
Exploiting a Proximity-based Positional Model to Improve the
Quality of Information Extraction by Text Segmentation

Dat T. Huynh Xiaofang Zhou

School of Information Technology and Electrical Engineering
The University of Queensland, Australia

Email: {tandat.huynh, zxf}@uq.edu.au

Abstract

A large number of web pages contain information of
entities in a form of lists of field values. Those implicit
semi-structured records are often available in textual
sources on the web such as advertisings of products,
postal addresses, bibliographic information, etc. Har-
vesting information of those entities from such lists of
field values is challenge task because the lists are man-
ually generated, not written in a well-defined tem-
plates or may miss some information. In this pa-
per, we introduce a proximity-based positional model
(PPM) to improve the quality of extracting informa-
tion by text segmentation. Our proposed model offers
improvements over the fixed-positional model pro-
posed in ONDUX, a current state-of-art method for
information extraction by text segmentation (IETS)
to revise the labels of text segments in an input list
of field values. Different from fixed-positional model
in previous work, the key idea of PPM is to define
proximity heuristic for labels in an input list in a
unified language model. Our proposed model is esti-
mated based on propagated counts of labels through
a proximity-based density function. We propose and
study several density functions and experimental re-
sults on different domains show that PPM is effective
to revise labels and helps to improve performance of
current state-of-art method.

Keywords: Proximity, positional model, information
extraction, text segmentation.

1 Introduction

Entity extraction, a typical task in information ex-
traction, is the process of extracting entities such as
people, organisations, or locations on web pages. It
has become an active and hot research topic over past
decade. According to the study and analysis of Guo
et al. (2009), named entities occurs in about 71% of
search queries of users. Nevertheless, current search
engines such as Google1 or Bing2, which support users
to search information on the web according to their
queries, are mainly based on keyword or text match-
ing techniques and do not capture the semantic in-
formation of objects and relations between objects.
Therefore, the problem of entity extraction, which

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 24th Australasian Database Conference
(ADC 2013), Adelaide, South Australia, January-February
2013. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 137, Hua Wang and Rui Zhang, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

1http://www.google.com
2www.bing.com

includes identifying named entities, their attributes
as well as the relations between entities, is an indis-
pensable task not only in query answering but also in
knowledge discovery from web environment.

In our work, we focus on the problem of entity
extraction in which information of entities are de-
scribed in a list of field values on web pages. As
some examples of the task, we consider an advertis-
ing about a car and an address of a person on web
pages: “Ford Falcon, White colour, December 1996,
$2,900.00, Western Australia 6155, 0402-744-126” or
“Dr. Janelle A. Briggs, 208 Carmody Rd, St. Lu-
cia QLD 4067’ ’. Such kinds of information are often
available in several textual sources on the web, such
as bibliographic information, postal addresses, adver-
tisings, recipes, etc. Therefore, it is an important
practical problem of information extraction that has
been frequently addressed in the recent literature. In
the second example, the following structured record
could be extracted:

<name, “Dr Janelle A. Briggs”>
<street, “208 Carmody Rd”>
<area, “St Lucia”>
<state, “QLD”>
<code, “4067”>
In the literature, the problem of entity extraction

from lists of field values is addressed as the problem of
information extraction by text segmentation (IETS)
in which information of entities organised in implicit
semi-structured records. There are various possi-
ble segmentation schemes to choose from list-specific
wrappers or statistical segmentation models. Since
the field values in the implicit semi-structured records
are not machine-generated and they are represented
in a textual representation, traditional wrapper-based
methods (Crescenzi et al. 2001, Arasu & Garcia-
Molina 2003) cannot be applied for the inputs which
are formatted differently in HTML. A dominant ap-
proach for this problem is the deployment of statisti-
cal methods, such as Hidden Markov Model (HMM)
(Borkar et al. 2001) and Conditional Random Fields
(CRFs) (Lafferty et al. 2001) to extract information.
In these statistical methods, an extraction model is
trained based on a training dataset which consists
of a set of text segments and their labels. CRFs-
based methods were proven to outperform HMM-
based methods and have been widely used in sev-
eral information extraction systems (Sarawagi 2008,
Zhao et al. 2008). They are more accurate and ro-
bust for extracting information of entities from such
records because they can exploit an arbitrary num-
ber of rich and correlated properties of words in sen-
tences. However, obtaining a large amount of training
data, which includes the association between string
segments with their corresponding attributes, to build
an extraction model may be very expensive or even

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

23

unfeasible in some situations. Therefore, some recent
studies proposed the usage of pre-existing datasets to
alleviate the need for manually labeled training data
(Agichtein & Ganti 2004, Mansuri & Sarawagi 2006,
Zhao et al. 2008). In these methods, known values
in a database are used to train a statistical model
for recognising the values of their attributes in an
input text. However, they made strict assumptions
about the single total order of field values in text se-
quences. Recently, Cortez et al. (2010) have proposed
ONDUX, an unsupervised method to overcome those
drawbacks. Instead of learning an extraction model
from training dataset, they exploited the values of la-
bels in a knowledge base to associate text blocks or
segments in an input text with the labels by employ-
ing matching functions on the overlapping tokens be-
tween segments and knowledge base. Then, the mis-
matched and unmatched labels are rectified by using
a sequential model and a positional model in a final
“reinforcement” phase. Both sequential model and
positional model are built from the input text to ver-
ify and potentially correct the assignments of labels
to text segments.

