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Abstract 
This paper describes the integration of the Principal 
Component Analysis into the Visualization Process. 
Although, the combination of Principal Component 
Analysis (PCA) and visual methods is a common 
approach to the analysis of high-dimensional datasets, it 
is mostly limited to a pure preprocessing step for 
dimension reduction. In this paper we will discuss, how 
PCA results can be used to control all steps of the 
visualization pipeline to generate more effective visual 
representations, and thus, a higher degree of 
understanding of the PCA values as well as of original 
data.  

Keywords:  Information Visualization, Visualization 
process, Principal Component Analysis. 

1 Introduction 
The amount of data in public and corporate databases is 
growing rapidly day by day, and databases with gigabytes 
or terabytes of data are no longer unusual.  For long the 
visual representation of such data was proven to be of 
high value in exploring this data, detecting correlations as 
well as trends and outliers.  For doing so, the high 
dimensional data must be somehow converted to low 
dimensional geometry for display. One well-established 
method in this context is the Principal Component 
Analysis (PCA).  

PCA is a transformation technique that aims to identify 
main factors accounting for variances in the data. 
Identifying these factors leads to a more compressed 
description of correlations in the data and, thus, for a 
better understanding of the underlying features. 
Therefore, it is a powerful approach to extract general 
trends in a data set. Moreover, since PCA provides 
principal components ordered by their significance, it also 
offers an excellent basis for data dimension reduction in 
case of multidimensional data. This can be achieved by 

omitting less relevant trends in the data set and 
concentrating on main principal components. 

The combination of PCA and visual methods is a 
common approach to the analysis of high-dimensional 
datasets in many application domains (see e.g. 
Yang 2003, Komura 2004, Landgrebe 2002, Santos and 
Brodlie 2004). However, nearly all of these approaches 
use the PCA as a kind of preprocessing computing 
significant trends in the data and visualize them. This 
may particularly cause 2 problems:   

1. The PCA may generate principal components 
which are difficult to interpret and which 
sometimes even appear orthogonal to what 
intuitively seems to be the dominant trend in the 
data. A subsequent rotation of principal 
components is therefore sometimes approriate 
(see Joliffe 1986 for more details). Also, the 
necessary assumption of global linearity of the 
data oftentimes proves inadequate. (Müller and 
Alexa, 2004) therefore suggest an interactive, 
visually-guided improvement of the results of a 
PCA. 

2. The coordinate transformation into principal 
component space involved with the PCA makes 
it difficult to relate identified trends to original 
variables. In general, it is often not easy to 
explain the variation of data with respect to a 
principal component.  

Our aim is to reduce these problems by a stronger 
integration of the PCA into the visualization process. 
That means, we want to discuss, how the PCA can be 
used to support the different steps of the visualization 
pipeline to generate more effective visual representations, 
and thus, a higher degree of understanding of the PCA 
values as well as of original data. 

The remainder of this paper is structured as follows. 
Section 2 describes the background including the 
fundamentals of the PCA as well as of the visualization 
process. In section 3 we look at each step of the 
visualization process, and discuss the main aspects of 
combining these steps with PCA. Moreover, we 
demonstrate the usefulness of our approach by different 
examples. We conclude with a summary and an outlook 
on further work in section 4.  

 
Copyright © 2006, Australian Computer Society, Inc. 
This paper appeared at the Asia-Pacific Symposium on 
Information Visualization (APVIS 2006), Tokyo, Japan, 
February 2006. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 60. K. Misue, K. 
Sugiyama and J. Tanaka, Ed. Reproduction for academic, 
not-for profit purposes permitted provided this text is 
included. 



2 Background 

2.1 Fundamentals of PCA  

The Principal Component Analysis is is a technique 
commonly applied to reduce the number of variables and 
to detect structure in the relationships between variables 
in multi-dimensional data sets. In the PCA the extraction 
of principal components amounts to a variance 
maximizing rotation of the original variable space. That 
is, the PCA provides a transformation of the original data 
space in such a way that the first coordinate of the 
resulting principle component space would resemble most 
of the variance in the data set, the second variable the 
most of the remaining variance, and so on. 

