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Abstract 
This paper describes the role and the use of an explicit 
task representation in applications where humans interact 
in non-traditional computer environments using gestures. 
The focus lies on training and assistance applications, 
where the objective of the training includes implicit 
knowledge, e.g., motor-skills. On the one hand, these 
applications require a clear and transparent description of 
what has to be done during the interaction, while, on the 
other hand, they are highly interactive and multimodal. 
Therefore, the human computer interaction becomes 
modelled from the top down as a collaboration in which 
each participant pursues their individual goal that is 
stipulated by a task. In a bottom up processing, gesture 
recognition determines the actions of the user by applying 
processing on the continuous data streams from the 
environment. The resulting gesture or action is interpreted 
as the user’s intention and becomes evaluated during the 
collaboration, allowing the system to reason about how to 
best provide guidance at this point. A vertical prototype 
based on the combination of a haptic virtual environment 
and a knowledge-based reasoning system is discussed and 
the evolvement of the task-based collaboration becomes 
demonstrated.1 

Keywords: task model, collaboration, gesture interaction, 
gesture recognition, virtual environment.  

1 Introduction 
The user interaction in virtual environments follows a 
spatial paradigm, while in traditional computer desktop 
environments the notion of Windows, Icon, Menus and 
Pointing interaction (WIMP) is prevailing. The 
interaction in virtual environments provides an intuitive 
access to simulated objects. Simulations have achieved 
nowadays considerable realism or plausibility, and the 
focus can be shifted towards more quality in the 
interaction (Smith et al., 1999). On the one hand, research 
has been done to specify new software models and 
specification languages to cope with non- and post-
WIMP user interfaces (Jacob, 1996 and Beaudouin-
Lafon, 2000). The challenges are identified in the parallel 
and continuous user interaction with the environment, 
with which traditional User Interface Management 
Systems (UIMS) are not designed to deal. On the other 
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hand, effort has been made to populate a virtual 
environment with additional information to enrich the 
environment. In an early work of Feiner et al. (1993) on 
augmented reality systems, additional task-relevant 
graphical information is displayed as an overlay to the 
real environment. In contrast, in the approach of Bowman 
et al. (1999), additional information becomes integrated 
at appropriate spatial locations for the user to recognise, 
memorise and with which to interact. In general, explicit 
knowledge representation can be used to improve the 
interaction, e.g., to direct and assist the user in virtual 
environments (Aylett and Luck, 2000; Jung et al., 1998). 
In the approach of Bowman et al. (1999), additional 
information appears when the user interacts with 
artefacts. We propose now, to not merely provide 
information about objects, but also make use of the 
explicit knowledge about what the user wants or has to do 
with the object. This knowledge about the task of the user 
allows the system to deliver to the user meaningful and 
relevant information at the right time. This can be 
understood as supporting the user’s interaction at a 
conceptual level of interaction (Massink and Faconti, 
2002).  

We developed a vertical prototype for training motor-
skills using a hand immersive haptic virtual environment. 
The interaction environment is enriched with information 
and makes uses of a comprehensive context model. The 
prototype shows how a formal organisation of the 
interaction in layers can be used to integrate different 
high and low level components. The interaction of the 
user can be characterised as parallel, continuous and 
multimodal at the physical and perceptual level (Nigay 
and Coutaz, 1993), while, at a higher level, the actions 
and goals are represented and processed in a serial, 
discrete and symbolic style. The user interaction with 
artefacts in the environment follows the metaphor of the 
computer as a tool or media, while on the task level, the 
computer can be understood as a dialogue partner 
(Schomaker et al., 1995, Maybury and Wahlster, 1998). 
Finally, since the resulting system addresses issues of 
training and assistance, the described approach can be 
compared to those of Intelligent Tutoring Systems (ITS), 
where a computer is acting as a tutor, trainer or assistant 
and can collaborate with the user on tasks in simulated 
environments (Rickel et al. 2000). The majority of 
existing ITS are addressing the issue of teaching explicit 
knowledge as, e.g., described in Core et al. (2000). In 
contrast to that, the approach described here concentrates 
on training implicit or tactic knowledge, e.g., motor-
skills. 

In the following section, the paper describes a layered 
interaction model for information enriched interaction. 
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Then, in section 3, a detailed description of the used task 
representation is given. In section 4, a sensor network is 
described that provides the system with symbolic 
information about the user interaction. Finally, the 
vertical prototype of the integration of a haptic virtual 
environment and a knowledge-based system is described 
and the paper ends with a conclusion. 

