M′)

·
(
g
Fm(M ′)
2 · gJm(M ′)

)r′
·
(
gJu(uA) · g−t

∗

1

)r′′
=gh2 · ga2 ·

(
g
Fm(M ′)
2 · gJm(M ′)

)r′− a
Fm(M′)

·
(
gJu(uA) · g−t

∗

1

)r′′
=gh2 · ga2 ·Hm(M ′)r̃ ·

(
gJu(uA) · g−t

∗

1

)r′′
,

where r̃ = r′ − a

Fm(M ′)
.

gr̃ is computed as follows:

g
−1

Fm(M′)
1 · gr

′
= g

−a
Fm(M′) · gr

′
= g

r′− a
Fm(M′) = gr̃.

6. t = TCR(gr).

7. CT = 〈gr, gr̃M′ , (guB
· ht)r,M ⊕

h1, Z, g
r′′〉

Remark 4.4. gr
′′
must be �xed for each identity

since it corresponds to a part of a user's private
key in the actual scheme.

Unsigncrypt queries on (uB ,CT = 〈CT1, ...,CT6〉):
There are three cases:

(CT1 6= CT∗1 = Ct3) ∧ (TCR(CT1) = TCR(C)):
B aborts due a hash collision. Note that we
have bounded the probability of this abort
in Game 1.

K(uB) 6= 0: Runs Extract(uB) and unsign-
crypts CT′ as usual.

Otherwise: B unsigncrypts as follows:

1. Computes Y as follows:

Y =e

(
CT3

CT
Ju(uB)
1 · CTαt1

, g2

)(t−t∗)−1

=e


(
g−t

∗

1 · gJu(uB)
)r
· htr

grJu(uB) · grαt
, g2

(t−t∗)−1

=e

(
g−t

∗r
1 · gJu(uB)r · gtr1 · gαtr

grJu(uB) · grαt
, g2

)(t−t∗)−1

=e
(
g−t

∗r
1 · gtr1

)(t−t∗)−1

= e (gr1, g2)

2. (h1, h2) = H(Y ).

3. Z = CT5 · g−h2 .
4. M = CT4 ⊕ h1.
5. t′ = TCR(CT2).

6. Test if e(g, Z) = Y ·e(CT2, Hm(M⊕t′))·
e(guA

,CT6) and if it holds, outputs the
message M , otherwise ⊥.
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Remark 4.5. The importance of the simulator being
able to answer signcrypt/unsigncrypt queries when
Fu(u) = 0 has been overlooked in many previous at-
tempts (Jin et al. 2010, Yu et al. 2009, Zhang 2010).
For a security reduction to go through, given the chal-
lenge identity u∗B it is required that Fu(u∗B) = 0.
However, the simulators in the mentioned papers are
not able to answer any sigincrypt/unsigncrypt queries
involving u∗B and simply abort when such cases oc-
cur. This behaviour of the simulator clearly enables
an attacker to distinguish the simulated environment
from the real environment.

Game 5 remains indistinguishable from Game 4
and hence,

Pr[E4] = Pr[E5] (5)

Game 6 [Transition based on change in the sys-
tem public key 2]

We now assume that a, b ∈ Z∗q are no longer available
to the simulator B as plain integers. Instead, they are

available in the form of A1 = ga, A2 = ga
2

, B = gb.

Setup: B sets g1 = A1, g2 = B and Y = e(g1, g2).
Then, B replaces the parts of the system public
key Mpk with newly computed 〈g1, g2, Y 〉.

The changes made inMpk as above does not a�ect
the view of A. Therefore,

Pr[E5] = Pr[E6] (6)

Game 7 [Transition based on challenge cipher-
text computation]

We now assume that c ∈ Z∗q is no longer available
to the simulator B as a plain integer. Instead, it
is available in the form of C = gc, in addition to
(z1, z2) = H(e(g, g)abc). Then, we show how B con-
structs the challenge ciphertext as follows.

