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Abstract

This work describes the optimization and paralleliza-
tion of the OASIS3 coupler. Performance evaluation
and profiling have been carried out by means of the
CMCC-MED coupled model, developed at the Euro-
Mediterranean Centre for Climate Change (CMCC)
and currently running on a NEC SX9 cluster. Our
experiments highlighted that extrapolation (accom-
plished by the extrap function) and interpolation (im-
plemented from the scriprmp function) transforma-
tions take the most time. Optimization concerned
I/O operations reducing coupling time by 27%. Paral-
lelization of OASIS3 represents a further step towards
overall improvement of the whole coupled model. Our
proposed parallel approach distributes fields over a
pool of available processes. Each process applies cou-
pling transformations to its assigned fields. This ap-
proach restricts parallelization level to the number of
coupling fields. However, it can be fully combined
with a parallelization approach considering the geo-
graphical domain distribution. Finally a quantitative
comparison of the parallel coupler with the OASIS3
pseudo-parallel version is proposed.

Keywords: OASIS3, climate models, coupled models,
performance analysis, parallel modeling

1 Introduction

Climate change models describe complex subsystems
such as oceans dynamics; atmospheric, chemical and
physical processes; vegetation and land use trans-
formations. Historically, these models have always
been stand alone applications. They are not com-
plete enough to describe the complexity of the whole
climate system, unless we consider the chance to infer
new knowledge from their coupling. A more detailed
approach is to model the climate behavior by coupling
models each others. In this context a coupler compo-
nent is a key performance factor of the overall coupled
model. The coupler acts as a ”collector” amid com-
ponent models. Its main function is to interpolate,
extrapolate, re-grid and, more in general, transform
exchanged fields. As for modeling, the coupler should
support different parallel approaches in order to be
compliant with and portable on heterogeneous paral-
lel architectures. To this aim, the OASIS3 coupler is
both OpenMP and MPI parallelized; it is possible to
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select a hybrid approach or just one of the available
parallelization methods at compile time. Given the
nature of the operations performed by the coupler, its
execution time cannot overlap with component mod-
els one. Thus optimization and parallelization of the
coupler have strong impact on the wall clock time of
the overall model. Both work and results described in
this paper refer to an optimized and parallelized ver-
sion of OASIS3 adopted at the Euro-Mediterranean
Centre for Climate Change (CMCC). In particular,
the CMCC-MED (S. Gualdi, E. Scoccimarro et al.)
coupled model has been taken into account to test the
parallel coupler.
The paper is organized as follows: section 2 describes
the OASIS3 coupler; its performance profiling on the
target machine (NEC-SX9) and performed optimiza-
tion are detailed in section 3. We then detail our par-
allel approach in section 4, performance model and
its analysis in section 5. Finally, we give a qualita-
tive comparison of our proposed approach with the
OASIS3 pseudo-parallel version in section 6, an eval-
uation of alternative scheduling solutions in section 7,
and draw our conclusions.

2 The OASIS3 coupler

The coupler OASIS3 (Valcke 2006) consists of a set
of Fortran 77, Fortran 90 and C routines. At run-
time, OASIS3 acts both as a separate single process
executable, whose main aim is to interpolate coupling
fields exchanged among the component models, and
as a library (OASIS3 PSMILe) linked by the compo-
nent models in order to communicate with the cou-
pler.
OASIS3 provides several transformations and 2D in-
terpolations in order to adapt coupling fields from a
source model grid to a target one. For each exchanged
field, the user can define a set of required transforma-
tions and their order through the namcouple config-
uration file. Available transformations are grouped
into five general classes and must be strictly applied
following this logical order: time, pre-processing, in-
terpolation, ”cooking”, and post-processing. This or-
der is also supported by the OASIS3 software inter-
nal structure. It is worth noting here that trans-
formations are usually independently performed on
each field, thus transformations on a single field can
be considered as a separate task. BLASOLD and
BLASNEW transformations represent an exception
to this rule, since they introduce functional depen-
dence among fields. They perform, respectively be-
fore and after the interpolation phase, a linear combi-
nation of the current field with others or with itself.
The following steps characterized OASIS3 coupling
activity:

• An initialization step, executed once for each
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run. It includes some preliminary operations
such as initialization of internal parameters, def-
inition of logical I/O units descriptors, allocation
of data structure for timing purpouse, definition
of the communication environment among pro-
cesses and grids, instantiation of variables and
opening of required files.