2 Information enriched interaction 
The foundation for the support of user interaction in 
virtual environments has been already established by 
introducing interactive landmarks (Müller-Tomfelde et 
al., 2004). Interactive landmarks function as a meta 
model in order to deal with the different models of the 
representation of an object in a three dimensional 
interactive virtual environment and that in a knowledge-
base reasoning system. This meta model avoids creating a 
new model with both representations. The landmark in 
the virtual environment has the function of an annotation 
of the scene-graph, for example, the knob of a door 
becomes annotated with an interactive landmark to 
specify a point of user interaction and to reason whether 
the user grabs the knob or not. The landmark enables the 
mapping of objects in the scene with those in the domain 
model of the reasoning system. This approach overcomes 
the structural barrier of virtual environments and 
knowledge-based reasoning systems and avoids 
reinventing the wheel, by making use of existing 
implementations. 

2.1 Layered interaction model  
It is supposed that the virtual environment is a generic 
environment, in which the user can interact with any sorts 
of artefacts. Each of these artefacts could host interactive 
landmarks. How the interaction in the environment is 
technically realised and implemented is not is the scope 
of this paper. Instead, only the user’s actions and the 
spatial relation of the landmarks are relevant and 
considered for the interaction (Müller-Tomfelde et al. 
2004). A layered model for human computer interaction 
has been chosen. It makes use of the reference framework 
for continuous interaction, as proposed by Massink and 
Faconti (2002). 

 
Collaboration layer 

Task layer 

Propositional layer 

Perceptual layer 

Physical layer 
 

Figure 1 The layers of the interaction model based on 
the reference framework for continuous interaction 

(Massink and Faconti, 2002).  

This framework for interaction addresses issues of 
continuous and parallel interaction while, at the same 
time, attempting to reduce the design complexity of 

continuous interaction systems. Each layer has clear and 
distinct functions and passes information up and down in 
the model or framework, respectively. In the system 
described in this paper, issues of continuous and parallel 
interaction are confined to the lower levels of the 
reference framework, where physical data streams are 
processed. Once these data streams have been 
transformed and interpreted into a symbolic 
representation, the interaction is characterised by serial 
and discrete processing of events, actions or states. As it 
will be discussed later, this boundary becomes less ridged 
than it may appear at this point.  

In the physical layer, the interaction between the 
environment and, e.g., human sensors happens. Physical 
signals are perceived by the sensors and transformed to 
provide means at the perceptual layer. In the following 
the physical layer is not discussed since this would 
address the issues of psychophysics (like, e.g., described 
and discussed in Schomaker et al. 1995) and would go 
beyond the scope of this paper. 

2.2 Collaboration and task layer 
The top level of the interaction model is the collaboration 
layer. The collaboration management organises the 
activity of the participants in the collaboration. In a first 
and simple realisation of this organisation, a token is 
passed periodically to each participant and enables them 
to ‘speak’, while all others are ‘listening’. This time 
period of ‘speaking’ in the collaboration is defined to be 
the turn of the participant. It has to be noticed here that 
the organisation of the collaboration at the collaboration 
layer is independent from the content of the task of each 
participant. 

The task is to be understood as a structured sequence of 
primitive tasks or actions, that have to be performed in 
order to achieve the overall goal of the task. For example, 
the task to open a door becomes decomposed by the 
sequence: approach the door, grab the door knob, then 
turn the knob and push the door to open. Once a 
participant has the token, she pursues the task. The next 
step to do or the next goals to achieve in the situation is 
determined. It is conceivable that multiple executions of 
the same task result in different sequences of task 
primitives, but the overall goal of the task remains the 
same. This is due to the fact that a primitive task can be 
followed by a choice of other primitive tasks. Which next 
primitive task becomes selected for further processing 
depends on conditions and the actual state of the context 
of the task. In other words, multiple ways can lead to the 
same task goal, depending on the level of detail of the 
task description.  

The task representation is declarative and does not 
contain any element that supports processing in a 
collaboration. Therefore a structure called task 
environment enables the management of the task 
processing and the storage of relevant information about 
the task during its execution. It contains, for example, the 
task name, the actual task primitive, the task processing 
mode, etc. Each participant of the collaboration owns a 
task environment and hence has a task to operate on 
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during the turns in the collaboration. The task 
environment also provides means for the collaboration 
management, e.g., to signal a ‘claim’ of a participant to 
‘speak’ in the collaboration. 

