
FEAS: A full-time event aware scheduler for improving responsiveness
of virtual machines

Denghui Liu, Jinli Cao
Department of Computer Science & Computer

Engineering, Engineering & Mathematical Sciences
La Trobe University, Melbourne Victoria 3086, Australia

d8liu@students.latrobe.edu.au,
j.cao@latrobe.edu.au

Jie Cao

Jiangsu Provincial Key Laboratory of E-Business,
Nanjing University of Finance and Economics

 Nanjing, China

caojie690929@163.com

Abstract
Due to the advances in software and hardware support for
virtualisation, virtualisation technology has been adapted
for server consolidation and desktop virtualisation to save
on capital and operating costs. The basic abstraction layer
of software that virtualises hardware resources and
manages the execution of virtual machines is called virtual
machine monitor (VMM). A critical part of VMM is the
CPU scheduler which slices and dispatches physical CPU
time to virtual machines. Xen’s credit scheduler utilised
blocked-to-boosted mechanism to achieve low latency on
I/O intensive tasks. However, it suppresses event
notifications for the guest domain that is not blocked. This
may delays the response of a guest domain doing mixed
workloads, as its virtual CPU is seldom blocked when
processing CPU-intensive tasks. We enhance the credit
scheduler by making it full-time aware of inter-domain
events and physical interrupt request events. Our proposed
scheduler not only improves the responsiveness of
domains doing mixed workloads, but also minimises the
possibly caused scheduling unfairness. The experimental
evaluation demonstrates the benefits of our proposed
scheduler. .

Keywords: Virtual machine, Xen, Paravirtualization.

1 Introduction
Virtualisation technology involves the virtualisation of
several critical parts of a computer, such as CPU, memory,
network and storage. It partitions the underlying physical
resources and makes them shared among multiple virtual
machines (VMs) (or domains) either by assigning a
portion of physical resources to each VM (e.g. hard disk)
or by switching from one VM to another in a very short
time frame to use the physical resources in turns (e.g.
CPU). These VMs run in parallel on a single physical
machine under the control of virtual machine monitor
(VMM) and they can have different operating systems.

Virtualisation technology opens up the possibility of
server consolidation which increases the efficient use of
server resources by consolidating multiple servers running
different operation systems onto a single physical server.
Desktop virtualization is another major application of the

Copyright © 2012, Australian Computer Society, Inc. This paper
appeared at the 35th Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia, January-February 2012.
Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 122. M. Reynolds and B. Thomas, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

virtualisation technology, in which case users only need a
thin client to display the desktop interface locally while
have all backend processing done in a dedicated VM that
resides remotely in the Cloud. Both situations involve the
execution of CPU intensive tasks and I/O intensive tasks,
and often need to process a mix of both kinds at one time.
The complexity of workloads makes it a great challenge
for the VMM scheduler to maximise throughput and
minimise latency while ensuring fairness.

This paper is based on the observation of Xen 4.0.1
(Xen 2011) platform. Its default scheduler, named credit
scheduler, employs the BOOST mechanism to achieve low
I/O response latency which works reasonably well when
VMs have relatively monotonous workloads. The
schedulable entities of a VM are the virtual CPUs
(VCPUs) it has. The priority of an idle VCPU is boosted to
get an immediate execution when it receives an event. This
allows VMs performing I/O tasks to achieve lower
response latency. However, the responsiveness of a VM
diverges if it also does CPU intensive tasks at the same
time. A VCPU waiting in the run queue does not get
properly boosted when it receives an incoming event. The
event notification is suppressed and thus has no effect on
the scheduling. This might make the event sender wait
unnecessarily and delay the following jobs.

 An enhanced version of credit scheduler is presented in
this paper to improve the responsiveness of busy VMs by
taking advantage of Xen’s split driver model and even
channels. The device driver in Xen is split into two
portions. Domain 0 or a dedicated driver domain hosts the
front portion that directly interacts with the device, and the
other portion resides in unprivileged guest domains. These
two parts notify each other of waiting data using the Xen
event channel mechanism and exchanged data via the I/O
ring mechanism. The proposed scheduler monitors the
events sent across VMM and boosts the runnable VCPUs
receiving events originating from another domain or
physical interrupt requests (PIRQs). To complement credit
scheduler, the proposed scheduler prioritises not only
blocked VCPUs but also runnable ones, and is called
full-time event aware scheduler (FEAS). A VM processing
mixed workloads can greatly benefits from prompt
scheduling upon receiving an incoming event, particularly
if it is an I/O related event.