• The execution of a loop over the time steps. For
each time step, another loop over the sequenc-
ing index (SEQ) is performed. SEQ defines the
order for fields to be transformed. Its aim is to
allow overlapping of the coupling time with mod-
els computing time. A tag with small values of
SEQ in the namcouple file must be associated
to fields sent to the coupler from faster mod-
els; that allows overlap of OASIS3 coupling time
spent over those fields with computing time of
slower models. The loop over sequencing index
includes: (i) evaluation of the number of fields
to be exchanged among coupled models; (ii) re-
trieval of fields values from models; (iii) fields
transformation through pre-processing, interpo-
lation, cooking and post-processing operations;
(iv) delivery of those fields to the target models.

• A finalization step, including arrays deallocation
and file closing.

3 OASIS3 profiling

The OASIS3 coupler has been evaluated and pro-
filed within the CMCC-MED model, developed at the
CMCC. It is a 3-components coupled model consist-
ing of the Echam5 (Roeckner et al. 2004) T159L31
atmospheric model, the OPA 8.2 (Madec et al. 1998)
oceanic global model with a 2◦ resolution and the
Nemo (Madec 1998) Mediterranean sea model with
a 1/16◦ resolution. The atmospheric model provides
the coupler with 26 fields defined on a 480x240 spa-
tial grid; 17 are addressed to the ocean global model
and the 9 remaining are addressed to the Mediter-
ranean sea model. The ocean global model provides
the coupler with 6 fields, defined on a 182x149 spa-
tial grid, to be sent to the atmospheric model. Fi-
nally, the Mediterrenean sea model provides the cou-
pler with 3 fields, defined on an 871x253 spatial grid,
to be addressed to the atmospheric model too. The
total amount of managed fields, exchanged among the
component models, is 35, with a coupling period of
2h 40′ and thus 279 coupling steps in a month. Ta-
ble 1 lists performed transformation. Extrapolation
(over 29 fields) and interpolation (over 35 fields) are
the most frequent ones.

The coupled model has been profiled on a NEC
SX9 cluster using FTRACE analysis tool in order

Table 1: CMCC-MED namcouple configuration.

Transformation # of fields

Locktrans 8
Mask 29
Extrap [ninenn] 29
Invert 23
Scripr [distwgt] 2
Scripr [conserv] 3
Scripr [bilinear] 18
Scripr [bicubic] 12
Conserv [global] 2
Blasnew 8
Reverse 9

Figure 1: OASIS3 performance tracing.

to identify time-consuming functions. Optimiza-
tion started from these functions. In particular, a
FTRACE region has been defined in the OASIS3
code. The FTRACE output, shown in figure 1, high-
lights that clim import takes about 1900 seconds fol-
lowed by scriprmp and extrap. It is worth noting
here that clim import belongs to the CLIM library
adopted for the communication among the coupler
and the component models; it is devoted to receive
fields exchanged among models. The elapsed time
spent executing this function is actually an idle time,
since the coupler has to wait for the component mod-
els to simulate the coupling period. We can thus
safely ignore this function since it does not include
coupling time.

As table 2 shows, extrap and scriprmp are the most
time consuming transformations; they take about
96% of the total coupling time.

In the following sections we delve into details of
the optimization performed on these functions.

3.1 Extrap analysis and optimization

The extrap function performs fields extrapolation over
their masked points using the source grids. Since the
adopted weights depend only on the source grid, it
is reasonable to group fields into different datasets,
each of these characterized by the same source grid
and hence by the same weights. A field is also tagged
with a NIO parameter, whose value is 1 if weights
must be computed and written to file or 0 in case of
reading from file. It is worth noting here that the NIO
parameter is taken into account only for the first field
of a given dataset and only during the first coupling
step, it is ignored otherwise; in these cases weights
are always read from memory. The flow chart in fig-
ure 2 gives an overview of the original OASIS3 algo-
rithm. wflag is a boolean variable used to establish if

Table 2: OASIS3 performance analysis

Elapsed
Time
(sec)

%

scriprmp 608.16 64.61
extrap 283.83 30.15
clim export 46.21 4.91
others 3.14 0.33