More formally, we assume that our original data set is 
given in matrix notation 
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where each column is associated with a single variable, 
thus representing an individual dimension of the data set. 
Consequently, d  describes the number of dimensions. 
Each row yi , i = 1 … n represents a different case in the 
data set. For instance, each row may stand for a different 
time step. In the following, we assume a normalized and 
mean-centered data matrix Y. There are several ways to 
determine the principal components for Y. An often 
applied approach is to apply a Singular Value 
Decomposition (SVD). The SVD factors Y directly into  
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where W represents the loadings that is the basis vectors 
wi of the transformed vector space. 
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 represents a 
diagonal matrix with the significance of each principal 
component corresponding to the amount of variance 
described. Finally, C represents the scores ci, that is the 
coordinates of the data elements in the transformed vector 
space.  
Once this information is obtained it can be exploited in 
several ways. First of all, the principal directions in W 
may be interpreted as prominent trends in the data. Also, 
the loadings in W provide information on the correlation 
of different variables with these trends. For data 
reduction, on the other hand, we can simply neglect less 
significant axes in the principal component space and 
reduce the analysis to the remaining dimensions.  

2.2 The Visualization Process 
Santos and Brodlie (2004) introduce an extended data 
flow model to accommodate the visualization process 
(see figure 1). In contrast to the common visualization 
pipeline they replace the preprocessing step by two 
separate components distinguishing between data analysis 
and filtering. The data analysis component is computer- 

centered and provides some computational methods to 
analyze or enrich the data. Typical functions for this 
purpose are interpolation functions, PCA or 
Multidimensional Scaling (Santos and Brodlie, 2004). 
The filtering-component is user-centered, and provides 
different functionality for selecting data of interest. Thus, 
the portion of data to be visualized can be extracted. This 
is done in two levels. First, an n-dimensional window 
with upper and lower bounds is specified within the data 
domain. Moreover, a focus point within these bounds is 
set. In doing so, the representation within the window can 
be controlled, e.g. by accenting data of interest. Although 
(Santos and Brodlie, 2004) assume a fixed order of these 
two components (data analysis first, then interactive data 
filtering, whereby the data selection process can be 
repeated more than once), it can be expedient to swap 
these steps. For example, it can be useful to apply a PCA 
after a data selection step.  

If a PCA is applied to all variables of a data set, the 
interpretation of the visualized PCA-components could be 
difficult. In this case, natural references such as time in 
the case of temporal data, or spatial dimensions in the 
case of spatial data, are also a target of the coordinate 
transformation into principal component space. 
Consequently, they are no longer available as a point of 
reference to relate to. Therefore, it can make sense, to 
select variables for PCA-processing, while leaving others 
as frame of reference. 

The next step in the visualization pipeline is the mapping 
of selected and computed data to be visualized onto a 
geometrical representation considering the given focus 
point. This is the most crucial step during the 
visualization process deciding about the expressiveness 
and effectiveness of a visual representation. Different 
approaches were developed to support the mapping step, 
and to generate an appropriate visualization design (see 
e.g. Mackinlay, 1986; Senay, and Ignatius, 1994; Roth 
et al 96; Fujishiro et al, 2000; Zhou+ 2002; Almar 
and Stasko, 2004; Tang et al., 2004). However, none of 
these approaches apply PCA results to control the 
mapping. We will discuss in section 3.3 how PCA results 
(loadings from the matrix W and eigenvalues from the 
matrix 
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mapping, and in doing so, creating intuitive visual 
representations for a better insight of the data.  

The last step of the visualization process is the rendering 
step. Here, image data are created for display on a 
monitor. Usually, this step is not in focus of recent 
research. However, it is worth to investigate, how a 
combined handling of data and PCA-values can improve 
the display. For example, showing trends in the data by 
rendering principal components requires a mental 
mapping of axes of the principal component space onto 
data variables from the user. Therefore, an important step 
in the application of the PCA is the adequate labeling of 
the resulting axes. This includes the determination of 
adequate axes labels describing the background of a 
principal component, and providing suitable axis value 
marks to provide an adequate relationship to the original 
data space. To achieve this, it is necessary to identify in 
how far certain variables correspond to principal 
components. Nearly all PCA visualizations forbear from 



doing that. We will get back to this problem in section 
3.4. 

 After discussing the separate steps of the visualization 
pipeline, finally we want to consider the process as a 
whole. The visual exploration of data sets has a high 
degree of interactivity. Thus, the visualization process 
can not be understood as one pipelining queue. Rather, 
different steps are repeated more than once to create 
different visual representations supporting different 
exploration tasks. For this, (Shneiderman, 1996) 
introduced the so-called Visualization Mantra “Overview 
first, Zoom and Filter, then Detail on Demand”. Hereby, 
the fundamental procedure of visually exploring data is 
defined.  