Our proposed method is an improvement the study
of Cortez et al. (2010). In matching phase, while the
study of Cortez et al. (2010) focused on the content-
related feature to define matching functions between
text segments and labels, we incorporate format-
related feature and combine with content-related fea-
ture to improve the performance of matching phase
and hence we can obtain high performance in a final
“reinforcement” phase. To combine format-related
feature and content-related feature into a single simi-
larity framework, we view each label or entity type as
a set and each text segment as a member of a set in
set theory and exploit the intensional and extensional
definition of a set to define a membership relation be-
tween a member and its set in a formal way. Due to
this, we incorporate both format-related and content-
matching functions in a novel type-based similarity
framework between a text segment and a label.

Moreover, positional model in reinforcement phase
in previous work only considers fixed positions of a
label in different lines in an input list when it revise
the labels of text segments. However, in practice it
cannot be ensured that a correct label always occur
in a fixed position in different lines. Therefore, we
relax this constraint by proposing a proximity-based
positional model (PPM) for labels.

The key idea of PPM is to define a language model
for each position of a label in an input text. The PPM
for a label at a position would be estimated based on
the propagated counts of the label in different posi-
tions in the input text. The occurrences of a label t
at the positions which near a position i will provide
more evidence than its occurrences in far positions.
In other words, each position of a label will receive
propagated counts of the label in near positions. A
main technical challenge in the proximity-based posi-
tional model for labels in an input list is how to de-
fine a propagation function and estimate a positional
model for the labels accordingly. We analyse several
functions in this paper and we show that with some
specific choices, our proximity-based positional model
for labels covers the fixed-positional model proposed
in (Cortez et al. 2010) as a special case.

To summarise, we believe that we make the fol-
lowing contributions.

• We propose a type-based similarity framework
to asset how likely a segment string should be a
member of a given set. By this way, we incor-
porate both format-related and content-related

features in a framework to recognise labels for
text segments with high performance.

• We propose a novel proximity-based positional
model (PPM) for labels to relax a rigid constraint
and improve performance of previous work. In-
stead of considering a label in a fixed position in
the input text, the distribution of the target la-
bel in different positions is taken in our model to
measure how likely a label occurs at a given posi-
tion. Our proposed model is proven more flexible
and robust than the fixed-positional model in the
previous work.

• We have conducted experiments on public
datasets and the experimental results prove that
our proposed techniques helps to improve the
performance as compared to the current state-
of-art study on the problem of information ex-
traction by text segmentation.

The remaining sections of this paper are organised
as follows. Section 2 presents existing related studies
on the problem of IETS in the literature. Next, we in-
troduce and formally define our proposed proximity-
based positional model (PPM) for labels in section
3. Then, we present a type-based similarity measure
in matching phase and the usage of PPM in refine-
ment phase to solve the problem of IETS in section
4. After that, our experiments and evaluations are
described and analysed in section 5. Eventually, sec-
tion 6 concludes the paper and suggests some future
work.

2 Related work

Information extraction by text segmentation (IETS)
is the process of converting an unstructured docu-
ment which contains implicit records into structured
form by splitting the document into substrings which
contain data values (Sarawagi 2008). In other words,
each text input or document forms one or several im-
plicit records and each implicit record is represented
in a form of a list of field values. The dominant ap-
proach to segment texts in an input list to extract field
values in the literature is the application of machine
learning techniques with two different techniques for
generating training data. The first technique, which
is called supervised approach, builds a training data
set manually by human (Seymore et al. 1999, Freitag
& McCallum 2000, Borkar et al. 2001, Lafferty et al.
2001, Peng & McCallum 2006, Mansuri & Sarawagi
2006). Meanwhile, the second technique exploits ex-
isting data in a knowledge base or reference table to
build training data automatically (Agichtein & Ganti
2004, Mansuri & Sarawagi 2006, Zhao et al. 2008,
Cortez et al. 2010)).

The studies of Seymore et al. (1999) and Freitag &
McCallum (2000) can be considered as the first stud-
ies addressing this problem in the literature. In their
work, a Hidden Makov Model (HMM) for recognising
the field values in an input text was constructed from
a provided training dataset. Later, this approach was
extended in the system DATAMOLD (Borkar et al.
2001), in which each state of an external HMM mod-
elling the sequence of field values in an input text con-
tains an internal HMM. Each internal HMM is built
as a model for recognising the value of each attribute.
In their work, both internal and external HMM are
trained from a hand-labelled dataset.

After that, Conditional Random Fields (CRFs)
(Lafferty et al. 2001) was proposed as an alternative
model for HMM to solve the task of labelling texts.

CRPIT Volume 137 - Database Technologies 2013

24

CRFs-based methods become popular in the field of
information extraction because of their high reflexi-
bility and good extraction results. They are proven
to outperform all previous learning-based methods
in both theory and experimental evaluations for the
problem of sequence labelling (Peng & McCallum
2006, Sarawagi 2008). However, although the qual-
ity of extraction results of HMM and CRFs are good,
these supervised methods require to have a large
amount of manually training data to build their ex-
traction model.

To reduce the dependency on manually labeled
data, as proposed in the study of Mansuri & Sarawagi
(2006), the authors exploited an existing structured
database to define new database-related features for
CRFs. Their method used only few labeled training
instances to train a CRFs-based extraction model.
Although this method exploited additional features
from a structured database, it still needs some user-
provided training data in their method.