Total Coupling Time 941.35

CRPIT Volume 107 - Parallel and Distributed Computing 2010

52



weights and addresses values for dataset i are avail-
able in main memory or not. At the beginning, wflag
is initialized to FALSE for all of the datasets; when
the coupler processes the first field of the dataset i,
the instruction control flow depends on NIO value.
Following Branch A, both definition of weights and
extrapolation of field, are jointly performed; weights
are then stored in a file. Branch B is followed when
NIO is 0 and extrapolation is performed by means of
the stored weights. In both cases, weights are stored
in main memory and wflag is asserted. That implies
extrapolation to be performed reading weights from
the main memory for every field of the same dataset
and for each of further coupling steps. Considering
the flow chart of figure 2, it is clear that:

1. weights and addresses values are written in a file
only when OASIS3 transforms the first field of a
given dataset, during the first coupling step, and
its NIO value is equal to 1;

2. weights and addresses values are read from file
only when OASIS3 transforms the first field of a
given dataset, during the first coupling step and
its NIO value is equal to 0;

3. weights and addresses values are read from main
memory otherwise.

Figure 2: Flow chart of the extrap function.

These assertions reveal that even if weights are
written, they are never read. We thus can optimize
the extrap function skipping the writing procedure.
Despite the introduction of this optimization, perfor-
mance improvement, as shown in table 3, is very poor.
This happens because weights writing is performed
only during the first coupling step.

Performance analysis of the extrap function high-
lights also some numerical issues owing to the repli-
cation of the source code on two different branches
(see figure 4). In particular, extrapolation of the first
field of each dataset is performed during weights eval-
uation (Branch A); the others are extrapolated in a
different branch (Branch B). Unfortunately, the com-
piler optimizes the two branches in different way in-
troducing some optimizing transformation of floating
point operations. Experiments show that if we change
the order of a field in the namcouple configuration file,
its value, after the extrapolation, is different. In par-
ticular, if we swap the position of two fields, the dif-
ference on the first field is about of 1.6 ·10−14%. This
displacement can absolutely be negligible. However,

Table 3: extrap performance evaluation

Elapsed
Time
(sec)

Saved
Time
(sec)

%

original 286.218
optimized 285.032 1.186 0.41

if we change the order of more then one field belong-
ing to different datasets, this displacement produces a
0.25% difference on the netcdf output files generated
by one simulated month. This discrepancy is relevant
since it is due only to a different order of the fields in
the namcouple file. To solve this problem, the code
performing weights evaluation and extrapolation has
been split. In this way, all the fields, including the
first one of each dataset, is extrapolated using the
same piece of code. The final solution is represented
in figure 3.

Figure 3: Optimized extrap transformation.

3.2 Scripr analysis and optimization.

The scriprmp routine implements the interpolation
techniques offered by the Los Alamos National Lab-
oratory SCRIP1.4 library. In particular, it performs
a remapping of the fields using weights and addresses
evaluated taking into account the source grid, the tar-
get grid, the type of interpolation to be used and the
normalization option. For each field, the scriprmp
function checks whether the file containing remap-
ping weights exists. If not, they are first evaluated
and then written to a file for the further coupling
steps.
At each coupling step, an access to the file is per-
formed. The main optimization concerns the manage-
ment of remapping weights into the main memory, in
order to reduce the time spent for I/O operations. As
detailed in table 4, this optimization reduces elapsed
time for the scriprmp function of 40%. The over-
all optimizations of the sequential version of OASIS3,
performed on both the scriprmp and the extrap func-
tions, is shown in table 5. As previously described,
the optimizations were mainly focused on reducing
the I/O time. The main contribution to the opti-
mization has been gained in the scriprmp function.
The overall performance improvements is 27% of the
whole coupling time.

4 Per field parallelization

In order to further reduce the elapsed time of coupling
transformations, a parallel version of the algorithm
has been developed. Adopted parallel approach is
the master/slaves model. Since computation of each
field is independent from the others, slaves do not
communicate with each other. The master distributes

Table 4: scripr performance evaluation

Elapsed
Time
(sec)

Saved
Time
(sec)

%

original 617.129
optimized 367.615 249.514 40.43
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Figure 4: extrap numerical displacement.