Starting with a general overview image representing 
general trends of a data set, zooming is applied to focus 
on regions of interest. Moreover, information hiding is 
provided to filter out non-relevant data. Finally, details on 
demand have to be added by request of a user.   

PCA can provide useful information to support the 
Visualization Mantra. Since PCA provides principal 
components ordered by their significance, it offers an 
excellent basis for data dimension reduction, and thus for 
creating overview images. Moreover, Zooming can be 
controlled by PCA values, e.g. to set the focus on 
interesting trends or even on outliers. Similarly, certain 
trends or outliers can be filtered out depending on the 
exploration task. Finally it must be possible to add 
details, e.g. adequate annotations. 

In sum, we can notice that a stronger interrelation 
between PCA and the visualization process can be very 
useful, and therefore it would be worth for further 
investigations. We will discuss this topic in more detail in 
the next section. 

3 Integration of PCA into the Visualization 
Process 

3.1 Data analysis and PCA 
The first step of the visualization pipeline is the data 
analysis step. As already mentioned, PCA is a common 
procedure in this context, especially to achieve dimension 
reduction. The PCA provides principal components 
ordered by their significance, and thus less relevant trends 
in the data set can be omitted concentrating on main 
principal components only. Moreover, we want to 
provide a better insight of the PCA-results, and in doing 
so, a better insight of the features of the original data, by 
a stronger coupling of PCA and visual methods. Figure 2 
shows our visual representation of the loadings of the 
matrix W (see formula 2) for a demographical data set. 

High loadings in a column act as an indicator for a high 
relevance of the associated axis in the PCA-space 
representing, and thus, as a relevant trend of the given 
data set. The values in a row show the influence of the 
different variables on the trends represented by the PCA-
axes. 

More precisely, in Figure 2 we see a major trend 
represented by the principal component 1 (PC1). All the 
positive loadings (in blue color) in PC1 indicate a direct 
proportional relationship for the variables literacy, infant 
mortality (Babymort),…, and life expectation. Population 
and density do not influence this trend. The second trend 
(PC2) is constituted by gross domestic product (GDP) 
and life expectation and is indirect proportional to infant 
mortality, death rate and birthrate. This example 
illustrates how the user gets fast insight into the main 
trends in a high dimensional data set. However, he gains 
as well information about more hidden trends. Instance 
for such an “outlier trend” are the oppositional loadings 
of Life expectation of men and women in the principal 
component PC9. 

A better understanding of the insights of the PCA can be 
used to control the following steps of the visualization 
pipeline (data selection, mapping and rendering) to 
generate more expressive visual representations. 
Furthermore, this provides a powerful basis to create 
overview images as well as detailed displays. To explore 
relevant trends for example, the user can switch to further 
views e.g. line charts or scatter plots (see section 3.3). 

 

 

Figure 2: Visualization of the Loadings matrix W for 
a demographical data set 

3.2 Filtering and PCA 
The second step of the visualization pipeline is the 
filtering process. Here, variables of interest are selected 
for further procedure by the user. Thus, this process is 
highly interactive and user-centered. With regard to the 
PCA we distinguish two strategies: 

1. Filtering before executing PCA, 

2. Filtering after executing PCA. 
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Figure 1: The visualization process, adapted from (Santos and Brodlie, 2004)   

 



Filtering before executing the PCA includes the selection 
of variables as well as of data objects (defined by 
columns resp. rows in the input matrix Y) for PCA 
processing. Usually, natural references such as time in the 
case of temporal data, or spatial dimensions in the case of 
spatial data, are excluded from PCA to leave them as a 
frame of reference. Moreover, special variables or data 
objects of interest can be selected for PCA-processing. 
Contrarily, high correlated variables or outliers (variables 
as well as data objects) can be excluded from PCA. For 
supporting the user to include or exclude variables and 
data objects for PCA, a visual representation of the 
original data can be very helpful.   

Figure 3 illustrates how the user gets hints to filter out 
certain data objects (table rows) or variables (table 
columns) by example of a data table visualization of the 
demographic data set from figure 2. For instance, the user 
can examine high outlier values of population and density 
(the first two columns) 

To exclude these outliers from PCA, the referring data 
objects respectively the referring variables have to be 
deselected. Furthermore, this data set includes three life 
expression variables (women, men, all, the last three 
columns), which are expectedly highly dependent. This 
fact will strengthen certain trends calculated by the PCA 
(may be more then the original data express). It is up to 
the user to exclude such dependent variables from the 
PCA. 