Challenge: A commits the challenge identities
(uA,u

∗
B) and a message M . If (Fu(u∗B) 6= 0)

then B aborts and outputs a random guess as the
solution. Else, B returns the challenge ciphertext
CT∗ as:

r′ ∈R Z∗q ,

t′ = TCR(gr
′
),

Z = gz2 ·Hm(Mb ⊕ t′)r
′
· d(uA,0),

CT∗ =
〈
C, gr

′
,
(
gJu(u

∗
B) · g−t

∗

1 · ht
∗
)c
,Mb ⊕ z1,

Z, d(uA,1)

〉
.

Note that we can compute CT3 =(
gJu(u

∗
B) · g−t

∗

1 · ht∗
)c

since CT3 =(
gJu(u

∗
B) · g−t

∗

1 · gt∗1 · gαt
∗
)c

=
(
gJu(u

∗
B) · gαt∗

)c
.

d(uA,0) and d(uA,1) are obtained by running
Extract(uA) assuming that Fu(uA) 6= 0. Oth-
erwise, we can use the same technique as how
we answer Signcrypt queries in Game 5.

Game 7 remains indistinguishable from Game 6
and hence,

Pr[E6] = Pr[E7] (7)

Game 8 [Transition based on challenge cipher-
text replacement]

B simply replaces CT∗4 and CT∗5 with random bit
strings. Thus we have,

Pr[E8] =
1

2
(8)

The only di�erence between Game 7 and Game 8 is
the computation of CT∗4,CT

∗
5. It is easy to see that

this is equivalent to distinguishing between a well
formed HmDBDH instance and a random instance.
Hence,

|Pr[E7]− Pr[E8]| ≤ εHmDBDH (9)

Analysis

We have computed partial probabilities of indistin-
guishability between games. We now combine the
these probabilities to compute the overall advantage
ε of an adversary A running in time t, which is at
most,

ε =

∣∣∣∣Pr[E0]− 1

2

∣∣∣∣ (by de�nition) (10)

≤
∣∣∣∣Pr[E1] + εTCR −

1

2

∣∣∣∣ (from equations 1, 2) (11)

=

∣∣∣∣Pr[E2] + εTCR −
1

2

∣∣∣∣ (from equation 3) (12)

≤
∣∣∣∣Pr[E3]− 1

2

λ
+ εTCR

∣∣∣∣ (from Lemma 4.3) (13)

=

∣∣∣∣Pr[E4]− 1
2

λ
+ εTCR

∣∣∣∣ (from equation 4) (14)

=

∣∣∣∣Pr[E5]− 1
2

λ
+ εTCR

∣∣∣∣ (from equation 5) (15)

=

∣∣∣∣Pr[E6]− 1
2

λ
+ εTCR

∣∣∣∣ (from equation 6) (16)

=

∣∣∣∣Pr[E7]− 1
2

λ
+ εTCR

∣∣∣∣ (from equation 7) (17)

≤
∣∣∣∣Pr[E8] + εHmDBDH − 1

2

λ
+ εTCR

∣∣∣∣ (from equation 9)

(18)

=
∣∣∣εHmDBDH

λ
+ εTCR

∣∣∣ (from equation 8) (19)

=

∣∣∣∣∣εHmDBDH1
8QE(nu+1)

+ εTCR

∣∣∣∣∣ (from Lemma 4.2) (20)

= |8QE(nu + 1) (εHmDBDH) + εTCR| (21)

Since εHmDBDH and εTCR are negligible, A has only
negligible advantage in breaking our scheme.

The running time t′ of B is linear in the run-
ning time of A. Moreover, B requires additional
running time for sampling. Hence, t′ = t +
O(ε−2ln(ε−1)λ−1ln(λ)−1)). This completes the proof
for the IND-IBSC-CCA2 security of our scheme.
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4.1 Proof of Lemma 4.2

Proof. We now show the lower bound on the proba-
bility of the simulation not aborting.