The rest of this paper is organized as follows. Section 2
discusses previous research on VM scheduling and relates
the virtual-machine monitor Xen. Section 3 presents the
design of our proposed scheduler for Full-time event
aware scheduling. Some experimental tests have been
conducted to verify/demonstrate the performance

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

3

improvements and the analysis of results has also been
included in Section 4. Finally, the conclusions and future
work are presented in Section 5.

2 Related work
This section firstly discusses previous research on VM
scheduling, then describes the architecture of Xen’s split
driver model and its credit scheduler.

2.1 VM scheduling
Three different VM schedulers have been introduced over
the course of Xen’s history, which are Borrowed Virtual
Time (BVT) scheduler, Simple Earliest Deadline First
(SEDF) scheduler, and Credit Scheduler. All these three
are Proportional Share schedulers which allocate CPU in
proportion to the VMs’ weight. Cherkasova et al. (2007)
comprehensively analysed and compared the impacts of
schedulers and their respective scheduler parameters on
the performance of I/O intensive applications running on
virtual machines.

Ongaro et al. (2008) study the impact of the credit
scheduler with various configurations on the performances
of guest domains concurrently running a mixed workload
of processor-intensive, bandwidth-intensive, and
latency-sensitive applications. They suggest in their work
that latency-sensitive applications should be placed in
their own VMs to achieve the best performance. The
purpose of our paper is to address this problem.

Govindan et al. (2009)’s communication-aware
scheduler monitors the I/O ring and preferentially
schedules the VMs that receive more data packets or are
anticipated to send more data packets. However, the
scheduler relies on accumulating the number of packets
received or sent over a certain period of time and does not
provide the immediate response to an incoming event.

Kim et al. (2009) made scheduler task aware by using
the gray-box knowledge. The scheduler infers the
guest-level I/O tasks by identifying the tasks using the
CR3 register and then monitoring their time slices. A task
is considered to be an I/O task based on two grey-box
criteria: it immediately pre-empts the running task if the
guest VM receives an event and its time slice is short.
However, classifying the tasks just based on the CPU
usage is not enough (Xia et al., 2009).

Xia et al. (2009) propose a pre-emption aware
scheduling (PaS) interface. Same with our scheduler, PaS
also improves the responsiveness of busy VMs by
allowing the VCPU to pre-empt when an event is pending
while it is waiting in the run queue. But in that approach
the event channels on which the pre-empting condition is
based need to be pre-known and registered to the guest
kernel.

2.2 Xen and Split driver model
Xen 4.0.1 is used in our research. Xen adopts the
paravirtualization approach and its guest operating
systems require modifications to be able to run on the Xen
platform. The Xen hypervisor sits between the hardware
and the co-existing virtual machines. It has full control
over hardware resources and dispatches them to different
VMs according to a set of predefined rules.

Device drivers are the essential software for any
operating system to communicate with physical hardware.

Xen’s split driver model divides the device driver into two
portions, the front end and the back end (Figure 1). The
back end handles the physical device and the front end acts
as the proxy of the back end. The back end is typically in
Domain 0 but sometimes in a dedicated driver domain.
Unprivileged guest domains have the front end with which
they can accomplish a network or disk request.

The two portions of device driver notify each other of
critical events using event channels and pass messages
using I/O ring buffers. Event channel is the primitive
notification mechanism within Xen. When the remote
domain is busy or yet to be scheduled, an event is
asynchronously delivered from its source to it to indicate
the relevant event on the source domain. The ring buffers
are implemented in the shared memory pages shared by
both driver ends. Front end and back end exchange data by
sending over the memory addresses of data pages rather
than doing a full copy. This zero-copy feature enables fast
message passing and consequently fast I/O.

