
Efficient Parallel Algorithms for the Maximum Subarray Problem ∗

Tadao Takaoka
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

Abstract

Parallel algorithm design is generally hard. Parallel
program verification is even harder. We take an ex-
ample from the maximum subarray problem and and
show those two problems of design and verification.

The best known communication steps for a mesh
architecture for the maximum subarray problem is
2n − 1. We give a formal proof for the parallel al-
gorithm on the mesh architecture based on Hoare
logic. The main part of the proof is to establish sev-
eral space/time invariants with three indices (i, j, k).
The indices (i, j) pair specifies the invariant at the
(i, j) grid point of the mesh and k specifies the k-
th step in the computation. Then ignoring additive
constants, the communication steps are improved to
(3/2)n steps and finally n steps, which is optimal in
terms of communication steps. Also the first algo-
rithm is implemented on a Blue Gene parallel com-
puter and performance measurements conducted are
shown.

1 Introduction

The maximum subarray problem is to find a rectangu-
lar subarray in the given (n, n)-two dimensional array
that maximizes the sum in it. If the array elements
are non-negative, we have the trivial solution of the
whole array. Thus we subtract the mean value, or an-
other anchor value depending on applications. This
problem has wide applications from graphics to data
mining. In graphics, the maximum subarray corre-
sponds to a brightest spot in the given graphic image.
In data mining, suppose we spread the sale amounts
of some product on a two dimensional array classi-
fied by ages and annual income. Then the maximum
subarray corresponds to the most promising customer
range.

The typical algorithm by Bentley [2] takes O(n3)
time on a sequential computer. This has been
improved to slightly sub-cubic by Tamaki and
Tokuyama [8], and Takaoka [7]. When the data is
large, such as (1024, 1024) in graphics applications,
those time complexities are prohibitive. This is more
so, when we need to process video images in dynamic
changing situations. An obvious choice is parallel

∗This research was supported by the EU/NZ Joint Project,
Optimization and its Applications in Learning and Industry (Op-
tALI).
Copyright c©2014, Australian Computer Society, Inc. This pa-
per appeared at the 12th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2014), Auckland, New
Zealand, January 2014. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 152, B. Javadi and
S. K. Garg, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

One cell-

-

-

-
?

?

Data

Control

Data

Control

Data

Data

Figure 1: Two-dimensional architecture

computing. In Takaoka [7], a parallel implementa-
tion on a PRAM is discussed. As parallel computers
such as GPU are becoming readily available, we need
to devise a parallel algorithm implementable on those
parallel computers. In Bae and Takaoka [4], Bae [3] a
parallel algorithm was implemented on an (n, n)-two
dimensional architecture based on the row-wise pre-
fix sum. In this paper, we implement an algorithm
based on the column-wise prefix sum with different
data flow on a two-dimensional mesh architecture.
See Fig. 1. Our algorithm performs the computa-
tion in 2n−1 steps, where steps mean communication
steps. Each cell executes a few statements per com-
munication step. Thus our algorithm is cost optimal
with respect to the prefix sum-based sequential algo-
rithm. A parallel algorithm for the same problem was
implemented on the BPS/CGM architecture, which
has more local memory and communication capabili-
ties with remote processors [1].

We give a formal proof for the algorithm. It is
based on the space-time invariants defined on the ar-
chitecture. The proof leads us to a further speed-up
of the computation. The data flow in the first imple-
mentation is from left to right and from top to down.
The proof reveals that the processors to the right are
idling at the the beginning. We first extend the data
flow to operate in both directions horizontally to get
the (3/2)n steps result. Then we further extend data
flow to operate in both directions vertically, i.e., data
flow in four directions, so that the solution can be
obtained at the center. By this method we achieve
n steps, which is optimal. Algorithms are given by
pseudo code.

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

45

2 Sequential algorithm

We modify a sequential algorithm based on row-wise
prefix sums introduced in [4] to the one based on
column-wise prefix sums, to develop Algorithms 1, 2
and 3.