Pr[¬F ] =Pr[

QE∧
i=1

Ku(ui) = 1]

· Pr[Fu(u∗B) = 0|
QE∧
i=1

Ku(ui) = 1] (22)

=(1− Pr[

QE∨
i=1

Ku(ui) = 0])

· Pr[Fu(u∗B) = 0|
QE∧
i=1

Ku(ui) = 1] (23)

=(1−
QE∑
i=1

Pr[Ku(ui) = 0])

· Pr[Fu(u∗B) = 0|
QE∧
i=1

Ku(ui) = 1] (24)

=(1− QE
m

) · Pr[Fu(u∗B) = 0|
QE∧
i=1

Ku(ui) = 1]

(25)

=(1− QE
m

) · 1

nu + 1

· Pr[Ku(u∗B) = 0|
QE∧
i=1

Ku(u∗) = 1] (26)

=(1− QE
m

) · 1

nu + 1
· Pr[Ku(u∗) = 0]

Pr[

QE∧
i=1

Ku(ui) = 1]

· Pr[
QE∧
i=1

Ku(ui) = 1|Ku(u∗) = 0] (27)

≥(1− QE
m

) · 1

(nu + 1)
· 1

m

· Pr[
QE∧
i=1

Ku(ui) = 1|Ku(u∗) = 0] (28)

=(1− QE
m

) · 1

(nu + 1)m

· (1− Pr[

QE∨
i=1

Ku(ui) = 0|Ku(u∗) = 0])

(29)

≥(1− QE
m

) · 1

(nu + 1)m

· (1−
QE∑
i=1

Pr[Ku(ui) = 0|Ku(u∗) = 0])

(30)

=(1− QE
m

)2 · 1

(nu + 1)m
(31)

≥(1− 2QE
m

) · 1

(nu + 1)m
(32)

=(1− 2QE
4QE

) · 1

(nu + 1)4QE
(33)

=
1

(nu + 1)8QE
(34)

Equations 24 and 30 come from the fact that for any
pair of u and u′, the probabilities that Ku(u) = 0
and Ku(u′) are independent. Equations 25 and 28
come from the probability of Ku(u) = 0 being 1

m
for any u. Equation 26 hold since Fu(u) = 0 implies
Ku(u) = 0 as well as the existence of a unique ku such
that 0 ≤ ku ≤ nu. Finally, equation 33 is obtained by
setting m = 4QE which optimizes the equation.

4.2 Proof of Lemma 4.3

Proof. We �rst compute the probability distribution
of Pr[E3]− 1

2 as follows.

Pr[E3]− 1

2
=Pr[β′ = 1|F ]Pr[F ]

+ Pr[β′ = 1|¬F ]Pr[¬F ]− 1

2
(35)

=
1

2
Pr[F ] + Pr[β′ = 1|¬F ]Pr[¬F ]

− 1

2
(random guess taken if F occurs)

(36)

=
1

2
Pr[F ] + Pr[b′ = b|¬F ]Pr[¬F ]

− 1

2
(β′ = 1 if b′ = b) (37)

=
1

2
(1− Pr[¬F ]) + Pr[b′ = b|¬F ]Pr[¬F ]− 1

2
(38)

=− 1

2
Pr[¬F ]) + Pr[b′ = b|¬F ]Pr[¬F ]

(39)

=− 1

2
Pr[¬F ])

+ Pr[¬F |b′ = b]Pr[b′ = b] (Bayes' theorem)
(40)

=
1

2
(Pr[¬F |b′ = b]Pr[b′ = b]

− Pr[¬F |b′ 6= b]Pr[b′ 6= b]) (41)

=
1

2
(Pr[¬F |b′ = b]Pr[E2]

− Pr[¬F |b′ 6= b](1− Pr[E2])) (Pr[E2] = Pr[b′ = b])
(42)

Let F be the event such that F : Fart ∨ Ffor. Then
we make the following claim.

Claim 4.6. For any �xed view of A, |Pr[¬F ]− λ| ≤
λε
4 .

Let us assume the claim holds for now. Since the
claim holds for any �xed view of A, the claim should
also hold in the following cases conditioned on b′ = b
and b′ 6= b.

|Pr[¬F |b′ = b]− λ| ≤ λε

4
, |Pr[¬F |b′ 6= b]− λ| ≤ λε

4
(43)

Then, combining equations 42 and 43 gives,∣∣∣∣Pr[E3]− 1

2
− λ

(
Pr[E2]− 1

2

)∣∣∣∣ ≤Pr[E2]
λε

4
+
λε

4

≤λε
2
,

CRPIT Volume 125 - Information Security 2012

10



which trivially leads to∣∣∣∣Pr[E3]− 1
2

λ
−
(
Pr[E2]− 1

2

)∣∣∣∣ ≤ ε

2

Proof of Claim 4.6

Proof. Since two events are independent of each
other,

Pr[¬F ] = Pr[¬Ffor]Pr[¬Fart] = ηPr[¬Fart]

Let us �x 0 < ε′ = ε
8 ≤

1
8 . Then, by using Cherno�'s

bound for the estimate η′ of η we obtain

Pr[η′ − η] > ηε′] < λε′.