Table 5: OASIS3 optimization

Extrap Scripr Others Coupling
Saved
Time
(sec)

%

original 286.218 617.130 1.008 904.360
optimized 285.032 367.620 1.018 653.670 250.690 27.72

fields to slaves and collects them after the execution of
coupling operations, using the MPI library, as shown
in figure 5. Each OASIS3 process is then in charge of
computing all of the foreseen transformations for each
assigned fields. The design of the parallel algorithm
is driven by two main factors:

1. load balancing among OASIS3 processes;

2. maximum communication reduction.

It is necessary to consider that different fields
could require different number and type of trans-
formations; moreover they are also defined on dif-
ferent grids at different resolutions. This implies
that coupling time cannot be considered constant
for every field. Since computing time of each par-
allel task is not uniform and not known at com-
pile time, a dynamic scheduling approach should be
preferable (Quinn 2004). However, in this case, this
choice should introduce an overhead of the same or-
der of magnitude of computing time. For this rea-
son, a static scheduling algorithm to distribute fields
to available processes, has been implemented. Fields
are allocated to processes taking into account the se-
quencing index (SEQ) and the presence of a corre-
lation among fields. That happens when a field is a
linear combination of other fields, using the BLAS-
NEW and/or BLASOLD transformations. The se-
quencing index defines an order for fields to be trans-
formed. It has been introduced to allow overlapping
coupling time with models computing time. Indeed,
fields sent to the coupler from faster models must
be tagged, in the namcouple file, with smaller values
of SEQ. This way, the OASIS3 coupling time spent
over these fields is overlapped with computing time
of slower models. This constraint introduces a tem-
poral dependence among processes: the process per-
forming transformation of a field with a high SEQ
value should wait for those processes responsible for
fields with a smaller sequencing index. To avoid some
processes idle time, the scheduling policy must take

into account the SEQ value of each field: fields with
the same SEQ must be uniformly distributed to the
available processes. In this case, the maximum num-
ber of fields with the same sequencing index gives
the maximum level of parallelism. Since the relation-
ship among fields introduced by the use of SEQ is
not a functional dependence, a field with a high SEQ
value does not need to know results form those with
smaller SEQ value; this implies that the sequencing
order does not introduce communication among pro-
cesses.

Figure 5: OASIS3 parallel approach.

If a given field A is a linear combination of one or
more fields B, C (BLASNEW and BLASOLD trans-
formations), the process performing A must wait for
the transformations of B and C to be completed and
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must communicate with the respective processes. In
order to avoid communications, the scheduling algo-
rithm aggregates fields with functional dependence
and assigns them to the same process. Since coupling
time taken by each field is not known at scheduling
time, the algorithm aims at balancing the number of
fields assigned to each process. The scheduling algo-
rithm is structured as follow:

1. fields are aggregated in different groups GSEQ

according to the SEQ value;

2. within each GSEQ, fields are further grouped in
bundles BSEQ,i according to functional depen-
dencies established by BLASNEW and BLA-
SOLD transformations. Each bundle is ranked
with an integer given by the cardinality of the
set: ri = |BSEQ,i|;

3. for each GSEQ, the bundles BSEQ,i are sorted by
rank in descending order;

4. each MPI process is labeled with an integer lj
representing the number of fields currently as-
signed to process j. For each GSEQ:

(a) lj is initialized to zero;

(b) bundle BSEQ,i, with maximum rank and
not assigned yet, is associated with the pro-
cess j having the minimum lj ;

(c) the rank of bundle ri is added to lj;

(d) the algorithm iterates from step b for each
bundle belonging to current GSEQ.

Unfortunately such an approach cannot guarantee
a good load balancing for each configuration, since it
assumes that each field takes the same coupling time.
Moreover, the balancing is also influenced by the or-
der of fields in the namcouple configuration file. More
accurate algorithm should take into account the dif-
ferent coupling time requested by each field balancing
the load according to it.
The resulting parallel algorithm is then structured as
follow:

1. at the beginning of the simulation, the scheduling
algorithm defines the sets of fields to be assigned
to each available process, according to the ac-
tual configuration and taking into account SEQ
values, BLASNEW and BLASOLD transforma-
tions;

2. at each coupling step, the master process of OA-
SIS3 gets the fields from the models and scatters
them to the slaves, according to the distribution
policy established by the scheduling algorithm;

3. each slave process performs coupling transforma-
tions on the assigned fields and sends them to the
master;

4. master process exports them to the models.