Algorithm - sequential
for i := 1 to n do
{min sum[i][0] :=∞; sum[i][0] := 0;
sol[i][0] := −∞; }

S := −∞;
fork := 1 to n do {

for j := 1 to n do column[k − 1][j] := 0;
for i := k to n do {

for j := 1 to n do{
column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j − 1] + column[i][j];
min sum[i][j] :=
min{sum[i][j],min sum[i][j − 1]; };

max sum[i][j] := sum[i][j]−min sum[i][j];
sol[i][j] := max{max sum[i][j], sol[i][j − 1]};
} /* j */

if solution[i][n] > S then S := solution[i][n];
} /* i */
} /* k */

j

i

k

min sum max sum

Figure 2: Strip-based sequential computation

The computation proceeds with the strip of the
array from position k to position i. The variable
column[i][j] is the sum of array elements in the j-th
column from position k to position i in array a. The
variable sum[i][j], called a prefix-sum, is the sum of
the strip from position 1 to position j. Within this
strip, variable j sweeps to compute column[i][j] by
adding a[i][j] to column[i − 1][j]. Then the prefix
sum of this strip from position 1 to position j is com-
puted by adding column[i][j] to sum[i][j − 1]. The
variable min sum[i][j] is the minimum prefix sum of
this strip from position 1 to position j, expressed
by “min sum” in the figure. If the current sum is
smaller than min sum[i][j], min sum[i][j] is replaced
by it. sol[i][j] is the maximum sum in this strip so
far found from position 1 to position j. It is com-
puted by taking the maximum of sol[i][j − 1] and
sum[i][j] − min sum[i][j], expressed by “max sum”
in the figure. After the computation for this strip is
over, the global solution, S, is updated by sol[i][n].
This computation is done for all possible i and k,
taking O(n3) time.

j

i

i + j − k

min max c

Figure 3: Illustration for Algorithm 1 (c for column)

3 Parallel algorithm Algorithm 1

The following is a parallel algorithm corresponding to
the sequential algorithm in the previous section. The
following program is executed by a cell at the (i, j)
grid point. Each cell(i, j) is aware of its position
(i, j). Data flow is from left to right and from top
to down. The control signals are fired at the left
border, and propagate right. When the signal arrives
at the cell (i, j), it accumulates the column sum
“column” (c in the figure), the sum “sum”, and
update min sum, etc. We assume all corresponding
instructions in all cells are executed at the same
time, that is, they are synchronized. We will later
make some comments on asynchronous computation.

Algorithm 1
Initialization
for all i, j between 0 and n do in parallel
{column[i][j] := 0; min[i][j] :=∞;
control[i][[j] := 0; sum[i][j] := 0;}

for all i in parallel do {control[i][0] = 1;
sol[i][0] := −∞; }

Main
for k := 1 to 2n− 1 do

for all i, j between 1 and n do in parallel {
if control[i][j − 1] = 1 then {

column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j − 1] + column[i][j];
min[i][j] :=
minimum(min[i][j − 1], sum[i][j]);

max[i][j] := sum[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i][j − 1], sol[i][j],max[i][j]);

control[i][j] := 1;
}
} ** i, j **
} ** k **

We prove the correctness of this parallel program
in a framework of Hoare logic [5] based on a restricted
form of that in Owicki and Gries [6]. The latter is
too general to cover our problem. We keep the min-
imum extension of Hoare logic to our mesh architec-
ture. The meaning of {P}S{Q} is that if P is true
before program (segment) S and S stops, then Q is
true after S stops. The typical loop invariant appears
as that for a while-loop; “while B do S”. Here S is a
program, and B is a Boolean condition. If we can
prove {P ∧ B}S{P}, we can conclude {P} while B
do S{P∧ ∼ B}, where ∼ B is the negation of B. P is
called the loop invariant, because P holds whenever

CRPIT Volume 152 - Parallel and Distributed Computing 2014

46

the computer comes back to this point to evaluate
the condition B. This is time-wise invariant as the
computer comes back to this point time-wise. We
establish invariants in each cell. They are regarded
as time-space invariants because the same conditions
hold for all cells as computation proceeds. Those in-
variants have space indices i and j, and time index
k. Thus our logical framework is a specialization of
Owicki and Gries to indexed assertions.