Filtering after executing the PCA has high potency to 
guide users through a variety of trends in an overview and 
detail manner. Using a tabular loadings visualization (see 
figure 2) the user gains an overview about the most 
important trends and the involved variables. Based on 
such a loadings table he can select principal components, 
original variables or combinations of both. This is a 
flexible approach to analyze the trends and the 
contributions of certain variables to these trends by 
appropriate visual representations in more detail (see 
section 3.3). 

Furthermore, PCA does not only calculate the trends, but 
even orders them by their significance (PC1 for highest to 

PCn for lowest significance). Additionally, the 
normalized PCA loadings (by the eigenvalues from the 
matrix 

! 

"
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express the significance information. This information is 
very helpful to guide users through the “trend space”. 
That means, the calculated measures can be used to 
visually direct the user’s attention to the most relevant 
trends.  

Figure 4 shows a Table Visualization with normalized 
loadings.  The first trend (PC1) - primarily established by 
literacy and life expression - has a high significance for 
almost all variables. Normalized loading values for the 
next relevant PCs are strongly decreasing. Thus, the user 
can select low dimensional subspace of the original space 
for visualization purposes concentrating on the 
exploration of main trends. In this case, for instance, a 
simple line chart can represent the first principal 
component. 

3.3 Mapping and PCA 
Mapping is the most crucial step in the visually guided 
process of analyzing data. It involves both the selection of 
an appropriate visualization technique and the mapping of 
data values onto expressive and effective visual attributes, 
such as position, marker sizes, and marker color.  

When applying a PCA we enrich our original data by a 
principal component representation making additional 
aspects of the data explicit and, thus, available in the 
mapping process. Consequently, the gained information 
may influence our decisions on what aspects of the data 
to map onto visual attributes (i.e. PC values vs. original 
data).  

Visualizing the data from principal component space 
instead of mapping the original data follows the main 
objective of the PCA to reduce the number of dimensions 
of the original data space and to present prominent trends 
in the data only. We will demonstrate this strategy by an 
example. Figure 5 displays a reduced version of the 
countries data set in the original data space in terms of a 
Scatterplot Matrix.

 

 

Figure 3: Data table visualization of the demographic data set (with table lens, see Kreuseler (2002)) 



 

Figure 4: Normalized loadings visualization of the 
demographic data set 

 

We had to reduce the original data set to generate this 
intuitive representation. The visualization of the whole 
data set (in this case 10 variables) or of even higher 
dimensional data sets will generate rather complex visual 
representations with many recurring dependencies and 
thus, quickly exhaust users. A big drawback of manually 
filtering variables is the loss of possibly relevant trends in 
the data. The question is how to decide which original 
variables to show and which not, or in the case of the 
demographic data set: why do we display the variable 
literacy and not the variable population. To answer this 
question, PCA can be a good guide to select (depending) 
variables keeping the remaining trends in mind (see 
section 3.2). For instance, in figure 5, the selection of 
variables is based on the main PCs (see figure 4). 

In contrast to the PCA controlled visualization of 
variables in the original space, we may decide to utilize 
the data in principal component space for a direct 
visualization. That is we utilize the PCA score matrix 
data and map those transformed coordinates directly to 
visual attributes. 

 

 

Figure 5: Scatterplot matrix of a subspace of the 
demographic data set; countries with high death rate, 
low birth rate, high literacy and high life expectation 
highlighted (all are former east European countries) 

In the case of the dataset discussed before, for instance, a 
scatter plot matrix of the first three principal components 
presents the most noticeable trends in the data directly 
(see figure 6). Interestingly, in our example there is a 
strong correlation between the trends represented by the 
first two principal components. This is usually a sign for 
a more complex correlation between the corresponding 
variables that cannot be described easily in terms of a 
variance in a linear direction. 

As an alternative to these straightforward approaches we 
suggest to apply a table visualization of the scores 
ordered by the values of the first PC (see figure 7). The 
advantage of this kind of visualization is that users can 
directly identify data objects with certain PC values, and 
thus, get deeper inside about the meaning and 
significance of the trends. For example, we can see that 
the last three rows (representing the countries Japan, 
Norway and Luxembourg) are prominent representatives 
of the first two trends. 