4.1 Parallel model

In this section, we define the analytic model of the ex-
ecution time of our parallel algorithm. The coupled
model elapsed time depends on many factors: number
of processes assigned to a single component model;
overhead introduced by communications among pro-
cesses of a model (intra-model communication over-
head); coupling transformations and so on. In this pa-
per we focus only on the aspects affecting the coupler
behavior. Elapsed time of the CMCC-MED model
can be devised as the sum of the following compo-
nents:

1. initialization of the computing environment;

2. time spent by component models, also including
intra-model communications;

3. computing time to perform coupling transforma-
tions: it is important to properly evaluate this
time, since it could partially overlap with com-
puting time of component models;

4. communication overhead within the coupler: also
this time could be partially overlapped with mod-
els computing time;

5. finalization of the simulation.

Since we are interested in the coupler parallel be-
havior, we establish the number of processes assigned
to component models and considered time for execut-
ing models as intrinsically sequential, constant and
independent from the number of processes assigned
to the coupler. This choice is also supported by the
consideration that the parallelization effort concerned
only the coupler and not the whole coupled model.
Moreover, a careful analysis leads us to infer that ini-
tialization and finalization operations cannot be par-
allelized. The intrinsically sequential time, Tseq, can
be expressed as:

Tseq = Tinit + Tmodels + Tend (1)

hence the parallel time is given by:

Tpar = Tseq + numcouple · (Tcouple + Tcom) (2)

where numcouple represents the total number
of coupling steps occurring during the simulation;
Tcouple is the elapsed time required by the slowest pro-
cess to transform its assigned fields; and Tcom repre-
sents the communication overhead occurring in a cou-
pling step to transfer fields from the OASIS3 master
process to slaves and back.
The aforementioned SEQ values can be used to par-
tially overlap coupling time with computing time
spent by the component models. Let us define Fi

as the set of fields assigned to the process i. This set
may contain fields with different SEQ values; it can
also be thought as the union of disjoined subsets Gi,j

containing fields assigned to process i with SEQ j .
Defining s∗ as the maximum SEQ value, we have:

Fi =
s∗

⋃

j=1

Gi,j (3)

It is worth noting here that the coupling time de-
pends only on the set of transformations applied to
fields with the maximum value of SEQ ; hence Tcouple

can be expressed as:

Tcouple = maxi

∑

k∈Gi,s∗

Ttrk
(4)

where index i represents the process and Ttrk
is

the elapsed time for coupling transformations applied
on field k. Communication overhead has been mod-
eled according to the standard linear communication
model (Foster 1995),(Nupairoj et al. 1994). At each
coupling step, OASIS3 takes Tpp time for point-to-
point communications and Tbroad time for broadcast
communications. Thus,

Tcom = Tpp + Tbroad

= Ts(1 + log 2p) · n∗

+Tb ·
∑

j∈Gi,s∗
(Limj

+ Lexj
· log2 p)

(5)
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where Ts and Tb are machine dependent param-
eters and represent respectively the communication
latency and inverse of the effective throughput of
the communication channel. Limj

and Lexj
are the

lengths (in bytes) of field j, used respectively during
import and export operations; p is the number of in-
volved processes. n∗ is the highest cardinality (over
the processes i) of set containing fields with value of
SEQ equal to s∗, given by:

n∗ = maxi{|Gi,s∗ |} (6)

5 Parallel performance analysis

The model previously described has been validated
performing several tests on the NEC SX9 clus-
ter available at the CMCC Supercomputing Center.
Some preliminary tests have been executed in order to
experimentally evaluate the latency and throughput
of the communication channel. Since the architecture
consists of 7 nodes and 16 processors for each node,
both intra-node and inter-node communications may
take place. However, we can safely generalize con-
sidering only inter-node communication. Indeed, the
best configuration for the CMCC-MED would map
the OASIS3 master process on the same node of the
slowest component model master process (in order to
minimize the time for communication among mod-
els and coupler). OASIS3 slaves processes must be
mapped on different nodes. The features of the SX9
node are reported on table 6.