Different from above methods, the general idea
of unsupervised approach is to exploit a pre-existing
datasource to build a training data for a statistical
extraction model. The study of Agichtein & Ganti
(2004) followed this idea and proposed an unsuper-
vised method with HMM. The method assumes that
all field values in text sequences share the same total
order. The technique firstly trains an HMM model
for each attribute by employing the reference table
data. These trained HMM models are used to find
the best start positions for every attribute in every
input sequence. Then it uses these positions to infer
the total order. Finally, a training dataset is directly
constructed from a reference table by concatenating
attribute instances in the table according to that total
order.

A similar technique was proposed in the study of
Zhao et al. (2008). However, the authors adapted the
algorithm of Agichtein & Ganti (2004) to CRFs in-
stead of using HMM. Different from HMM, CRFs is
not a generative model and it does not model the dis-
tributions of observations. Therefore, they proposed
a technique to infer the total order by augmenting
negative labels and negatively labeled examples in
the training data of attribute-CRFs. Due to this, the
attribute-CRFs will assign low likelihood scores to in-
correct starting positions of an attribute in an input
sequence.

Although both two methods of Agichtein & Ganti
(2004) and Zhao et al. (2008) do not require train-
ing data, it has some limitations. Firstly, both two
method makes a strict assumption about the single
total order of field values in text sequences. In prac-
tice, it is common to have more than one order of
attributes in a single dataset. Moreover, this method
has bad performance in running time because it re-
quires to execute inference step and training step for
each time it performs a new extraction on an input
text.

Recently, Cortez et al. (2010) proposed ONDUX,
an on-demand unsupervised approach for the prob-
lem of information extraction by text segmentation
(IETS). In their method, a knowledge base is em-
ployed to label text segments in citation strings via
attribute matching functions. Then, the labels of
those segments are revised by a reinforcement step
which uses both sequential and positional model. Al-
though the method obtained reasonable results on ex-
periments, there are some rooms to make improve-
ments. Firstly, the results of labelling phase in their
work totally based on matching functions of common
vocabularies between text segments in an input text
and attribute values of labels in knowledge base. In

other words, it exploits the content-related feature of
the text segments. This could not be effective, espe-
cially for some simple data types such as date-time,
phone numbers. Instead, format-related features of
data could be exploited to improve the performance
of matching phase. Secondly, to revise the labels of
text segments in reinforcement phase, the positional
model in previous work exploited the occurrences of
labels in a particular position in different strings in an
input list. In other words, a label of a text segment
is revised via a fixed position of the label in different
strings in the input list. We argue that since the labels
of text segments to be revised in reinforcement step
are generated from matching step through the usage
of some matching functions. Therefore, ones cannot
ensure that a majority of correct matched labels al-
ways occur in a fixed position in different strings in
the input list. Instead, the rigid constraint on fixed
positions of labels should be relaxed and the distribu-
tion of labels in the input text should be considered
to determine the probability of occurrence of a label
in a particular position.

Those disadvantages motivated our work, which is
an improvement of the study of Cortez et al. (2010).
On the one hand, we exploit both format-related fea-
tures and content-related features and incorporate
them in a type-based similarity model for matching
values in matching phase. On the other hand, we
propose a novel proximity-based positional model for
labels which exploits the proximity of labels in dif-
ferent positions in an input list. In next sections, we
present our proposed techniques in detail.

3 Proximity-based positional model for la-
bels

Cortez et al. (2010) proposed a positional model by
considering the number of occurrences of a label in a
fixed position in the input text. We argue that the
information of a label in a fixed position in different
lines of an input text may not be enough to determine
a label of a text segment in the position. Since ones
do not know in advance how many text blocks there
are in each line of an input list and the text segments
are labeled by matching functions, ones cannot ensure
that a correct label always occurs in a fixed position
in all lines.

As a simple example, ones can consider the labels
volume in citation strings in bibliographic domain.
Even they are written in the same orders of field val-
ues. The number of authors in those strings can be
different, the lengths of paper titles and book titles
can be different. Therefore, the positions of a correct
label in different lines of an input list can be different.
Ones can see another example in Figure 1. The figure
illustrates an example of the results when we apply
a labelling phase to have labels for text segments in
an input list. In the example, when we consider the
tex segments at the position two in a list, the number
of labels “Author” are equal to the number of label
“Title”. Therefore, if we just consider the number
of occurrences in a fixed position, we cannot deter-
mine the label of the text segment at the position two.
Meanwhile, if we consider the occurrences of the la-
bels “Author” in all positions in all lines of the list, we
can see that it occurs frequently in positions around
the position 2. That evidence of occurrences of labels
“Author” near the position two should be taken into
the probability to have the label “Author” in the po-
sition two. In other words, the neighbour positions
of a label should be considered when we compute the
probability of the label at a particular position. Based

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

25

on this idea, we propose a novel proximity-based po-
sitional model (PPM) for labels in which we exploit
information of different positions of a considering la-
bel in the input text to compute the probability to
have the label in a particular position.

3.1 Model formulation

The PPM for a label at a position would be estimated
based on the propagated label counts from the labels
at all other positions in an input text. Specifically,
each label at each position of the input text is deter-
mined by the evidence of its occurrence to all other
positions in the input text and the positions close
to the label will get more share of the evidence than
those far away. By this way, each position will receive
propagated counts of labels from all positions in the
input text. We formally define a proximity-based po-
sitional model (PPM) for labels as the following.