 

 

Figure 6: Scatter plot matrix with the first three 
principal components 

 

Besides presenting the most significant principal 
components it may also be appropriate to visualize the 
least significant ones, for instance to identify outliers or 
erroneous data.  

In general, the presentation of principal component scores 
results in an abstraction of the original variables and in 
abstract axes. Both make it difficult to relate the visible 
patterns to trends with respect to the original variables.  

This represents a specific form of a correspondence 
problem. Consequently, graphing data in principal 
component space requests for an adequate labeling of the 
resulting PC axes. We will come back to this issue in 
chapter 3.4. 



 

Figure 7: Table visualization of the normalized PC scores of the demographic data set ordered by the first PC 

 

A useful aid for the interpretation of original and PCA 
data provides the possibility to combine both in a single 
plot. For instance, in the example of the demographic 
data set a similar scatter plot relating literacy and life 
expectation to the first principal component can clarify 
the correspondence of the first identified trend to these 
variables.  Figure 8 shows a strong correlation between 
these three variables, whereby the correlation between 
literacy and PC1 is more scattered than the correlation 
between PC1 and life expectation.  

For a combined representation of PCA values and 
original data we have to decide which variables to present 
directly. A common approach in this context is to 
distinguish between independent and dependent variables. 
Usually, dependent variables are processed by PCA, 
whereas independent are displayed in the original data 
space. In our case it can make sense to show PCA values 
of the demographic data set in their spatial frame of 
reference (see figure 9). 

Another approach is to combine PCA loadings instead of 
the scores to the original data. Different from the score 
data the loadings represent the prominent trends as 
identified by the PCA directly. We may utilize this 
information to depict the identified trends in the context 
of the original data (Müller and Alexa 2004). Figure 10 
depicts an example for such an approach.  

3.4 Rendering and PCA 
So far we discussed approaches based on a direct 
visualization of original data and/or principal components 
and their factors. We mainly concentrated on combining 
original and PCA data in visualizations and on 
performing a direct mapping of PCA data to visual 
attributes. Another promising approach is to utilize the 
trend information made explicit by the PCA for tuning 

the rendering process. We denote this implicit 
visualization of PCA values.  

An implicit visualization may especially aid in the 
filtering and the mapping stage. For instance, variables 
can be mapped automatically onto visual attributes based 
on the correspondence of the variable to a major trend as 
identified by the PCA and the effectiveness of certain 
visual variables (e.g. position vs. color, see Mackinlay 
1986). This opens up a new field of automatically 
controlling the mapping of data variables based on 
detected trends in the data. 

 

 

Figure 8: Scatter plot relating the first PC to the 
variables literacy and life expectation



 

Figure 9: Spatial visualization of the first PC of the demographic data set (cutout of Asian countries; 
 PC1 is represented by a colored circle at the capital location 

.

3.4.1 Focusing and arrangement 
Another application of principal component scores is 
their utilization for an indirect visualization, for instance 
for brushing & linking. In figure 11 high values with 
respect to the most prominent data trend are selected 
(left), and highlighted in a scatter plot visualization 
(right) representing three original data variables (two axes 
and color). Besides a simple highlighting, further details 
can be presented for the selected data elements, e.g. 
annotations or semantic zooming. Brushing and linking of 
PC score values is not limited to standard graphs but can 
also be utilized in the context of other information 
visualization techniques for multi-dimensional data. 
Figure 12 depicts an example for focusing on information 

in a table view representation by applying a table lens. 
Data objects corresponding to high trend values are 
rendered with more detail (by larger row space). 

The additional information available in terms of the PCA 
scores can be used to steer the rendering process either 
manually or automatically by setting for instance the 
focus on most prominent trends or outliers automatically 
in an initial view (see e.g. figures 11 and 12).  

Besides changing the focus and highlighting certain 
objects, PCA can be applied to automatically arrange 
original variables or data objects as well. Figure 13 
depicts the table visualization from figure 3 reordered by 
the first PC.

 

 

Figure 10: Scatter plot matrix of the original demographic data set with PC1 directions 



 

 

 

 

 

 

 

 

 

 

 

Figure 11: Example of Brushing& Linking utilizing PCA score data. Selecting high PC score values in the table 
view allows to link extreme values with respect to a prominent trend in the data with original data (scatter plot 

visualization of the variables literacy (y-axis), GDP (x-axis) and population (color)) 

 

3.4.2 Annotation 
As already discussed, a general problem in the 
visualization of principal components is to relate the 
identified trends to the original variables (see section 3.3). 
The principal component space represents an abstraction 
of the original data space and its basis vectors contain 
usually aspects of several data variables. 