Table 6: NEC-SX9

NEC SX-9

Performance per CPU Over 100 GF
Machine cycle (clock) 3.2 GHz
Memory bandwidth 4 TB/s
Memory capacity per node 512 GB
CPUs per node 16
Peak performance per node 1.6 TF
I/O Data rate 64 GB/s
Internode bandwidth (peak) 128 GB/s x 2

Ts 3.40 · 10−06

Tb 2.30 · 10−11

Table 7: Sequential time

Init Time 2.08 · 10+01

Models Time 3.67 · 10+03

End Time 3.73 · 10−05

It is worth reminding that performance analysis is
mainly focused on the evaluation of the coupler par-
allelization; then the number of processes assigned to
the component models has been pre-defined, chang-
ing the number of processes assigned to the coupler.
The configuration we used is as follow:

• Ocean global: 1 processor on node A.

• Mediterranean sea: 6 processors on node A.

• Atmosphere: 8 processors on node A.

• Coupler: 1 processor on node A and (p − 1)/2
processors on nodes B and C.

Table 8: Parallel time

#
field
(k)

Ttrk

(sec)
Lexk

(byte)
Limk

(byte)

1 4.56 · 10−2 921600 216944
2 4.15 · 10−2 921600 216944
3 4.30 · 10−2 921600 216944
4 3.92 · 10−2 921600 216944
5 3.93 · 10−2 921600 216944
6 4.04 · 10−2 921600 216944
7 1.27 · 10−1 921600 1762904
8 1.25 · 10−1 921600 1762904
9 1.26 · 10−1 921600 1762904

10 4.82 · 10−2 216944 921600
11 4.63 · 10−2 216944 921600
12 4.61 · 10−2 216944 921600
13 4.63 · 10−2 216944 921600
14 4.84 · 10−2 216944 921600
15 4.57 · 10−2 216944 921600
16 4.66 · 10−2 216944 921600
17 4.62 · 10−2 216944 921600
18 2.67 · 10−1 216944 921600
19 3.95 · 10−2 216944 921600
20 2.64 · 10−1 216944 921600
21 3.93 · 10−2 216944 921600
22 3.93 · 10−2 216944 921600
23 3.93 · 10−2 216944 921600
24 4.26 · 10−2 216944 921600
25 2.69 · 10−2 216944 921600
26 2.68 · 10−2 216944 921600
27 8.07 · 10−2 1762904 921600
28 7.52 · 10−2 1762904 921600
29 8.00 · 10−2 1762904 921600
30 7.70 · 10−2 1762904 921600
31 5.63 · 10−2 1762904 921600
32 5.49 · 10−2 1762904 921600
33 5.53 · 10−2 1762904 921600
34 4.06 · 10−2 1762904 921600
35 4.08 · 10−2 1762904 921600

With this configuration, Tseq time components have
been evaluated, as shown in table 7. Table 8 lists
coupling time of each field.

In order to have a wide analysis range, we have im-
posed SEQ = 1 for each field, regardless of the speed
of the component models; in this way, the number
of processors ranges from 1 to 35, that is the total
number of fields exchanged through the coupler.

The performance model demonstrated that scala-
bility is heavily limited by the coarse grained paral-
lelization based on both the distribution of the fields
among the processors and the different kind and num-
ber of transformations performed on the fields. The
scalability analysis shows that the algorithm reaches
a 50% efficiency with 13 processors, corresponding to
a computational load of about 3 fields per process.
The developed parallel approach heavily influences
the load balancing among processors. The commu-
nication overhead takes just almost 2% of the cou-
pling time and it cannot be considered the limitation
factor.

Figures 6-8 depict coupling time (on one simu-
lated month numcouple = 279), speed-up and effi-
ciency of the parallel algorithm with a number of
processors ranging from 1 to 35. The analytic perfor-
mance model approximates the real behavior of the
algorithm with a standard deviation of 2.4%, hence
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Table 9: Parallel OASIS3 performance evaluation

# of procs
Execution
Time
(sec)

Efficiency Speed up

1 645.13 1.00 1.00
2 351.80 0.92 1.83
3 274.86 0.78 2.35
5 210.83 0.61 3.06
7 191.12 0.48 3.38
9 174.17 0.41 3.70