The main assertions are given in the following.
Note the difference between the wordings “sum of”
and “sum in”. Indices are attached to assertion
names when necessary.

At time k (at the end of the k-th iteration) the fol-
lowing hold.
For i = 1, ..., n and j = 1, ..., k
P0 : control[i][j] = 1
P1 : c[i][j] is the column sum of a[i+j−k, ..., i][j],
that is, the sum of the j-th column of array a from
position i + j − k to position i
P2 : s[i][j] is the sum of a[i + j − k, ..., i][1, ..., j]
P3 : min[i][j] is the minimum of s[i][l], l = 1, ..., j
P4 : max[i][j] is the maximum of the sum of
a[i + j − k, ..., i][l, ..., j], 1 ≤ l ≤ j.
P5 : sol[i][j] is the maximum sum in a[i + j −
k, ..., i][1, ..., j], that is, the sum of the maximum sub-
array of array portion a[i + j − k, ..., i][1, ..., j].

The above are equivalent to
1 ≤ i ≤ n ∧ 1 ≤ j ≤ k ⇒ P0, ..., P5.
From this we obviously have P0(k) = true, ..., P5(k) =
true for k = 0.

For each P0, ..., P5 we omit indices i and
j. Using the time index k, we prove {P0(k −
1)}cell(i, j){P0(k)}, ..., {P5(k − 1)}cell(i, j){P5(k)}.

We use the following proof rules. Let x1, ..., xn
be local variables in cell(1), ..., cell(n). There can be
several in each cell. We use one for simplicity. The
meaning of yi/xi is that the occurrence of variable
xi in Q is replaced by yi. Parallel execution of
cell(1), ..., cell(n) is shown by [cell(1)||...||cell(n)].

Parallel assignment rule

P ⇒ Q[y1/x1, ..., yn/xn],
{Q[y1/x1, ..., yn/xn]}cell(i){Q}fori = 1, ..., n

{P}[cell(1)||...||cell(n)]{Q}
Other programming constructs such as composition
(semi-colon), if-then statement, etc. in sequen-
tial Hoare logic can be extended to the parallel
versions. Those definitions are omitted, but the
following rule for for-loop for the sequential con-
trol structure, which controls a parallel program
S from outside, is needed for our verification purpose.

Rule for for-loop

{P (0)}, {P (k − 1)}S{P (k)}
{P (0)}fork := 1to n do S{P (n)}

This P represents P0, ..., P5 in our program. S is
a parallel program [cell(1)||...||cell(n)]. Each cell(i)
has a few local variables and assignment statements.
For an arbitrary array x, we regard x[i][j] as a local
variable for cell(i, j). A variable from the neighbour,
x[i − 1][j], for example, is imported from the upper
neighbour. Updated variables are fetched in the next
cycle. How to implement this part depends on the
parallel computing environment used. See Section 6.
The proof for each {P (k−1)}cell(i, j){P (k)} for P =
P0, ..., P5 is given in Appendix.

Theorem 1 Algorithm 1 is correct. The result is ob-
tained at cell(n, n) in 2n− 1 steps.

Proof. From the second rule for a sequential loop, we
have P5(2n− 1) at the end.

P5(2n− 1) at cell(n, n)
⇔ sol[n][n] is the maximum sum in
a[n + n− 2n + 1, ..., n][1, ..., n]
⇔ sol[n][n] is the maximum sum in
a[1, ..., n][1, ..., n].