Given a list L including n lines L = (l1, l2, ...ln),
let TL = (t1, ..., ti, ..., tj , ..., tN) is a list of all possible
labels in the list L, N is obviously the number of
labels in L.

c(t, i): the number of times the label t occurs at
position i in different lines of the list L.

k(i, j): the discounting factor to the position i
from a label at the position j. This factor can be
any non-increasing function of |i − j| and called a
proximity-based density function. This means that
k(i, j) favours positions close to i. Several proximity-
based density functions can be chosen to define k(i, j).
Each density function will lead to a specific PPM. We
will analyse and explore different density functions in
section 3.2.

c′(t, i): the total propagated count of a label t at
position i from the occurrences of the label t in all po-
sitions in the list L. We notice that even if c(t, i) is 0,
c′(t, i) may be greater than 0. In other words, c′(t, i)
not only considers the positions of the label t at the
position i, but also takes into account the neighbour
positions of the label t via a proximity-based density
function. Formally, c′(t, i) is represented as in the
equation 1.

c′(t, i) =
N∑
j=1

c(t, j)k(i, j) (1)

From the label propagation function c′(t, i), we
have a label frequency vector <c′(t1, i), ..., c

′(tN , i)>
at a position i. Accordingly, positional information of
each label can be translated to label frequency infor-
mation in this vector. Based on this formulation, we
estimate a proximity-based positional model (PPM)
of a label t at position i in a list L as in the equation
2.

p(t|L, i) =
c′(t, i)∑

t′∈TL
c′(t′, i)

(2)

where TL is a set of labels in L and c′(t, i) is defined
by the equation 1.

According to the property of proximity-based
propagation function, the value of p(t|L, i) is mainly
influenced by labels around the position i, not a fixed
position in the list L. In other words, our model can
measure positional information of a label and incorpo-
rate it into a language model. Moreover, if the value
of σ is set to a small value, we would emphasise on
local proximity of labels. The balance of local prox-
imity evidence of labels in a string can be tuned by
the parameter σ. Thus, our model can capture the

proximity information of labels in a language mod-
elling framework. Once we obtain a PPM for each
position of labels, we use each PPM as a regular doc-
ument language model for matching with a label of a
text segment.

3.2 Proximity-based propagation functions
for PPM

A major challenge in PPMs for labels is how to define
the density function k(i, j). Different kernel functions
will lead to different PPM for labels. Following previ-
ous studies about computing the distances of words in
a document in information retrieval, we consider five
propagation functions k(i, j) in our work and adapt
the idea to labels in a document. Those functions are
Gaussian kenel (eq. 3), Triangle kernel (eq. 4), Cosine
kernel (eq. 5), Circle kernel (eq. 6), and Rectangle
kernel (eq. 7) (De Kretser & Moffat 1999, Petkova &
Croft 2007, Kaszkiel & Zobel 2001).

Examples of the curves of those kernel functions
can be illustrated in the Figure 2. It can be seen in
the figure that all the kernel functions have the range
values from zero to one and they obtain the highest
value when i equals to j. In the kernel functions,
σ is a tuning parameter, which controls the spread of
kernel curves to restrict the propagation scope of each
label in a document. The optimal value of σ may vary
according to different labels. If a label have wider se-
mantic scope in a document, the value of σ should
be larger. Due to proximity-based density function,
PPM for labels allows us to explore the scope of po-
sitions of labels in a list L.

• Gaussian kernel:

k(i, j) = exp[
−(i− j)2

2σ2
] (3)

• Triangle kernel:

k(i, j) =

{
1− |i−j|σ if |i− j| ≤ σ
0 otherwise

(4)

• Cosine kernel:

k(i, j) =

{
1
2 [1 + cos(|i−j|.πσ)] if |i− j| ≤ σ
0 otherwise

(5)

• Circle kernel:

k(i, j) =

{√
1− (|i−j|σ)2 if |i− j| ≤ σ

0 otherwise
(6)

• Rectangle kernel:

k(i, j) =

{
1 if |i− j| ≤ σ
0 otherwise

(7)

Moreover, we can show that the positional model
proposed in the study of Cortez et al. (2010) is actu-
ally a special case of our PPM when we set the value
of σ to zero. In fact, when the value of σ equals to
zero, the expression |i − j| < σ returns true if i = j.
In this case, proximity-based density function k(i, j)
is represented the equation 8.

k(i, j) =

{
1 if i = j
0 otherwise

(8)

CRPIT Volume 137 - Database Technologies 2013

26

Figure 1: An example of labels to be revised after matching phase

Figure 2: Proximity-based kernel functions (σ = 12.0)

From the equation 1, the proximity-based propaga-
tion function c′(t, i) = c(t, i) for all the values of i. In
other words, the value of proximity-based propaga-
tion function is equal to the number of times the label
t occurs at position i in different lines of the list L.
Therefore, we can conclude that the fixed-positional
model in the study of Cortez et al. (2010) is a special
case of our proximity-based positional model when we
adjust the value of σ to zero.

4 Exploiting proximity-based positional
model in IETS

In this section, we begin by stating the problem of
IETS and then present the usage of proximity-based
positional model and other techniques to improve the
quality of extracting information.

4.1 Terminology and problem definition

Consider a list L of n lines, where each ith line li
is a string which represents an implicit unstructured
record. For example, in bibliographic domain, each
line li is a reference as a string to represent the field
values of an academic publication. A typical repre-
sentation of a publication may include information of
authors, title, book title or publication venue, pages,
date, volume, and some other information of a publi-
cation.

Formally, each a line li can be represented as li =
{v1d1v2d2v3d3...}, where vi are field values, and di
are delimiter or symbols to separate field values vi.
A delimiter is any character other than A..Z, a..z,
or 0..9. The delimiters split a line into a sequence
of tokens. The delimiters separate field values but
may occur in field values. Each line is written in a
particular style which defines the order of field values
and delimiters to separate field values.