2.3 Propositional and perceptual layers 
Once the next task primitive has been selected, the 
subgoal of this primitive becomes further planned top 
down in a content and presentation layer (equivalent to 
the propositional and perceptual layer, see in Figure 1). 
The execution of this plan then delivers information on 
the physical layer, e.g., to a visual display device or a 
text-to-speech generator. If the goal is a communicative 
goal, then the planning and the execution of the plan 
leads to an ‘utterance’ and can be used, e.g., to create 
text, as described in Moore and Paris (1993).  

In case the computer functions as a trainer or assistant, 
the task of the trainer becomes executed by the computer, 
comparable to the execution of a computer program. But 
in contrast to a programming language, the task 
description is a specific language that supports the 
efficient description and authoring of tasks (more about 
this in section 3.1). The computer, in the role of a trainer, 
has the task to provide appropriate instructions and 
feedback to the user performing the task. This can be 
understood as a communicative goal which becomes 
processed by the content and presentation layer. This top 
down processing from the task layer to the perceptual 
layer enriches the environment at the physical layer by 
delivering tailored information to the user, based on the 
current state of the task. In a bottom up processing, from 
the perceptual layers to the propositional, the user’s 
action becomes detected by refining the data streams 
from the environment and obtaining a reasonable 
representation of the current goal of the user (see section 
4.1). This user goal gets evaluated to determine whether 
the goal matches with the stipulated task primitive or not.  

3 Hierarchical task description  
It is assumed that the user’s mental model of A) the 
environment, the virtual environment in which the user is 
physically interacting and B) the training situation, in 
which the user is in collaboration with a trainer, are well 
established (Norman 1986). In other words, the user 
knows in what and with whom she is interacting. Now, 
we focus on the model of the topic of the training or 
assistance: the task of the user or the domain task. The 
domain task is a task that refers to a certain domain and is 
not further specified for the following considerations. 
Both the author, who creates the domain task and the 
user/trainee who performs or wants to learn this task, 
must have an unequivocal understanding about the 
represented task. This is considered to be a fundamental 
requirement of successful applications for training and 
assistance. Therefore, a hierarchical task representation 
based on a formalism that supports task annotations and 
procedural relationships (Tarby and Barthet, 1996) was 
selected for the task description. Advantages are efficient 
authoring and learning, as well as easy conceptualisation 
(Lu et al., 2000). The use of a task model has additional 
advantages at various stages in the Software 

Development Life Cycle, analysing the task of users, but 
also describing user interaction tasks in virtual 
environments (as for instance in Murray and Fernando, 
1999). The domain task is graph-based represented and  
can become decomposed in a tree-like structure of 
primitive and composite tasks. The latter become further 
decomposed in their parts (see an example task 
representation in Figure 2). Once the model has been 
created, annotations and mapping functions enable further 
processing of the task model.  

3.1 Domain task and tutorial task 
A training situation is considered to be a collaboration in 
which a trainee is directed or taught by a trainer to do a 
domain task. Since participants of the training session are 
represented at the collaboration layer in the same manner, 
not only the trainee has a domain task, but also the trainer 
or assistant has a task, the tutorial task. This tutorial task 
is represented in the same way as the domain task and is 
explicitly available for processing by the computer. The 
goal of the tutorial task is to train the user performing this 
domain task.  

 

Figure 2 An example for a simple domain task 

This reveals that both tasks need to be processed 
differently: On the one hand, the domain task is a 
description of what the user wants or has to do and 
becomes referred by the tutorial task. While, on the other 
hand, the tutorial task becomes executed on the computer. 
The separation between the tasks is a consequence, when 
considering the interaction in the environment as a 
collaboration of multiple participants. Both tasks have to 
be created by authors with expertise in the specific 
domain and in tutoring. Furthermore, to increase the 
impact of the explicit tutorial task it must be independent 
form the domain task to achieve, e.g., a high reusability. 
The explicitness of both tasks allow advanced processing, 
e.g., for documentation and transformation into other 
representations.  

The tutorial task is implicitly defining the structure of the 
collaboration as a training session. A possible training 
session has a three-tier structure and consists of : 

• Introduction: the trainer introduces the subject of 
training to the trainee. This could be, e.g., a list of 
subtasks that have to be fulfilled to complete the 
task.  
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• Practice: the trainer and trainee are working 
cooperatively on their individual tasks. The 
collaboration guarantees that each participant in 
the collaboration is able to ‘speak’ and operate on 
their individual task.  