4 Algorithm 2

This algorithm does communication bi-directionally
in a horizontal way. For simplicity we assume n is
even. The (n, n) mesh is divided into two halves,
left and right. The left half operates in the same
way as Algorithm 1. The right half operates in
a mirror image, that is, control signals go from
right to left initiated at the right border. All
other data also flows from right to left. At the
center, that is, at (i, n/2), cell(i, n/2) performs
“center[i] := max[i][n/2] + max[i][n/2 + 1]”, which
adds the two values that are the sums of strip regions
in the left and right whose heights are equal and
thus can be added to form a possible solution over
the center. At the end of the k-th iteration, all
assertions in Algorithm 1 hold on the left half and
the assertions in mirror image hold on the right half.
In addition, we have that center[i] is the value of the
maximum subarray that lies above or touching the
i-th row and crosses over the center line.

Algorithm 2
Initialization
for all i, j between 0 and n do in parallel
{column[i][j] := 0;min[i][j] := −∞;

control[i][[j] := 0; sum[i][j] := 0;}
for all i do in parallel
{control[i][0] := 1; control[i, n + 1] := 1; }

Main
for k := 1 to (3/2)n− 1 do

for all i = 1, ..., n, j = 1, ..., n do in parallel
if 1 ≤ j ≤ n/2 then /*** left half ***/

if control[i][j − 1] = 1 then {
column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j − 1] + column[i][j];
min[i][j] :=

minimum(min[i][j − 1], sum[i][j]);
max[i][j] := sum[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i][j − 1]); sol[i][j],max[i][j]);

control[i][j] := 1;
}

if n/2 + 1 ≤ j ≤ n then /*** right half ***/
if control[i][j + 1] = 1 then {
column[i][j] := column[i− 1][j] + a[i][j];
sum[i][j] := sum[i][j + 1] + column[i][j];
min[i][j] :=

minimum(min[i][j + 1], sum[i][j]);
max[i][j] := sum[i][j]−min[i][j];
sol[i][j] :=
maximum(sol[i− 1][j], sol[i][j + 1]),
sol[i][j],max[i][j]);

control[i][j] := 1;
}

if j = n/2 then {
/*** cell(i, n/2) processes center[i] ***/

center[i] := max[i][n/2] + max[i][n/2 + 1];
if center[i] < center[i− 1] then

center[i] := center[i− 1];
}

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

47

} / ** i, j **/
} /** k **/

***Finalization step ***
Let cell(n, n/2) do

solution = maximum(sol[n][n/2],
sol[n][n/2 + 1], center[n]);

The strip cell(i, j) processes is a[i + j −
k, ..., i][1, ..., j] in the left half and that in the right
half is a[i + n− j + 1− k, ..., i][j, ..., n]. Thus the cell
cell(i, n/2) and cell(i, n/2 + 1) process the strips of
the same height in the left half and the right half.
Communication steps are measured by the distance
from cell(1, 1) to cell(n, n/2), or equivalently from
cell(1, n) to cell(n, n/2 + 1), which is (3/2)n− 1. By
adding the finalization step, we have (3/2)n for the
total communication steps.

5 Algorithm 3

In this algorithm data flows in four directions. The
array is divided into two halves; left and right as in
the previous section. Column sums c and prefix sums
s accumulate downwards as before, whereas column
sums d and prefix sums t accumulate upwards. See
Figure 4.

j

cs

dt

i
i + 1

i + j − k

i− j + k + 1

Figure 4: Illustration for Algorithm 3

The proof of Algorithm 1 reveals that at the end
of the k-th iteration, s[i][j] is the sum of a[i + j −
k, ..., i][1, ..., j] and t[i+1][j] is the sum of a[i+1, ..., i−
j + k + 1][1, ..., j]. The height of each subarray is k−
j+1. Since the width of those two areas are the same,
we can have the prefix sum u[i][j] = s[i][j]+ t[i+1][j]
that covers a[i + j − k, ..., i − j + k + 1][1, ..., j], the
height of which is 2(k − j + 1). That is, spending k
steps, we can achieve twice as much height.