To assign labels for input list, we exploit a
knowledge base which contains a set of pairs K =

{<t1, E1>, ..., <tm, Em>} where ti is a distinct field
or a label, Ei is a set of field values or occurrences of
the field ti. Given a list L of n lines including field val-
ues on a web page and a knowledge base KB, our goal
for the problem of IETS is to extract automatically
the field values in L and store them in a structured
form, e.g a table, or an xml file.

4.2 Algorithm overview

Our method can be described in a sequence of op-
erations over the input text. In general, the opera-
tions in our algorithm can be grouped into three main
phases: splitting phase, matching phase, and refine-
ment phase. In the splitting phase, each string in
the input list is split into multiple text segments. In
matching phase, we exploit a knowledge base to as-
sign labels for text segments in the input list. In this
phase, we devise a type-based similarity measure to
evaluate how likely a text segment should have a la-
bel t in knowledge base. After matching phase, some
text segments in the input list are unmatched with
the knowledge base and therefore they do not have
labels. Meanwhile, some other ones may have mis-
matched labels. These unmatched and mismatched
labels will be revised by refinement phase. Due to this
phase, they are detected and fixed if they are likely
to be incorrect. To do that, proximity-based posi-
tional model proposed in section 3 is used to combined
with sequential model to revise the results matching
phase. Details about splitting, matching and refine-
ment phase are accordingly described in section 4.3,
4.4, and 4.5.

4.3 Text-splitting phase

In this section we firstly present the text-splitting
phase in our method to split input list into text seg-
ments, then explain the type-based similarity mea-
sure which we propose to label text segments. The
algorithm of splitting text for each string in an input
list is described in Algorithm 1. It is improved from
the algorithm of block texts proposed in the study
of Cortez et al. (2010) in which we consider format-
related features to define regular expressions to seg-
ment and recognise the field values of some simple
datatypes. In our work, we recognise eight primi-
tive datatypes including numbers, date-times, page
numbers, volumes and issues, URLs, email addresses,
and phone numbers, then define regular expressions
to segment texts in an input list. Due to this, we can
obtain high performance on those simple datatypes
and helps achieve effectiveness when we revise the la-
bels of other field values in the input list in refinement
phase. In the algorithm of splitting a line into text
segments, we initially extract tokens from a string l
based on the occurrence of white spaces. For each

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

27

token t
′

in a string l, we find a sequence of con-
secutive tokens starting from t

′
which satisfies any

pre-defined regular expression to group them into a
text segment. Moreover, if any two consecutive to-
kens co-occur in the same instance value according to
a knowledge base, they will be in the same text seg-
ment. We notice that tokens which do not occur in
the knowledge base are always in a single segment.

Input: A string l in an input list L, a
knowledge base K, a set of regular
expressions R for format-related
features

Output: A set B of text segments
T

′
: <t

′

0, ..., t
′

n> = Extract all tokens from
string l;
j = 0, i = 0;
while j < n do

k = j + 1;
while k < n do

if t
′

j ...t
′

k satisfies a regular expression in
R then

Bi = {t′j ...t
′

k};
i = i + 1;
j = k +1;

end
k = k + 1;

end

Bi = {} ∪<t′j>;

C = {<t,E> ∈ K, e ∈ E|t′j , t
′

j+1 ∈ e};
if C is not empty then

t
′

j and t
′

j+1 co-occur ;

Bi = Bi ∪<t
′

j+1>;
j = j + 1;

end
i = i + 1;
j = j + 1;

end
Algorithm 1: Algorithm for text-splitting phase

4.4 Matching phase

Given a text segment s, the purpose of labelling phase
is to exploit a knowledge base to assign to s a label
t based on the features of the string s. Therefore, we
consider the process of of matching a string s and a
label t as the process of checking whether the element
s is a member of a set with the label t or not.

According to set theory, a membership relation be-
tween an element and a set can be described in two
ways: intensional and extensional definition. Inten-
sional definition of a set formulates its meaning by
specifying all properties which an element must sat-
isfy to reach the definition. For example, a year often
has four digits and starts with the prefix “19” or “20”.
Similarly, the page numbers of a paper often starts
with one of strings in the set {“page”, “pages”, “p”,
“pp”, “pg”} and two numbers separated by a punc-
tuation such as “-” or “˜”. The properties to define
a set in intensional definition can be implemented in
rules to verify whether an element is a member of the
set or not. In our work, we formulate this type of
features in a function fr illustrated in the equation 9.

fr(s, t) =

{
1 if ∃r ∈ Rt : r(s) = true
0 otherwise

(9)

where Rt is a set of rules for the label t to check
whether the string s has a membership relation with
t or not. The function r(s) is the application of the
rule r on the string s. If there is a rule r in Rt can be
applied to the string s, the function fr(s, t) returns
one, otherwise, it returns zero.