This gives us

Pr[¬Fart] =Pr[¬Fart||η′ − η| > ηε′]Pr[|η′ − η| > ηε′]

+ Pr[¬Fart||η′ − η| ≤ ηε′]Pr[|η′ − η| ≤ ηε′]
≤λε′ + Pr[¬Fart||η′ − η| ≤ ηε′]

=λε′ +
λ

η′
.

The last equality is true since for �xed η′ with |η′ −
η| ≥ ηε′ we have η′ > η(ε′ + 1) ≤ λ(ε′ + 1) ≤ λ and
therefore Pr[¬Fart] = λ

η′ . Further we have,

Pr[¬F ] =Pr[¬Ffor]Pr[¬Fart]

≤ηλε′ + ηλ

η′

≤λε′ + λ

1− ε′
≤λ(1 + 2ε′).

For all �xed η′ with |η′−η| ≤ ηε′ we have Pr[¬Fart] =

min
{

1, λη′

}
> λ

η(1+ε′) (since η > λ and hence η(1 +

ε′) > λ). Therefore,

Pr[¬F ] =ηPr[¬Fart]
≥ηPr[¬Fart||η′ − η| ≤ ηε′]Pr[|η′ − η| ≤ ηε′]

≥η λ

η(1 + ε′)
(1− λε′)

≥λ(1− ε′)2

≥λ(1− 2ε′).

Since λ(1 − 2ε′) ≤ Pr[¬F ] ≤ λ(1 + 2ε′), this implies
|Pr[¬F ]− λ| ≤ λ2ε′ < λε

4 as required.

Theorem 4.7. If there exists a polynomial-time
EUF-IBSC-CMA adversary A against our scheme,
then there exists an algorithm B which can break the
mCDH assumption. Speci�cally, for an adversary A
with an advantage ε and running time t which may
issue at most QE extract queries, B has an advantage
of at least εmCDH in solving a mCDH problem in time
at most t′.

εmCDH ≥
ε− εTCR

32Q2
E(nu + 1)(nm + 1)

,

t′ ≤ t+O(ε−2ln(ε−1)λ−1ln(λ)−1))

Proof. We now prove the EUF-IBSC-CMA security of
our scheme. The proof runs from Game′ 0 to Game′

7.
Recall that the mCDH problem is to compute gab

given 〈g, ga, ga2 , gb〉 ∈ G4, where g is a generator of
G and a, b ∈R (Z∗q)2. We assume that the secrets a, b
are known to B initially. Then, in sequel games, B
will gradually forget the secrets and instead they are

available in the forms of ga, ga
2

, gb only.

Game′ 0

B is simulating the real environment as in Game 0.
Then by de�nition, the advantage of A is

|Pr[E ′0]| (44)

Game′ 1 [Transition based on hash collisions]

This game is identical to Game 1. Thus we have,

|Pr[E ′0]− Pr[E ′1]| ≤ Pr[HASHABORT ] (45)

And recall that,

Pr[HASHABORT ] ≤ εTCR (46)

Game′ 2 [Transition based on change in the
system public key 1]

This game is identical to Game 2. Thus we have,

Pr[E ′′1 ] = Pr[E ′′2 ] (47)

Game′ 3 [Transition based on simulation abort]

This game is almost identical to Game 3 except for
one change. We now introduce an additional failure
event F3 : Fm(M ′′) 6= 0. Then, the new probability
of simulation abort F ′ is

F ′ = F ∨ F3

Pr[¬F ′] = Pr[¬F ]Pr[Fm(M ′′) 6= 0]

Then, we have the following lemma whose proof will
be postponed until Section 4.3

Lemma 4.8. The probability of simulator not abort-
ing is at least λ′ = 1

32Q2
E(nm+1)(nu+1)

.