The solution array sol is calculated as before, but
the result is sent into three directions; up, down and
right in the left half and up, down and left in the right
half. We have the invariant that sol[i][j] is the maxi-
mum sum in subarray a[i+j−k, ..., i−j+k+1][1, ..., j]
in the left half. Substituting i = n/2, j = n/2, and
k = n − 1 yields the subarray a[1, ..., n][1, ..., n/2].
Similarly sol[n/2][n/2 + 1] is the maximum sum in
the subarray a[1, ..., n][n/2 + 1, ..., n]. For simplicity
we deal with the maximum subarray whose height is
an even number. For a general case, see the note at
the end of this section.

Algorithm 3
Initialization
for all i, j between 0 and n + 1 do in parallel {
c[i][j] := 0; d[i][j] := 0;

min[i][j] := −∞; control[i][[j] := 0;
s[i][j] := 0; t[i][j] := 0;}

for all i in parallel do
{control[i][0] := 1; control[i, n + 1] := 1; }

Main
for k := 1 to n− 2 do

for all i = 1, ..., n, j = 1, ..., n do in parallel
if 1 ≤ j ≤ n/2 {

if control[i][j − 1] = 1 then {
c[i][j] := c[i− 1][j] + a[i][j];
s[i][j] := s[i][j − 1] + c[i][j];
d[i][j] := d[i + 1][j] + a[i][j];
t[i][j] := t[i][j − 1] + d[i][j];
u[i][j] = s[i][j] + t[i + 1][j];
min[i][j] := minimum(min[i][j−1], u[i][j]);
max[i][j] := u[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i + 1][j]), sol[i][j − 1], sol[i][j]);

sol[i][j] := maximum(sol[i][j],max[i][j]);
control[i][j] := 1;

}
if n/2 + 1 ≤ j ≤ n {

if control[i][j + 1] = 1 then {
c[i][j] := c[i− 1][j] + a[i][j];
s[i][j] := s[i][j + 1] + c[i][j];
d[i][j] := d[i + 1][j] + a[i][j];
t[i][j] := t[i][j + 1] + d[i][j];
u[i][j] := s[i][j] + t[i + 1][j];
min[i][j] := minimum(min[i][j+1], u[i][j]);
max[i][j] := u[i][j]−min[i][j];
sol[i][j] := maximum(sol[i− 1][j],
sol[i + 1][j], sol[i][j + 1]), sol[i][j]);

sol[i][j] := maximum(sol[i][j],max[i][j]);
control[i][j] := 1;
}

}
if j = n/2 {
/*** cell(i, n/2) performs the following. ***/
center[i] := max[i][n/2] + max[i][n/2 + 1];
if center[i] < center[i− 1] then

center[i] = center[i− 1];
if center[i] < center[i + 1] then

center[i] := center[i + 1];
}
} /** i, j **/
} ** k **
if i = n/2 and j = n/2 then
/** cell(n/2, n/2) processes solution **/
solution := maximum(sol[n/2][n/2],

sol[n/2][n/2 + 1], center[n/2];

The computation proceeds with n − 2 steps by
k and the last step of comparing the results from
cell(n/2, n/2) and cell(n/2+1, n/2), resulting in n−1
steps in total.
Note. We described the algorithm for the solution
whose height is an even number. This fact comes
from the assignment statement “u[i][j] := s[i][j] +
t[i+ 1][j]” where the height of subarrays whose sums
are s and t are equal. To accommodate a height of
an odd number, we can use the value of t one step
before, whose height is one shorter. To accommodate
such odd heights, we need to almost double the size
of the program by increasing the number of variables.

6 Implementation issues

We implemented Algorithm 1 on the Blue Gene/P
computer under the MPI/Parallel C program envi-
ronment. There are many practical issues to be con-
sidered. We summarize just three issues here as rep-
resentatives.

CRPIT Volume 152 - Parallel and Distributed Computing 2014

48

We can let each cell(i, j) know its position (i, j)
by a system call “MPI Cart coords”.