Meanwhile, extensional definition describes a set
by specifying every element in the set. In this way,
we consider each label t as a set and its field values
are elements of the set. Therefore, the similarity be-
tween a string s and a label t can be computed via
the instance values of the label t in a knowledge base.
Based on the values of the labels, we exploit the com-
mon tokens/q-grams shared between a string s and
the values of a label t to define the similarity function
between them. There are several ways to define this
function. One of way is to view each text segment s
as a query and all tokens in the instance values of the
label t as a document, then we can apply any ranking
function in information retrieval to measure and rank
a label t by the relatedness between the query s and
the label t. Similar to (Cortez et al. 2010), we define
the matching function for this content-related feature
as in the equation 10.

fc(s, t) =

∑
w∈s fitness(w, t)

|s|
(10)

The fitness scores are computed for all tokens/q-
grams w in the query string s, and the label t and
it is defined as in the equation 11.

fitness(w, t) =
freq(w, t)

freq(w)
× freq(w, t)

freqmax(t)
(11)

where freq(w, t) is the number of values of the label
t containing the token w, freq(w) is the total number
of instance values in the knowledge base containing
the token w, and freqmax(t) is the highest frequency
of any token in instance values of the label t. The
first fraction in the equation 11 represents the prob-
ability to have the token w in the type t. Given a
token w, the first fraction returns the same value if
the frequencies of the token in instance values of two
different labels are alike. Therefore, the second frac-
tion is used as a normalisation factor to take into
account the importance of a token for a label. A to-
ken will be more important for a label if it occurs in
several instance values of that label as compared to
other tokens.

4.5 Refinement phase

The main purpose of refinement phase is to revise
the results of the labelling phase to give labels for
unmatched segments and rectify mismatched ones.
Cortez et al. (2010) exploited the transitions of labels
in an input text to revise the labels. This strategy
is based on an assumption that the number of cor-
rect labels are more than incorrect ones in an input
list. Moreover, it assumes that incorrect labels do not
occurs within the same record. Therefore, statistical
analysis on labels enables us to detect incorrect ones
and fix them. A graphical model is built to represent
the likelihood of transitions labels in the input text.
For example, if there are several transitions from the
label “author” to the label “year”, the probability
to revise an unknown label before the label “year”
should be higher than probability to have other la-
bels.

A sequential model (SM) for labels in an input list
is defined as the following:

CRPIT Volume 137 - Database Technologies 2013

28

• A set of states T = {begin, t1, t2, ..., tN , end}
where each state ti describes an entity type la-
beled to a substring.

• A matrix A where the element aij is the proba-
bility of making a transition from state i to state
j. Each element aij in the matrix A is defined as
the equation 12.

aij =
Number of transitions from state ti to state tj
Total number of transitions out of state ti

(12)
An example of a sequential model in bibliographic

domain can be seen in Figure 3. A sequential model
is used to revise labels in the results of matching step
and helps to improve the recall of extraction results.
However, since the order of field values can be differ-
ent in each line of input list and each line may contain
several text segments, the usage of sequential model
can decrease the precision of the system. For exam-
ple, in bibliographic domain, a year can occur both
after author names and conference names of different
strings on a web page. Therefore, when we use only
sequential model to revise an unknown text segment
before a year, it may be labelled it as an “author” in-
stead of “conference” if the transition from “author”
to “year” is more popular. To deal with this problem,
we exploit our proposed proximity-based positional
model to determine the labels of text segments.

The proximity-based positional model for labels
can be defined as a matrix P where the entry pjk
denotes the probability of the label tj appearing at
the k-th position in a line of input list. Formally, the
value of pjk is defined as in the equation 13.

pjk = p(tj |L, k) (13)

To compute the probability to have a label t for a
text segment, we combine matching score, sequential
model score and proximity-based positional model
score by using Bayesian disjunctive operator as in
equation 14.

sim(s, t) = 1− (1− fr(s, t))× (1− fc(s, t))×
(1− fs(s, t))× (1− fp(s, t))

(14)

fs(s, t) = aij (15)

fp(s, t) = pjk (16)

The value of fs(s, t) and fp(s, t) are accordingly
defined by equation 15 and 16. In the equation 15,
i is the index of the label t in a list of labels T, j is
the index of the label of the next segment of s. In
the equation 16, j is the index of t in T and k is
the position of s in an input string. The value of aij
and pjk are accordingly defined by sequential model
as in the equation 12 and proximity-based positional
model in the equation 13. Both matrixes A and P in
both models are built directly by a single pass on the
input list.

5 Experiments and results

In this section, we present our experiments to eval-
uate our method on real datasets to show that our
proposed method can achieve better performance
than the current state-of-art method of Cortez et al.
(2010). We firstly describe the experimental setup
and metrics for evaluations. Then we report experi-
mental results and compare with previous work.

5.1 Data settings

We run experiments on the public datasets in two do-
mains: bibliographic and addresses domain. In each
domain, we build a knowledge base and testing data
from different data sources. Firstly, in bibliographic
domain, we use datasets from experiments in pre-
vious studies. They are CORA collection (Peng &
McCallum 2006), and PersonalBib dataset (Mansuri
& Sarawagi 2006, Zhao et al. 2008). We note that
the experimental results our paper are performed on
whole 500 citations in Cora dataset, not only 150 cita-
tions as reported in the paper of Cortez et al. (2010).
In the domain Addresses, we download two datasets
BigBook and LARestaurants from the RISE reposi-
tory (RISE 1998) and then manually label the field
values in each dataset. Detailed information about
these datasets in both domains is summarised in ta-
ble 1.

5.2 Metrics for evaluation

In the experiments, we verify the extraction results in
each phase and evaluate how much our proposed tech-
niques can give better performance than techniques
used in the study of Cortez et al. (2010), the cur-
rent state-of-art study on IETS. In the evaluation,
we utilise well-known precision, recall, and F1 mea-
sure to compare.

We denote Ai as a referent set and Bi as testing
results to be compared with Ai. The precision (Pi),
recall (Ri) and F1 measure (Fi) are accordingly de-
fined as in the equation 17, 18, and 19. In our exper-
iments, Ai is the set of tokens which compose values
with a label and Bi is a set of terms assigned to a
corresponding label by our method.