Figure 1: Xen split driver model

 Based on the source of events, there are four types of
events sent over the event channel. They are physical
interrupt request (PIRQ) events, virtual IRQ (VIRQ)
events, inter-domain events and intra-domain events.
PIRQ events are mapped to the real IRQs of various
physical devices. As an incoming IRQ generated by a
device is likely not for the currently running domain, its
corresponding PIRQ event is enqueued on the target
domain and then processed when the domain is scheduled.
Only privileged domains, such as domain 0 and driver
domains, can handle PIRQ events. VIRQs are related to
virtual devices created by Xen, like the timer virtual
device. The main use of inter-domain events is for the
front end and the back end of paravirtualised devices to
notify each other of waiting data. Intra-domain events are a
special case of inter-domain events where the events are
delivered between the VCPUs of a single domain.

2.3 Credit scheduler
The current default scheduler of Xen is the credit
scheduler. It allocates fair shares of processor resources to
guest domains. Each slice of physical CPU time is
weighted by a certain number of credits. Thus, if domains
receive the same number of credits, they should expect an
equal amount of CPU time.
 Each VCPU’s state and credits are managed and
scheduled separately. The VCPU’s credit balance can be
positive or negative, and correspondingly its state can be

CRPIT Volume 122 - Computer Science 2012

4

under or over. VCPUs trade credits for CPU time. A tick
interrupt is triggered every 10ms. At each tick event, the
currently running domain is debited some credits for the
period it has run. An accounting event occurs every 30ms.
During the accounting process, VCPUs are recharged with
credits proportional to their weights. Their states are
adjusted accordingly. The under state is assigned for
VCPUs with positive credit balance while the over state
for the ones with negative credit balance. To fully utilise
available CPU resources, the accounting process caps
VCPU’s credits at an amount that is worth one rotation’s
CPU time slice. If a VCPU’s accumulating credits exceeds
the cap, it is marked inactive and will not receive any more
credits until it is active again. Its credits are forfeited and
shared by other active VCPUs. A scheduling event occurs
when a scheduling decision is needed, which triggers a
function that firstly refreshes the current VCPU’s credit
balance based on how long it has run and then decides the
next VCPU to be scheduled. The order of scheduling
VCPUs is based on their priorities. VCPUs with the under
priority are always run before those with the over priority.
VCPUs with same priority are scheduled in a round robin
manner. The scheduled VCPU is allowed to run for 30ms
or until pre-empted by other VCPUs with higher priority
whichever comes first. If a running VCPU runs out of
credits during its scheduled interval, it will not
spontaneously yield the CPU. Contrarily, it will continue
running and its credit simply goes negative.

Figure 2: Run state transitions

A VCPU in Xen could be in one of the following four
possible run states, running, runnable, blocked and offline.
The VCPU that is currently running on a physical CPU is
in the running state. Since multiple VCPUs share a limited
number of CPUs, VCPUs might not be scheduled on any
physical CPU as soon as they become runnable. These
VCPUs in the runnable state are essentially waiting in a
queue for their turn. In a conventional system an idle
thread occupies the physical CPU when there are no jobs
to do. A virtualised system avoids such a waste by letting
other busy VCPUs have the unused CPU time when some
are idle. Idle VCPUs are given a blocked state. An offline
VCPU is neither runnable nor blocked. Typically it is
paused by the administrator. Figure 2 depicts the transition
of the states that are tightly related to scheduling.

When an event comes, credit scheduler wakes a
blocked VCPU and puts it back to the run queue.
Furthermore, if the waken VCPU is in under priority, its
priority is promoted to boost. So it is high likely that the
boosted VCPU pre-empts the running one and gets
scheduled immediately. This function is carried out by the
boost module which lowers the latency of I/O related
tasks. However, this only benefits blocked VCPUs with
positive credits. A runnable VCPU receiving an I/O
related event cannot be promptly scheduled. This often

happens with the domains doing mixed workloads of CPU
intensive tasks and I/O intensive tasks.

3 Full-time event aware scheduling
This section firstly identifies the problems that cause long
latency of I/O tasks. Then the full-time event aware
scheduler is proposed and detailed.