The next issue is synchronization. We assumed
the corresponding statements in all cells are executed
in a synchronized way. If we remove this assump-
tion, that is, if the execution goes in asynchronous
manner, the algorithm loses its correctness. Most
mesh computers run asynchronously, but have
synchronization primitives. Suppose we have the
simplest synchronization primitive “synchronize”.
This means that when all cells come to this primitive,
they can go ahead. In MPI, this primitive is called
“MPI Barrier”. To make a correct program, we
double the number of variables, that is, we prepare
variable x1 for every variable x. Let us associate the
space/time index, (i, j, k) with each variable. Let us
call x(i, j, k) the current variable and the variable
with indices different by one a neighbour variable.
For example sol[i][j] in the right-hand side of the
assignment statement is a time-wise neighbour and
that at the left-hand side is a current variable. Also
column[i− 1][j] in the rght-hand side is a neighbour
variable space-wise and time-wise, and so on. If x is a
current variable, change it to x1. If it is a variable of
a neighbour keep it as it is. Let us call the modified
program P1. Now we define “update” to be the set
of assignment statements of the form x := x1.

Example Let P be a one-dimensional mesh program
given below, which shifts array x by one place. Let
us suppose x[0] = 0 and x[i] are already given.

P : for all i do in parallel x[i] := x[i− 1];

Here x[i] is the current variable and x[i − 1] is a
neighbour variable space-wise and time-wise. An
asynchronous computer can make all values 0. For
the intended outcome, we perform P1, synchronize
and update.

P1 : for all i do in parallel x1[i] := x[i− 1];
synchronize;
update : for all i do in parallel x[i] := x1[i];

For our mesh algorithm, Algorithm 1, omitting the
initialization part, we make the program of the form.

for k := 1 to 2n− 1 do
beginP1; synchronize;update end.

The third implementation issue is related to the num-
ber of available processors. As the number of pro-
cessors is limited, for large n we need to have what
is called a coarse grain parallel computer. This
means that given a large (n, n)-array, each proces-
sor is given its territory. Suppose, for example, we
are given (1024, 1024) array and only 16 processors
are available. The input array is divided into sixteen
(256, 256) subarrays, to which the sixteen processors
are assigned. Let us call the subarray for each proces-
sor its territory. Each processor simulates one step of
Algorithm 1 sequentially. These simulation processes
by sixteen processors are done in parallel. At the end
of each simulation, the values in the registers on the
right and bottom border are sent to the left and top
borders of the right neighbour and the lower neigh-
bour. The simulation of one step takes O((n/p)2)
time, and 2n − 1 steps are carried out, meaning the
computing time is O(n3/p2) at the cost of O(p2) pro-
cessors. When p = 1, we hit the sequential complexity
of O(n3). If p = n, we have the time complexity of
Algorithm 1, which is O(n).

Based on the above methods for implementation,
we implemented Algorithm 1 on the Blue Gene
computer at the University of Canterbury. The
version was BlueGene/P with 4096 processors, called
cores. For the software side, the programming
environment of MPI and the parallel C compiler,
mpixlc, were used with optimization level 5. The
timing results are shown below. The unit of time
is second. (n, n) random arrays are tested. The
time for generating uniformly distributed random
numbers is not included in the time measurement.
The mesh architecture can be figured into a 2-D
mesh or 3-D mesh. We figured it into 2-D and
included the configuration time in the measure-
ment. The data items were loaded appropriately
into processors and loading time was excluded
from time measurement. As we can see from the
table below, for small n, the configuration time
dominates and a large number of processors has
no effect. As the size of array increases, however,
the speed increases with a large number of processors.

n p2 = 1 p2 = 16 p2 = 25 p2 = 100
50 0.03275 0.00627 0.01274 0.03378

100 0.05143 0.02742 0.02869 0.04643
200 0.14794 0.12909 0.10898 0.11304
500 1.21697 1.32867 1.09698 2.29324

1000 7.72829 8.62130 6.28106 2.96971
1500 22.3838 27.8474 19.1569 7.24681
2000 49.7604 63.9644 42.7302 15.1321
2500 95.3663 120.392 82.2593 26.7386

7 Lower bound

Algorithms 2 and 3 are not very efficient for practical
purposes. Rather their roles are to show the optimal
bound of communication steps. Suppose we have a
value a in the top-left cell and b in the bottom-right
cell. All others are -1. Obviously the solution is a if
a > b, and b otherwise. The values a and b need to
meet somewhere. It is easy to see the earliest possi-
bility is at time n-1. Thus Algorithm 3 is optimal in
communication steps. The role of Algorithm 2 is a
bridging step to Algorithm 3.