Pi =
|Ai ∩Bi|
|Bi|

(17)

Ri =
|Ai ∩Bi|
|Ai|

(18)

Fi =
2× Pi ×Ri
Pi +Ri

(19)

5.3 Experimental results and evaluation

In this section, we present the experimental results on
both domains bibliographic and addresses and com-
pare our results with the study of Cortez et al. (2010).

5.3.1 Bibliographic domain

Table 2 shows experimental results when we segment
citation strings by matching phase only (M), match-
ing and sequential model (M+SM), matching and
reenforcement by fixed-positional model (M+PM),
matching phase and reenforcement by fixed-positional
and sequential model (M+SM+PM). We notice that
we incorporates format-related features through rules
in our matching phase. Therefore we can obtain high
performance of extraction on simple data types such
as page numbers, years, volumes and issues, as com-
pared to what reported in the study of Cortez et al.
(2010). We observe that the extraction process on
those data types can be achieved above 94% of F1-
measure. Therefore, in the next experiments, we con-
sider how proximity-based positional model can im-
prove the performance on three main labels including
“Author”, “Title”, and “Booktitle”.

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

29

Figure 3: An example of a sequential model (SM)

Since the kernel function used to estimate the
model can determine the performance of each strat-
egy, we test our five proposed proximity-based kernel
functions mentioned in 3.2 and conduct experiments
to choose the best kernel function for our PPM for
labels. To compare different kernel functions, we sys-
tematically vary the values of σ from 0 to 40 in the
increments of 0.5 and observe the changes of the av-
erage F1 measure on the extraction of three labels
“Author”, “Title”, and “Booktitle”. The results of
these experiments are illustrated in Figure 4.

Among all the kernel functions, we see that PPM
with Gausian kernel gives the best performance as
compared to other ones. Moreover, the peak value
from the model can be obtained when the value of σ
equals to three. The fact that Gausian kernel gives
best performance can be explained is that the func-
tion has a special property: the propagated count
drops slowly when the distance value |i− j| is small,
but drops quickly as the this distance value is large.
This property is reasonable since the dependent la-
bels in an input text often occur in an area near a
particular position.

Moreover, to compare with the baseline and see
how PPM can effectively capture proximity of labels
in input text, we run experiments by using PPM with
Gausian kernel (σ = 3) and compare with the base-
line. The 4th column (M+SM+PPM) in the table 3
illustrates the results of our method as compared to
the baseline (M+SM+PM) when we set value of σ to
three. In general, proximity-based positional model
gives better final performance of labelling text seg-
ments as compared to fixed-positional model in pre-
vious work on bibliographic domain.

5.3.2 Addresses domain

Similar to bibliographic domain, we repeat the ex-
periments in our method and compare with pervious
work on Addresses domain. The experiments show
that we can obtain 98.11% of F1-Measure by exploit-
ing format-related features which are implemented in
some simple regular expressions to recognise phone
numbers. We also vary the values of σ and see how
PPM model can improve performance of extraction
as compared to the study of Cortez et al. (2010). It
is interesting that the best final performance of our
method when we use PPM model with different ker-
nels is similar to performance we obtain by using a
fixed positional model. That best performance is ob-
tained when we set σ to be zero. As we have proven
in the section 3.2, when fixed-positional model is ac-
tually a case of our model when we set the value of
σ to be zero. Therefore, the results in two model in
that case are similar.

The results of the performance can be explained by
following reasons. Firstly, different from bibliographic

domain, we notice that the dataset LARestaurants in
Addresses domain is quite regular. Each field value
includes only few tokens and the lengths of lines and
field values in the dataset are quite similar. All ad-
dress strings are written in a single order of field val-
ues.

Moreover, after using a simple application to count
the common tokens in different field values within
Bigbook dataset and LARestaurants dataset, we see
that there is no overlapping token between the values
of any two different fields in both knowledge base and
testing data. In other words, the tokens in different
fields are totally distinct. Therefore, when we per-
form matching phase, all text segments are assigned
to a correct label or an empty label. In addition, the
number of tokens in the values of each field in test-
ing data are similar. Therefore, the positions of text
segments given the same labels are similar. Mean-
while, in bibliographic domain, citation strings can
have different authors, different of length of paper ti-
tle. Therefore, the positions of text segments of a
label can be different.

6 Conclusion

In this paper, we propose two novel techniques to im-
prove the quality of information extraction by text
segmentation. On the one hand, instead of exploiting
matching based functions on values as in the study
of Cortez et al. (2010), we propose a novel similarity
measure in which we incorporate both format-related
and content-related features into a type-based simi-
larity measure. By combining both features into a
single similarity measure, we achieve better perfor-
mance on some primitive datatypes. This helps to im-
prove the performance of revising steps. On the other
hand, instead of considering the fixed positions of la-
bels in reinforcement step as in previous work, we re-
lax that constrains by our proximity-based approach.
We consider related positions of labels appearing in
different positions in an input list and combine it with
sequential model to improve the quality of extraction
model. In our work, we propose and study five differ-
ent proximity-based density functions to estimate the
proximity-based positional model. Experimental re-
sults show that the Gaussian density kernel achieves
best performance and the results of our method yield
higher performance than the state-of-art method.

The proposed technique opens some interesting fu-
ture research directions. One of interesting directions
is to study how to tune the value of σ automatically
based on the statistics of labels in an input list. That
is one of the future studies which we are investigating.

CRPIT Volume 137 - Database Technologies 2013

30

Figure 4: Performance on Cora dataset with different propagation kernel functions

7 Acknowledgement

We would like to thank Eli Cortez for explaining some
technical details of experiments in the paper of Cortez
et al. (2010).