• Summary: the trainer informs the trainee about 
his or her overall performance and about the 
assessment for the session.  

In order to enable the assessment of task performance the 
task description not only has to describe explicitly what 
has to be done in a task, but also provide means to decide 
whether the goal of a primitive task has been 
accomplished or not. An annotation on a task element 
called ‘post condition’ is used to reason about the goal 
achievement of the primitive task. This allows the trainer 
to evaluate the trainee’s performance by examining the 
associate post condition of the task element the user is 
performing in the domain task. This link or connection 
between the domain task and tutorial task allows a sort of 
synchronisation of the domain task execution in the 
environment and its representation in the computer on the 
task layer of the interaction model (see Figure 1). This 
interaction can be understood as a conceptual interaction 
in contrast to the apparent interaction on the physical 
layer. 

3.2 Tutorial strategy 
During the tutorial practice, the strategy of the tutor how 
to teach can change. If, for instance, the candidate fails 
performing a sub task, the tutor can give further details 
about the actual task or otherwise reduce the amount of 
feedback if the user is performing well. The latter case 
helps avoiding overload of a good performing candidate 
with redundant and irrelevant information. Currently the 
tutorial task handles three levels of strategies, which can 
be changed by the tutorial ‘reflection’ during the 
interaction in the session practice:  

• Step-by-step: During the collaboration, each step 
in the domain task becomes explicitly announced 
to the trainee and comprehensive feedback is 
provided.  

• Guide: The trainee receives guidance for the task 
that has to be performed. Instructions and 
feedback are given whenever the trainee seems to 
require it. Situations where the trainee is not 
continuing in doing at least something, can be, for 
example, interpreted as an uncertainty on the 
trainee. Appropriate information at that point 
might help. 

• Rehearse: This tutorial strategy mimics the 
situation where the trainee has to perform the 
domain task on his or her own. Nevertheless, the 
trainer monitors and tracks each step of the trainee 
in the domain task to give a comprehensive 
summary and assessment at the end of the training 
session. 

In the course of the training session, the tutorial strategy 
influences the way the current instruction or feedback of 
the trainer becomes realised. The ‘trainer’ exhibits basic 
characteristics of individualised training by adapting of 
the tutorial strategy. This could lead to an optimised 

development of the learning rate over time, due to the fact 
that, on the one hand, minor errors of the trainee do not 
block the training progress, while on the other hand, a 
performing trainee is not forced to read instructions she 
not requiring. In a first approach, the adaptation process 
is designed asymmetrically. The step back to more 
verbose strategies, like, e.g., from guidance to step-by-
step strategy requires less errors than it needs right 
actions stepping up again. 

4 Action and gesture detection  
The action and gesture detection is based on sensors, 
which transform incoming data streams into more 
meaning full information. For example, a stylus functions 
as the user representation at the physical level and its 
orientation, orientation and the applied force are fed into 
the sensors network to detect specific features. The state 
of one sensor becomes activated when its detection 
condition is fulfilled and all sensors become processed 
and their inherent states updated in real-time at a 
frequency of 60 Hz.  

In this paper the term gesture refers to the user action that 
becomes recognised by processing and transforming the 
continuous data streams into a discrete and symbolic 
representation of the action. The sensor processing is 
located in the physical and perceptual layer and leads to a 
representation of the user actions, as an intention or goal 
at the propositional layer (see Figure 1). In other words, 
during the processing of the gesture recognition, a 
transition is made from a parallel continuous interaction, 
to a serial and discrete symbolic representation in the 
upper layer of the interaction model. 

4.1 Sensor network  
To determine a gesture, it is not useful just looking at the 
states of the sensors and pass them on for further 
reasoning. Ambiguous situations could occur, if the 
relation between the sensor results are not considered. 
Therefore, we organise the sensors in a hierarchical 
network to establish relationships between them (see 
Figure 3). 

Figure 3 The sensor network of the action and gesture 
recognition. Each node represents a sensor for a 

specific action. 

In the gesture recognition described in Latoschik (2001), 
nodes of a network are connected by a data routing 
mechanism. Instead, the connections in the network of 
sensors in the approach described in this paper refer to the 
conceptual relation between the sensors. On the basis of 
the current states of the sensors, a simple tree algorithm 
determines a resulting gesture or action that is passed on. 
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The algorithm of the search for a currently intended 
action by the user starts at the root of the tree and can be 
described as follows: Traverse the tree and return the 
activated sensor with no activated subsensors. The 
priority amongst multiple activated subsensors at one 
level is increasing from the right to the left. Repetitive 
detections are ignored. The resulting behaviour 
guarantees that only one gesture or action becomes 
passed on per detection cycle. This tree search algorithm 
also operates at real-time at 60 Hz, after the processing of 
all sensor states have been finished.  