Apart from the additional failure case, the rest of
Game′ 3 is identical to Game 3. Therefore,∣∣∣∣Pr[E ′2]− 1

2

λ′
− Pr[E ′3]− 1

2

∣∣∣∣ ≤ ε

2
(48)

Game′ 4 [Transition based on key derivation]

This game is identical to Game 4. Thus we have,

Pr[E ′3] = Pr[E ′4] (49)

Game′ 5 [Transition based on
Signcrypt/Unsigncrypt computation]

This game is identical to Game 5. Hence,

Pr[E ′4] = Pr[E ′5] (50)
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Game′ 6 [Transition based on change in the
system public key 2]

We now assume that a, b ∈ Z∗q are no longer available
to the simulator B as plain integers. Instead, they are

available in the form of A1 = ga, A2 = ga
2

, B = gb.

Setup: B sets g1 = A1, g2 = B and Y = e(g1, g2).
Then, B replaces the parts of the system public
key Mpk with newly computed 〈g1, g2, Y 〉.

As in Game′ 2, the changes made in Mpk as above
does not a�ect the view of A. Therefore,

Pr[E ′5] = Pr[E ′6] (51)

Game′ 7 [Transition based on challenge abort]

In Game′ 7, as long as the simulation does not abort,
B is able to solve a mCDH problem as follows.

Forge: Eventually, A returns a signcrypted message
CT∗ = 〈CT1,CT2,CT3,CT4,
CT5,CT6〉. B unsigncrypts CT∗ to get M∗. If
CT∗ is invalid, Extract(u∗A) query has previ-
ously been made, Fu(u∗A) 6= 0 or Fm(M ′) 6= 0
where M ′ = M ⊕ TCR(CT2), B aborts. If
Fu(u∗A) = 0 and Fm(M ′) = 0, B obtains gab

as follows:

CT5 =gh2 ·Hm(M ⊕ TCR(CT2))r
′
· ga2 · g

ruA
uA

=gh2 · gJm(M⊕TCR(CT2))r
′
· gab · gruA

uA .

So,

CT5

gh2 · CTJm(CT4⊕TCR(CT2))
2 · CTJu(uA)

6

=

gh2 · gJm(M⊕TCR(CT2))r
′ · gab · gruA

uA

gh2 · (gr′)Jm(M⊕TCR(CT2)) · gruA
uA

= gab.

Game′ 7 remains indistinguishable from Game′ 6.
Hence,

Pr[E ′6] = Pr[E ′7] (52)

B is able to obtain the mCDH output gab as long as
¬F ′ holds. This gives us

Pr[E ′7] = εmCDH (53)

Analysis

The overall advantage ε of an adversary A running in
time t is at most,

ε = |Pr[E ′0]| (by de�nition)

≤ |Pr[E ′1] + εTCR| (from equations 45, 46)

= |Pr[E ′2] + εTCR| (from equation 47)

≤
∣∣∣∣Pr[E ′3]

λ′
+ εTCR

∣∣∣∣ (from equation 48)

=

∣∣∣∣Pr[E ′4]

λ′
+ εTCR

∣∣∣∣ (from equation 49)

=

∣∣∣∣Pr[E ′5]

λ′
+ εTCR

∣∣∣∣ (from equation 50)

=

∣∣∣∣Pr[E ′6]

λ′
+ εTCR

∣∣∣∣ (from equation 51)

=

∣∣∣∣Pr[E ′7]

λ′
+ εTCR

∣∣∣∣ (from equation 52)

=
∣∣∣εmCDH

λ′
+ εTCR

∣∣∣ (from equation 53)

=

∣∣∣∣∣ εmCDH
1

32Q2
E(nm+1)(nu+1)

+ εTCR

∣∣∣∣∣ (from Lemma 4.8)

=
∣∣32Q2

E(nm + 1)(nu + 1)εmCDH + εTCR
∣∣

Since εmCDH , εTCR are negligible, A has only negligi-
ble advantage in breaking our scheme.

The running time t′ of B is linear in the running
time of A. Moreover, B requires additional running
time for sampling. Hence,

t′ = t+O(ε−2ln(ε−1)λ−1ln(λ)−1))

This completes the proof for EUF-IBSC-CMA secu-
rity of our scheme.