3.1 Scheduling delays
Figure 3 shows the typical delays happening within a disk
reading process. Delay D1 and D2 are associated with the
scheduling of Domain 0. D1 is the duration between when
the Domain U sends a reading request to Domain 0 and
when Domain 0 is scheduled to actually send the reading
IRQ to the hard disk. D2 is the duration between when the
hard disk notifies Domain 0 the data to be retrieved is
ready and when Domain 0 gets scheduled to set up the I/O
ring and then notifies the Domain U. D3 happens on the
Domain U side. It is the duration between when Domain 0
sends the notification and when Domain U is scheduled to
finish the data reading process. A data writing process is
similar.

Figure 3: Scheduling delays within a disk reading

process

 All aforementioned scheduling delays can be reduced
by scheduling the events’ respective target domains soon
after the events are received. The events of interest are
either inter-domain events or PIRQ events (Chisnall,
2007). The current credit scheduler boosts the VCPU upon
an incoming event call only when the VCPU is blocked
and has not consumed more than its fair share of CPU
time. In other cases, event calls get suppressed and have no
effect on the scheduling. Our enhanced version of credit
scheduler makes the scheduler always aware of event
notifications, in other words, the scheduler is full-time
event aware. Once detecting an eligible incoming event
the scheduler changes the course of scheduling
accordingly.

3.2 FEAS design
In FEAS every physical CPU has two additional queues:
immediate queue and postponed queue, complementing
the original run queue (Refer to Figure 4). VCPUs on the
immediate queue are always preferentially scheduled over
those on the run queue. The postponed queue is the
temporary depository of the VCPUs that need to be
scheduled as soon as possible but they have been
scheduled more often than allowed. Once a designated
trigger fires, postponed queue is swapped with immediate
queue. In other words, postponed queue becomes
immediate queue and the previous immediate queue

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

5

becomes the new postponed queue. Therefore, postponed
VCPUs can get preferential scheduling after the trigger
fires. The VCPU retains its position in run queue when
joining or leaving immediate queue or postponed queue.
VCPUs on the run queue are executed in round robin
fashion. In such way the time slice VCPUs receive each
rotation can be tightly controlled, and the side-effects
caused on scheduling fairness by frequent pre-emption are
kept minimal.

 In general, similar with credit scheduler, FEAS also
consists of three parts, namely en-queuing, queue
processing and de-queuing. Figure 4 depicts the structure
of FEAS. VCPUs that need to run are en-queued. Only
runnable VCPUs can join queues and wait to be executed
by CPU. Thus, blocked VCPUs that receive incoming
events are set to be runnable beforehand. This process is
called being waken. Credit scheduler boosts waken
VCPUs by given them a boost priority to lower response
latency because incoming events are often I/O related.
FEAS prioritises VCPUs differently. It boosts VCPUs by
assigning them to immediate queue or postponed queue
(Explained in Sec. 3.2.2). Queue processing takes on
heavy workloads off the de-queuing process since
de-queuing process is in the critical path and meant to be
fast. After queue processing, the de-queuing process
usually de-queues the head VCPU in a queue straightaway
and scheduled it to run next.

Figure 4: FEAS structure

 The proposed scheduler involves three modules
complementing the original credit scheduler.

3.2.1 New scheduling decision trigger
In credit scheduler a scheduling decision is made when a
VCPU blocks, yields, completes its time slice, or is
awaken (Xen wiki, 2007). A runnable VCPU with an
incoming event call is not prioritised properly. It cannot
process the event until it crawls to the head position of run
queue. This may delay the processing of some events that
are related to latency sensitive tasks. The proposed
scheduler captures the event notifications for runnable
VCPUs and then tickles the scheduler for a new
scheduling decision. When scheduler is tickled, if the
currently running VCPU is rather than prioritised, it is
pre-empted and a new VCPU is selected to run next. Since
the runnable VCPU receiving an event is prioritised, it is
very likely for it to get an immediate execution.

FEAS is configured to react merely on inter-domain
events and PIRQ events received merely by runnable
VCPUs. As such an event may also wake and boost a

blocked VCPU with under priority, a waken flag is set if
the VCPU is woken. The scheduler only promotes
runnable VCPUs whose waken flag is off.