4.2 Temporal organisation 

The relationships in the sensor network rely on spatio-
temporal aspects, as well as on haptic aspects of the user 
interaction. The latter aspect addresses issues of the force 
applied by the user during the interaction, like push, pull, 
etc. In the simple example case, the user holds the stylus 
steady for more then 500 ms and applies a force in the 
direction of the orientation of the stylus, then the dwell 
and push sensors become activated, but only the push 
gesture is passed on. This behaviour is realised by the 
above proposed search algorithm and can be understood 
as early fusion of the hand position and orientation with 
the tactile modality (Oviatt et al., 2000). In another 
example the user released the stylus and no movement 
occurs anymore, the sequence of detected ‘actions’ is the 
following: after 500 ms the dwell action is detected, since 
in the next 3 s nothing changes, the stop sensor becomes 
activated. The tree algorithm determines stop as the next 
‘action’ assuming that no other sensor at that level in the 
tree is activated. Finally, after another 15s the halt sensor 
gets activated. The used terminology is unfortunately 
inexact, since dwelling, stopping, etc. can not be 
considered as a user action; it is rather an absence of 
action. A more appropriate terminology is under study, 
following, e.g., the taxonomy of Bobick (1997).  

4.3 Complex actions and gestures 
So far, only basic actions or gesture like approach, point, 
pull, push and slide have been implemented. As depicted 
in Figure 3, an alternative to the dwell sensor is a move 
sensor. This branch in the sensor tree could serve to 
detect more motion oriented aspects of the user 
interaction like, translation, a linear trajectory in space, 
or rotation, a circular or curved trajectory in space. Since 
these sensors require more development, their realisation 
is postponed until application scenarios demand them. To 
illustrate further possibilities based on these sensors, we 
now describe the detection of a more complex gesture: 
assumed that the user’s tool is a knife, and the user moves 
the tool forward in a linear manner, while at the same 
time applying force perpendicular to the blade of the 
knife. The user’s action could then be detected in the 
sensor tree as a slice action. Furthermore, multiple 
consecutive slice actions with alternating translation 
direction could be grouped and constitute a cutting action. 
Such a complex gesture recognition would be the result 
of a late fusion, where a sequence of actions over a 
couple of seconds become grouped and classified as one 
action or gesture (Oviatt et al., 2000). The different 

complementary information of the different sensors over 
time becomes integrated at a sematic level into a single 
action or intention. 

4.4 Queries to the sensors 
The processing of the sensors network can be understood 
as a bottom-up oriented processing, which pushes new 
detected actions and gestures into higher layers in the 
interaction model. These actions become interpreted as 
the user’s goal and drive the collaboration. During the 
planning of the information that is needed to be delivered 
to the user, it can be the case that information about the 
state of a sensor is required in order to optimally plan the 
delivery. In these situations, function calls enable to 
directly access the required information from the sensor 
in a pull-like or query-style manner. During planning, a 
top-down request is issued towards the sensors in the 
perceptual layer, and a response is fed back into the 
planning process. Therefore, managing the progress of 
the domain task and planning the information delivery 
can be influenced by or dependant on the states of the 
sensors. This pull-like access to sensor data blurs the 
boundary between the continuous and discrete layers in 
the interaction model, when, e.g., the success of a 
primitive task depends on a significant value of a physical 
sensor parameter. 

5 Architecture of the vertical prototype 
We developed vertical prototype for an information-
enriched virtual environment to demonstrate the interplay 
of explicit task representations and gesture interaction. 
The system architecture of the prototype is the integration 
of a haptic virtual environment or Haptic Workbench 
(HWB, Stevenson et al., 1999) and the Myriad platform 
for information delivery (Paris et al., 2004) (Figure 4).  

 
Figure 4. The basic components of the vertical 

prototype: a hand-immersive haptic virtual 
environment and the Myriad platform for  

information delivery. 