As one solution to this problem, we propose combined 
visualizations of original variables and PC (figure 8) and 
implicit visualization of PCs in the original space (figure 

11 and 13) to enable users to interactively approach to the 
meaning of the trends calculated by the PCA, and thus, 
improve the understanding of the rather abstract PCs.  

A second solution to the mentioned problem is to use the 
information given by the significances (eigenvalues) and 
the loadings to encode the meaning of the PC more 
explicitly in the visualization. Challenge in this context is 
to enrich the rather abstract visualizations in the PC 
space, especially by generating meaningful axes labels.

 

Figure 12: Table Visualization with adapted table lens function 
to focus on countries with extreme score values in the trends PC_9 and PC_10 

  



Figure 13: Data table visualization of the demographic 
data set, reordered by first PC 

(with table lens, see Kreuseler, 2002) 

 

Figure 14 displays a first solution to this problem, 
enriching PC axes labels by the variables they mainly 
represent (applying a threshold on normalized loading 
values), ordered by their significance. However, 
determining when a trend based on a principal component 
corresponds to a variable or not is not always easy. 
(Joliffe 1986) recommends to utilize the PCA loadings 
and to accept a correspondence in case of 70% 
accordance of original variable and principal component. 
Unfortunately, we often may have the situation that a 
trend corresponds to a large number of variables which 
leads to long label lists that dominate the visual 
representation (PC1 label in figure 14) or stay hidden 
because of space restrictions (see figure 7). Therefore, it 
is useful to let the user decide and to provide adequate 
settings for this purpose. For tuning the labeling 
parameters he is supported by our proposed visual 
representations for PCA results and original data. 

Besides understanding the PCA axes, a further challenge 
is to annotate the meaning of the score values in the 
visualization to enable users to estimate which score 
value corresponds to which original variable value. 
 

 

Figure 14: ShapeVis visualization of data objects in 
PC space using enriched labeling with data variable 

names (mapping objects to 2D locations using a spring 
model, see Theisel and Kreuseler, 2002) 

As a first solution, we tested annotating minimum and 
maximum score values at the axes with coresponding 
original values. Unfortunately, this kind of annotation 
even extends the long list of original variable names. An 
alternative approach is to render a brief and abbreviated 
labeling and to provide additional information on request 
via brushing, e.g. depicting on PCA axes resp. data 
objects using the mouse. However, abbreviated labels are 
usually application dependent and therefore difficult to 
generate automatically. To conclude, further research 
needs to be done to adequately enrich visualizations in 
PC space by appropriate annotations. 

4 Conclusions 
In this paper, we systematically discussed how to 
combine information visualization and PCA in the 
different stages of the visualization process. As a result, 
we conclude that the enrichment of the original data by 
PCA generated data and the application of these PC 
values in the visualization process is a strong support for 
users studying trends. A variety of representations 
explicitly and/or implicitly visualizing PC values (scores, 
loadings eigenvalues) and original data values have been 
developed and presented. Table 1 demonstrates the tasks 
performable with these representations on the basis of the 
kind of PC values applied. 

However, there are still challenges for future work. First 
of all, we want to supply the proposed PCA based 
visualizations to non-statistic expert users and evaluate 
them. Finally, further research needs to be done to 
improve the understanding of trends generated by the PC, 
for instance by improved annotation strategies for PC 
axes. 
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meaning of PC axes 

(figures 8, 9, 11 right) 

Analyze trends in 
observation space (figure 

9, 11 right) 

Focus and/or order on 
data objects in original 

space (figure 13) 

PC 
loadings / 

Get a compact 
overview about 

strength and 
relationship of 
the main trends 
(figures 2, 4 ) 

Focus on major 
trends  (figure 4) 

Get overview and deeper 
insight into meaning of 
PC axes (figures 2, 4) 

Compare dependencies 
in original data with PC 
axes directions  (figure 

10) 

Focus and/or order 
original data variables 

PC 
eigenvalues / / ? ? 

Original 
data / / / Typical InfoVis tasks 

(figures 3, 5, 8, 10) 

Table 1: Possible combinations of PCA results and data for visualization purposes and the possible tasks;  
each cell represents a specific combination of certain kinds of input data to be used explicitly or implicitly in the 

visualization process; the lower triangle matrix is left empty for symmetry reasons 
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