8 Concluding remarks

We gave a formal proof to a parallel algorithm for the
maximum subarray problem. The formal proof for
the other two parallel algorithms can be given in a
similar way, but the details are omitted. The formal
proof is not only for the reliability of the algorithm,
but also it clarifies what is going inside the algorithm.
In fact, the other two parallel algorithms, Algorithm 2
and Algorithm 3, have been developed by the insight
into the data flow, given by the formal proof of Al-
gorithm 1. We simplified the proof by synchronizing
everything. The asynchronous version with (synchro-
nize, update) in Section 6 would require about twice
as much complexity for verification since we double
the number of variables. Once the correctness of the
synchronized version is established, that of the asyn-
chronous version will be acceptable without further
verification.

The algorithms are of fine-grain in the sense that
each array element, or pixel in graphics, is processed
by a processor. When the given array is large, such as
(1024, 1024), this is not practical. That is, we need
to develop a parallel algorithm of coarse grain. This
means one processor will take care of some portion
of the given array. When each processor finishes one
step of k, the time index, it can communicate with

Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand

49

the neighbour for data transmission. In fact this ver-
sion has been implemented on the BlueGene parallel
computer with 4096 processors, and we observed a
remarkable speed-up with 100 processors. The exper-
iment conducted was rather of small scale. A larger
experiment with a larger number of processors will be
carried out in the future.

If we analyze dynamic images, such as video im-
ages, data loading becomes a big issue. Data must
come through the top or left border processors. For
the sake of speed, data must be processed in a pipe-
line manner, that is, data must be fed into the mesh
architecture while the previous image is still being
processed. We already have this pipe-lined version of
Algorithm 1, which must be tested on the BlueGene
for time measurement.

In our architecture, communication with the right
neighbour and left neighbour cannot be done at the
same time, that is, they are done one by one. To
speed up Algorithm 2 and Algorithm 3, we need
a more advanced architecture with bi-directional
communication capabilities.

Appendix

Proof for {P0(k− 1)}cell(i, j){P0(k)}. At the be-
ginning of the k-th iteration, control[i][j] = 1 for
j = 1, ..., k − 1, equivalently control[i][j − 1] = 1 for
j = 1, ..., k. cell(i, j) performs “control[i][j] := 1” for
j = 1, ..., k. Thus we have {P0(k−1)}cell(i, j){P0(k)}
for j = 1, ..., k.

Proof for {P1(k − 1)}cell(i, j){P1(k)}. At time
k − 1, c[i− 1][j] is the column sum of
a[i−1+j−(k−1), ..., i−1][j] = a[i+j−k, ..., i−1][j].
“c[i][j] := c[i − 1][j] + a[i][j]” is performed for i =
1, ..., n and j = 1, ..., k in parallel. Thus {P1(k −
1)}cell(i, j){P1(k)} holds.

Proof for {P2(k − 1)}cell(i, j){P2(k)}. At time
k − 1, s[i][j − 1] is the sum of a[i + j − 1 − (k −
1), ..., i][1, ..., j − 1] = a[i + j − k, ..., i][1, ..., j − 1]. At
time k, “s[i][j] := s[i][j − 1] + c[i][j]” is performed for
i = 1, ..., n and j = 1, ..., k in parallel. Thus s[i][j]
is the sum of a[i + j − k, ..., i][1, ..., j], and {P1(k −
1)}cell(i, j){P1(k)} holds.