These systems are heterogeneous in the structure of their 
representation of objects and information. We connected 
them through the concept of interactive landmarks. The 
user interacts in a hand-immersive virtual environment 
and receives force feedback corresponding to the 
dynamic data model of the virtual environment. 
Instructions and feedback generated by the Myriad 
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platform become visually displayed in the virtual 
environment, but can also be delivered via text-to-speech 
(TTS) or non-speech audio (as depicted in Figure 4) 
(Müller-Tomfelde, 2004). The communication between 
the HWB, the Myriad Platform and other applications 
make uses of standard computer network communication 
facilities. 

The context model depicted in Figure 4 is accessed 
directly by the Myriad platform and provides the planning 
with all relevant information that is required for 
managing the collaboration and for executing the tutorial 
task. The context model specifies a domain knowledge 
model, a user model and a discourse history and the task 
models, amongst others.  

5.1 The functional parts of the interaction 
model 

The interaction model we described is realised partially in 
the haptic virtual environment and partially using the 
Myriad platform. While the continuous processing of the 
sensors detection is part of the rendering loop of the 
virtual environment, the Myriad platform basically 
handles with the symbolic output of this processing and 
sends queries directly to the sensors. The architecture of 
the of the prototype follows the schema of Figure 1, 
except that this representation (Figure 5) is rotated 
clockwise by 90 degrees.  

 

Figure 5. Details of the realisation of the interaction 
model in our prototype.  

On the left hand side, the user interacts with the system 
on the physical level, i.e., the user moves a stylus in the 
haptic virtual environment. This user activity is processed 
by sensors, and the review of the states of all sensors 
provide actions and gestures after the fusion and 
discrimination (see section 4). Finally, the action or 
gesture becomes interpreted as the user’s intention and 
represents the user’s turn in the collaboration. At that 
stage, further development happens in the Myriad 
platform. The collaboration gets managed, and the turn is 
up to the trainer to act corresponding the tutorial task. 
The appropriate tactics are selected based on the 
prevailing tutorial strategy (see section 3.2). In the next 
layer the instruction and feedback becomes planned and 
finally delivered to the user in the virtual environment. In 
the Myriad platform, the embedded engine builds plans 

for all layers of the interaction model based on 
declarative plan operators, which become decomposed 
into subgoals (Paris et al., 2004). This chain of processing 
happens every time the sensor network emits an action 
based on the user’s activity. Since the model of 
interaction is not hard coded, all the described processing 
include massive planning operations in real time. The 
dynamics of the collaboration and the task execution 
emerge through this planning with respect to an explicit 
domain model and the explicit tutorial and domain tasks.  

6 First Experiences and future work 
The vertical prototype as described in the prior section 
provides all the required feature and means to build an 
information-enriched virtual environment. Furthermore, 
the collaboration and task layer provides information 
about the task that is performed by the user. First 
experiences with simple training sessions reveal that the 
response time of the vertical prototype is reasonable using 
standard computer hardware. The sensor processing as 
well as the goal planner operate and communicate fast 
enough and provides the information to the user nearly 
instantaneously. More tasks have to be tested with the 
prototype to investigate the influence of, e.g., the 
complexity of the task on the system performance. 
Currently the turns of the participants in the collaboration 
is strictly alternating so when the ‘speaker’ remains silent 
the collaboration could be blocked. Although not a 
problem now, future demonstrators and applications have 
to show whether this approach has to be revisited or not. 
Finally, evaluations and user studies have to be planned 
and conducted to undermine the advantages of the 
proposed system and bring out the benefits for 
applications, like training or assistance.  

7 Conclusion  
This paper describes an approach for linking explicit task 
representations and gesture interaction to create an 
information–enriched virtual environment. The approach 
focuses on applications where the computer acts as a 
trainer or assistant to train implicit knowledge within a 
virtual environment. Another aspect of this approach is 
that it suits well for applications that require an explicit 
task representation, e.g., to document or assess the 
performance of user. The goal of this prototype is not 
only to enrich objects in the virtual environment, but also 
to support users with useful information to proceed in 
their tasks. Our approach makes use of a reference 
framework for continuous interaction to integrate the 
organisation of the collaboration and the tasks of the 
participants with the more continuous data processing for 
the gesture recognition. The explicit domain task 
representation allows the computer to mimic a trainer or 
assistant and to deliver appropriate information to the 
user in context. The tutorial task becomes executed on the 
computer to deliver the right instruction at the right time 
to the trainee during the course of the training session. 
First experiences with the vertical prototype using simple 
domain tasks are promising, and possible application 
scenarios considering other roles of the computer as a 
participant in a collaboration are investigated. 
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