11 181.22 0.32 3.56
13 110.77 0.45 5.82
15 99.71 0.43 6.47
17 95.28 0.40 6.77
26 90.01 0.28 7.16
33 89.59 0.22 7.20

Figure 6: Parallel OASIS3 speedup.

it can be considered reliable. As confirmed by the
swing trend of the speed-up and efficiency functions,
the coarse grained parallelization produces worst per-
formance when the number of fields is not perfectly
divisible by the number of processes, whereas differ-
ent number and kind of transformations deteriorate
performance even if the number of fields is divisible by
the number of processes (i.e. p = 5, 7). Experimental
data obtained analyzing parallel performance is also
reported in table 9. As we previously highlighted, a
limit of our proposed approach is that the scheduling
policy considers the time taken for coupling transfor-
mations constant for each field. Better performance
could be achieved taking into account the different
computational load required by applying transforma-
tions on different fields and trying to better balance
the load among processors. But a per-field paralleliza-
tion is still limited by the total number of fields. The
highest level of parallelism can be achieved by com-
bining the proposed approach with a parallelization
based on a spatial domain decomposition. The timing
model can be used for further considerations concern-
ing the suitability of a distributed approach for this
problem. In our case, two main reasons restrict the
adoption of a distributed approach: (i) the parallelism
level of the proposed algorithm is strongly limited by
the number of fields to be transformed (it is rare that
the number of exchanged fields is greater than 100);
(ii) communication overhead in a distributed environ-
ment has a stronger impact on parallel performance.
Several distributed approaches and frameworks ex-
ploit the architectures heterogeneity to improve the
parallelization level. In this context different frame-
works exist: MapReduce, GRIDSs, Condor are char-
acterized by efficient mechanisms for managing re-

Figure 7: Parallel OASIS3 efficiency.

Figure 8: Parallel OASIS3 execution time.

sources, enhancing the fault tolerance and handling
node heterogeneity. Generally, these frameworks use
I/O operations for communication and hence they
are not suitable for coupler parallelization since the
communication overhead would exceed the computing
time.

5.1 Implementation details

The implementation of the parallel algorithm has
been fully integrated in the official version of the OA-
SIS3 coupler, distributed by CERFACS. Code mod-
ification has been made minimizing the impact on
the structure of the original code. Taking into ac-
count that the CLIM libraries, used by the coupler to
communicate with the component models, supports
both MPI1 and MPI2, the parallel model has been
accordingly implemented. More in detail, with MPI1
(Gropp et al. 1996) implementation, a MPMD (Fos-
ter et al. 1997) approach is adopted; component mod-
els and coupler are executed launching different exe-
cutables. Only the process itself then knows its ”spe-
cialization”; an initialization step where the colour
of models is exchanged allows each process to know
masters and slaves of each model. A communicator
for each model, including the coupler, is created using
the MPI Comm split function.

The MPI2 (Gropp et al. 1998) implementation fol-
lows a different approach: with the mpirun com-
mand, only the coupler processes are instantiated.
The executables names and the number of processes
to be spawn for each component model are also passed
through the command line to the OASIS3 executable.
In this case, the OASIS3 communicator is dupli-
cated from the MPI COMM WORLD at the begin-
ning; other communicators are then created during
the spawn of the corresponding processes.
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The two implementations differ only on the man-
agement of the communicators. Once the coupler
communicator has been created, communications are
executed within it.

6 Comparison with the pseudo parallel ver-
sion

A qualitative comparison between the proposed ap-
proach and the pseudo-parallel implementation of
OASIS3 by CERFACS, has been performed. In the
pseudo-parallel approach, each OASIS3 process must
have its own namcouple file, carefully created by the
modeler. Each process is then independent and un-
aware of the existence of others. It directly commu-
nicates with models exchanging fields included into
its namcouple file. Such an approach implements a
distributed communication with models. It avoids
the bottleneck represented by a single master pro-
cess in charge of both the exchange of all fields with
the models and the coordination of the slaves. The
manual definition of the namcouple file allows accu-
rately distributing fields among the processes taking
also into account the computational load required
by each field. The main disadvantage of a pseudo-
parallel approach regards the configuration. Indeed,
the user is charged with the burden of creating nam-
couple files, every time the number of OASIS3 pro-
cesses changes. Moreover, the parallel version of OA-
SIS3 provides both MPI1 and MPI2 CLIM commu-
nication techniques, whereas the pseudo-parallel ver-
sion only supports MPI1.