4.3 Proof of Lemma 4.8

Proof. We �rst compute the probability of the event
F3 not occurring.

Pr[¬F3] =Pr[Fm(M ′′) = 0]

=
1

nm + 1
Pr[Km(M ′′) = 0]

=
1

nm + 1

1

m

Then,

Pr[¬F ′] =Pr[¬F ∧ ¬F3]

≥ λ

m(nm + 1)

=

1
8(nu+1)QE

4QE(nm + 1)

=
1

32Q2
E(nm + 1)(nu + 1)

5 E�ciency

We compare the e�ciency of our scheme against the
other schemes (Jin et al. 2010, Zhang 2010) in terms
of the computational cost involved and the cipher-
text size. Although these two schemes are broken,
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nevertheless the comparison would show the relative
performance of our scheme. Table 1 shows that the
schemes under the comparison perform similarly in
terms of computation overhead.

Table 1: E�ciency Comparison

Ours Jin et al. Zhang
G GT P G GT P G GT P
ex. ex. ex. ex. ex. ex.

Extract 2 0 0 2 0 0 2 0 0
Sign- 6 1 0 3 1 0 5 1 0
crypt
Unsign- 2 0 5 2 0 5 0 2 5
crypt
Cipher- G5 × |M | G4 ×GT G4 × Z∗q
text size ×GT
Security CCA2 Broken Broken

CMA
G ex.: number of exponentiations in G
GT ex.: number of exponentiations in GT
P: number of pairings
CCA2: IND-IBSC-CCA2
CMA: EUF-IBSC-CMA

Now we compare the ciphertext size by consider-
ing the implementation over di�erent types of pair-
ings (see the work by (Galbraith et el. 2008) for
more details on the di�erent pairing types). In case
the schemes are implemented over a supersingular
curve of embedding degree 2, then |G| = 512 bits,
|GT | = 1024 bits and typically nm = nu = 160 bits.
Thus, our ciphertext size will be 512×5+160 = 2720
bits compared to 512×4 + 1024 = 3072 bits by Jin et
al.'s and 512×4+160+1024 = 3232 bits by Zhang's.

It is trivially possible to convert our symmet-
ric pairing based scheme to Type 2 pairing version
(asymmetric pairing e : G1 × G2 → GT with e�-
cient isomorphism). In a crude way, we may de�ne
every group element in our scheme as G2 element.
Then, due to the presence of isomorphic map which
e�ciently maps elements in G2 to the corresponding
elements in G1, we obtain Type 2 pairing version of
our scheme.

In case where a Type 2 pairing of embedding de-
gree 6 is used, for g1 ∈ G1, g2 ∈ G2 and h ∈ GT ,
|g1| = 160 bits, |g2| = 480 bits and |h| = 960 bits
(Chatterjee & Menezes 2009). Thus, our cipher-
text size will be 480 × 5 + 160 = 2560 bits instead
of 480 × 4 + 960 = 2880 bits for Jin et al.'s and
480× 4 + 960 = 3040 bits for Zhang's.

We can further improve the e�ciency with a
slightly more e�ort. If a shorter private key size is
desired, then we may de�ne private keys to be of el-
ements from G1. This will force the ciphertext el-
ements to be from G2 since each private key com-
ponent is used in pairing with each ciphertext el-
ement for unsigncrypting. If a shorter ciphertext
size is of primary concern, then we may de�ne the
ciphertext elements to be from G1 and the private
keys from G2. If this is the case, then our cipher-
text size will be 160 × 5 + 160 = 960 bits compared
to 160 × 4 + 960 = 1600 bits by Jin et al.'s and
160 × 4 + 160 + 960 = 1760 bits by Zhang's. Thus
we see a signi�cant reduction of approximately 40%
in the ciphertext size.

6 Conclusion

We have proposed a fully secure IBSC scheme in
the standard model under HmDBDH and mCDH as-

sumptions. We note that previously proposed IBSC
schemes in the standard model are not secure and
many schemes ignore the importance of being able
to answer signcrypt/unsigncrypt simulation queries
for which the private key generation algorithm fails.
Moreover, we have shown that our scheme provide a
short ciphertext size by avoiding the inclusion of a
target group element in the ciphertext.
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