Proof for {P3(k − 1)}cell(i, j){P3(k)}.
At time k − 1, min[i][j − 1] is the minimum of
s[i][l], l = 1, ..., j − 1. At time k, “min[i][j] :=
minimum(min[i][j − 1], s[i][j])” is performed for i =
1, ..., n and j = 1, ..., k in parallel. Thus min[i][j]
is the minimum of s[i][l], l = 1, ..., j. Therefore
{P3(k − 1)}cell(i, j){P3(k)} holds.

Proof for {P4(k−1)}cell(i, j){P4(k)}. At time k,
min[i][j] is the minimum of s[i][l], l = 1, ..., j. At time
k, “max[i][j] := s[i][j] − min[i][j]” is performed for
i = 1, ..., n and j = 1, ..., k in parallel. Thus max[i][j]
is the maximum of the sum of a[i+ j− k, ..., i][l, ..., j]
for 1 ≤ l ≤ j. Therefore {P4(k − 1)}cell(i, j){P4(k)}
holds.

Proof for {P5(k − 1)}cell(i, j){P5(k)}.
At time k − 1, sol[i][j − 1] is the maximum sum in
a[i + j − 1− (k − 1), ..., i][1, ..., j − 1]
= a[i + j − k, ..., i][1, ..., j − 1],
and sol[i − 1][j] is the maximum sum in
a[i− 1 + j − (k − 1), ..., i− 1][1, ..., j]
= a[i + j − k, ..., i− 1][1, ..., j].
At time k,
sol[i][j] := maximum(sol[i− 1][j], sol[i][j − 1],

sol[i][j],max[i][j])
is performed for i = 1, ..., n and j = 1, ..., k in
parallel. The first two cases do not cover a[i][j]. The
last two cases cover a[i][j]. sol[i][j] is the solution
for cell(i, j) for the time up to k − 1, which does not
cover row i + j − k, and max[i][j] is the maximum

sum of the strip that ends at column j. Thus sol[i][j]
is the maximum sum in a[i + j − k, ..., i][1, ..., j], and
{P5(k − 1)}cell(i, j){P5(k)} holds.

Acknowledgment The author is thankful to Robin
Candy who implemented Algorithm 1 on the Blue
Gene and conducted time measurements. He also ap-
preciates useful discussions on the maximum subarray
problem with Sung Eun Bae. Finally he is grateful
to the supercomputer centre of University of Canter-
bury, Blue Fern, who offered a free use of Blue Gene
for the research on the mesh algorithms.

References

[1] C. E. R. Alves, E. N. Caceres and S. W. Song:
BPS/CGM Algorithms for Maximum Subse-
quence and Maximum Subarray, EuroPVM/MPI
2004, LNCS 3241: 139-146 (2004)

[2] Jon Louis Bentley: Perspective on Performance.
Commun. ACM 27(11): 1087-1092 (1984)

[3] Sung Eun Bae: Sequential and Parallel Al-
gorithms for Generalized Maximum Subarray
Problem. Ph. D thesis. University of Canterbury
(2007)

[4] Sung Eun Bae and Tadao Takaoka: Algorithms
for the Problem of K Maximum Sums and a VLSI
Algorithm for the K Maximum Subarrays Prob-
lem. I-SPAN 2004: 247-253 (2004)

[5] C.A.R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576-580 (1969).

[6] S. Owicki and D. Gries: Verifying proper-
ties of parallel programs: An axiomatic ap-
proach. Communications of the ACM, 19(5):279-
285 (1976)

[7] Tadao Takaoka: Efficient Algorithms for the
Maximum Subarray Problem by Distance Ma-
trix Multiplication. Electr. Notes Theor. Com-
put. Sci. 61: 191-200 (2002)

[8] Hisao Tamaki, Takeshi Tokuyama: Algorithms
for the Maximum Subarray Problem Based on
Matrix Multiplication. SODA 1998: 446-452
(1998)

CRPIT Volume 152 - Parallel and Distributed Computing 2014

50