7 Evaluation of different scheduling policies

Our proposed approach for scheduling and for map-
ping the fields to the processors, suffers mainly be-
cause coupling time, for each field, is not known
at compile time. Thus, the algorithm assigns each
field the same weight. More efficient algorithms
can be taken into consideration in order to reduce
the parallel time. A dynamic scheduling algorithm
would distribute fields to processes according to a re-
quest/response approach. At the beginning, one field
for each process is assigned. The generic process i
requests a new field to be transformed as soon as it
ends the transformation of the current field. This ap-
proach generally behaves better with respect to the
round-robin algorithm, but it is still influenced by the
order of the fields in the namcouple configuration file.
The best case for this dynamic approach is when fields
are ordered from the most time consuming to the less
one. In this case, the dynamic allocation of fields be-
haves exactly as the MaxMin approach (Maheswaran
et al. 1999). The worst case happens when fields are
sorted in descending order. Figure 9 depicts perfor-
mance obtained with different scheduling approaches.

The MaxMin algorithm is a static approach, but
it assumes that coupling time for each field is already
known. Fields are sorted in descending order with
respect to the coupling time and each field is assigned
to the process with the current minimum computing
load. This approach is the best one, but it requires a
profiling phase in order to establish the coupling time
for each field.

8 Conclusions

In this work, we presented optimization and paral-
lelization of one of the most deployed coupler. Before
dealing with parallelization of a code, it is necessary
to deeply understand why it badly performs on the
target architecture; that involves optimizations. The

Figure 9: Elapsed time of the OASIS3 using different
scheduling policies.

Table 10: Parallel OASIS3 improvements

Coupling
Time
(sec)

Saved
Time
(sec)

%

original 904
parallel (13 proc) 110 794 87.83

profiling phase is mandatory to identify hot-spot func-
tions and to drive optimization. Further level of im-
provement can be reached with parallelization, after
a deep analysis of the algorithm and identification of
both data and functional dependencies. In the case
here discussed, with just the optimization and elim-
ination of useless I/O operations, the coupling time
has been reduced of 27%. Even if the parallelization
strategy is coarse grained, it allowed a coupling time
reduction up to 80% of the original sequential version,
with 13 processors (see table 10).

As we expected, the coarse grained parallel ap-
proach cannot guarantee a good load balancing and
it limits the level of parallelism. The counterpart is
that communication overhead is minimum.

In order to enhance the parallel performance some
improvements can be adopted:

• the scheduling algorithm can be modified in or-
der to self adapt to computing requirements and
to take into account coupling time of each field,
allowing a better load balance. If a scheduling al-
gorithm could know coupling time for each field,
it should be able to better distribute load among
processes. The scheduler can obtain this infor-
mation by means of a profiling phase of the cou-
pled model; otherwise, the scheduler could self
adapt, keeping track of the time taken by each
field to simulate a month and using this informa-
tion for the scheduling policy of the next month;

• memory bank conflicts (about 40%) (NEC 2006)
during OASIS3 execution on the vector machine
could be resolved by means of a further opti-
mization step. Bank conflicts occur when two or
more processes try to simultaneously access to
the same memory bank. The code can be suit-
ably modified avoiding bank conflicts;

• OASIS4 (Valcke et al. 2007) is the new parallel
version of the coupler, developed by CERFACS
and based on a geographical domain decompo-
sition of fields among processes. Performance
evaluation of this new coupler can be performed
using the CMCC-MED couple model. These two
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parallel approaches can be integrated in a unique
solution;

• the CMCC Supercomputing Center has also an
IBM supercomputer with 10 power6 nodes for
a total number of 960 cores. The performance
evaluation of parallel OASIS3 on the scalar ar-
chitecture can be performed in order to evaluate
the behavior of the code on a many core system
compared with a vector one;

• the parallel coupler has been validated on a set
of available transformations. A complete test of
available transformations is needed;

• climate change studies involve several coupled
models. They are obtained using different cli-
mate models, but also different couplers. Perfor-
mance comparison of parallel OASIS3 with other
couplers such as the NCAR CPL coupler (Bryan
et al. 1996) represents a further step to evaluate
pros and cons of our approach.
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