References

Agichtein, E. & Ganti, V. (2004), Mining reference ta-
bles for automatic text segmentation, in ‘Proceed-
ings of the tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining’,
pp. 20–29.

Arasu, A. & Garcia-Molina, H. (2003), Extracting
structured data from web pages, in ‘Proceedings of
the 2003 ACM SIGMOD International Conference
on Management of Data’, pp. 337–348.

Borkar, V., Deshmukh, K. & Sarawagi, S. (2001),
Automatic segmentation of text into structured
records, in ‘Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data’,
pp. 175–186.

Cortez, E., da Silva, A. S., Gonçalves, M. A. &
de Moura, E. S. (2010), Ondux: on-demand un-
supervised learning for information extraction, in
‘Proceedings of the 2010 international conference
on Management of data’, SIGMOD ’10, ACM, New
York, NY, USA, pp. 807–818.

Crescenzi, V., Mecca, G. & Merialdo, P. (2001),
Roadrunner: Towards automatic data extraction
from large web sites, in ‘Proceedings of the 27th In-
ternational Conference on Very Large Data bases’,
pp. 109–118.

De Kretser, O. & Moffat, A. (1999), Effective docu-
ment presentation with a locality-based similarity
heuristic, in ‘Proceedings of the 22nd annual inter-
national ACM SIGIR conference on Research and
development in information retrieval’, SIGIR ’99,
ACM, New York, NY, USA, pp. 113–120.

Freitag, D. & McCallum, A. (2000), Information ex-
traction with hmm structures learned by stochas-
tic optimization, in ‘Proceedings of the Seventeenth
National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of
Artificial Intelligence’, AAAI Press, pp. 584–589.

Guo, J., Xu, G., Cheng, X. & Li, H. (2009), Named
entity recognition in query, in ‘SIGIR ’09: Proceed-
ings of the 32nd international ACM SIGIR confer-
ence on Research and development in information
retrieval’, ACM, New York, NY, USA, pp. 267–274.

Kaszkiel, M. & Zobel, J. (2001), ‘Effective ranking
with arbitrary passages’, Journal of the Ameri-
can Society for Information Science and Technol-
ogy 52(4), 344–364.

Lafferty, J. D., McCallum, A. & Pereira, F. C. N.
(2001), Conditional random fields: Probabilistic
models for segmenting and labeling sequence data,
in ‘Proceedings of the 18th International Confer-
ence on Machine Learning’, pp. 282–289.

Mansuri, I. R. & Sarawagi, S. (2006), Integrating un-
structured data into relational databases, in ‘Pro-
ceedings of the 22nd International Conference on
Data Engineering’, pp. 29–40.

Peng, F. & McCallum, A. (2006), ‘Information ex-
traction from research papers using conditional
random fields’, Information Processing and Man-
agement 42, 963–979.

Petkova, D. & Croft, W. B. (2007), Proximity-based
document representation for named entity retrieval,
in ‘Proceedings of the sixteenth ACM conference
on Conference on information and knowledge man-
agement’, CIKM ’07, ACM, New York, NY, USA,
pp. 731–740.

RISE (1998), Rise - a repository of online informa-
tion sources used in information extraction tasks,
http://www.isi.edu/info-agents/rise/index.html.

Sarawagi, S. (2008), ‘Information extraction’, Foun-
dation and Trends in Databases 1(3), 261–377.

Seymore, K., Mccallum, A. & Rosenfeld, R. (1999),
Learning hidden markov model structure for infor-
mation extraction, in ‘AAAI99 Workshop on Ma-
chine Learning for Information Extraction’, pp. 37–
42.

Zhao, C., Mahmud, J. & Ramakrishnan, I. V. (2008),
Exploiting structured reference data for unsuper-
vised text segmentation with conditional random
fields, in ‘Proceedings of the SIAM International
Conference on Data Mining’, pp. 420–431.

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

31

Domain Dataset Attributes Records
Bibliographic Data Cora 13 500

PersonalBib 7 395
Address Data Bigbook 5 4,000

LARestaurants 4 250

Table 1: Domains and datasets used in our experiments.

Field Matching(M) M+SM M+PM M+SM+PM
Author 0.7080 0.7548 0.6774 0.7845
Title 0.7882 0.7650 0.6331 0.8217
Booktitle 0.7971 0.8609 0.6375 0.7967
Pages 0.9961 0.9961 0.9961 0.9961
Year 0.9912 0.9912 0.9912 0.9912
Volume 0.8483 0.9787 0.7880 0.9404
Issue 0.9663 0.9663 0.9663 0.9663

Table 2: Experimental results on Cora dataset.

Field M M+SM+PM M+SM+PPM
Author 0.7080 0.7845 0.7949
Title 0.7882 0.8217 0.8457
Booktitle 0.7971 0.7967 0.8068
Pages 0.9961 0.9961 0.9961
Year 0.9912 0.9912 0.9912
Volume 0.8483 0.9404 0.9818
Issue 0.9663 0.9663 0.9663

Table 3: Experimental results on Cora dataset.

Field M M+SM M+PM M+SM+PM M+SM+PPM
Name 0.6182 0.8148 0.8903 0.9724 0.9724
Street 0.9073 0.8298 0.8591 0.9808 0.9808
City 0.7388 0.9845 0.8388 0.9857 0.9857
Phone 0.9811 0.9874 0.9817 0.9923 0.9923

Table 4: Experimental results on LARestaurants dataset.

CRPIT Volume 137 - Database Technologies 2013

32