3.2.2 Interchangeable immediate queue and
postponed queue

FEAS prioritises VCPUs doing I/O tasks no matter
whether the VCPU is blocked and whether its priority is
under or over. However, if there is no constraint, an I/O
intensive domain can hold the PCPU for an unfair amount
of time by taking advantage of this preference. So two new
queues: immediate queue and postponed queue, are
introduced to limit the frequency of VCPUs getting
scheduled. A limit on the number of times a VCPU can get
scheduled within a counting cycle is enforced on every
VCPU. Let nlimit denote the upper limit of the number of
scheduling times, c denote the cth counting cycle and ni, c

denote the scheduling times of VCPU i during the cth
counting cycle. A trigger which is usually a timer indicates
the start of a new counting cycle. nlimit is a constant over all
counting cycles and ni, c is initialised to 0 at the start of
every counting cycle. VCPUs join immediate queue or
postponed queue following the two rules below. Note that
FEAS prioritises runnable VCPUs even if they have
negative credits, so that, VCPUs can achieve optimal
responsiveness.

If ni, c < nlimit, then VCPU i joins the immediate queue

If ni, c >= nlimit, then VCPU i joins the postponed queue

On every scheduling decision, the scheduler always
preferentially schedules the VCPUs in the immediate
queue. If the immediate queue is empty, the VCPUs in the
run queue are executed in the decreasing order of their
priorities as usual.

Postponed queue is used as the temporary depository
for those VCPUs that needs prompt execution but have
already run more often than allowed. Upon the start of
each counting cycle, the scheduler checks the status of
immediate queue and postponed queue. If it finds the
immediate queue empty while the postponed queue is not,
it swaps these two queues and then sends a rescheduling
request. As a result, postponed VCPUs can receive
preferential and properly delayed scheduling.

The boost priority of a VCPU in credit scheduler is
replaced by the action of joining the immediate queue. A
waken and boosted VCPU can be recognised by checking
the waken flag (refer to sub-section 3.2.1) and whether it is
in the immediate queue.

Every VCPU also has an is_immediate flag. It is turned
on when a VCPU scheduled from the immediate queue
and turned off when it is de-scheduled or a tick event fired.
Conditional pre-emption of the running VCPU is decided
based on the is_immediate flag instead of by comparing
priorities. A VCPU with the is_immediate flag set cannot
be pre-empted.

3.2.3 Guaranteed VCPU’s time slicing
Credit scheduler is a weighted round-robin (WRR) based
fair scheduler. It achieves proportional fairness by
adjusting VCPU’s credits to control the frequency that the
VCPU is selected to run and by running each VCPU for
the same size of time quantum. Ideally, a VCPU is only

CRPIT Volume 122 - Computer Science 2012

6

pre-empted when its time slicing expires or it
spontaneously yields the CPU. However, credit scheduler
pre-empts the running VCPU when a blocked VCPU is
waken and boosted. Also, in the proposed scheduler the
running VCPU is pre-empted when a runnable VCPU
receives an inter-domain or PIRQ event. Both cases of
pre-emption can happen anytime. So the pre-empted
VCPU becomes the victim of pre-emption, because once
being pre-empted it will lose its remaining time slice in
this rotation and have to wait in the run queue until its next
turn. Time slices allocated to VCPUs are loosely
controlled in credit scheduler and usually the long term
CPU time received by VCPUs is bound and balanced by
the credits they receive. However, this does not work well
with CPU affinity. Scheduling unfairness may be caused
when VCPUs are pinned to some specific CPUs since they
earn more credits than they could spend. Over-earned
credits allow VCPUs that block and wake regularly to
excessively pre-empt their competitors. Also, as FEAS
allows temporary overdraft of future quantum and it
prioritises VCPUs receiving events even if they have
negative credit balance, this module limits the overdraft to
one rotation’s range.

In this module, every VCPU is allocated a quantum of
30ms each rotation and this quantum is guaranteed to be
exhausted in this rotation. The quantum is deducted at the
same time with debiting credits. After being pre-empted,
the VCPU is inserted to the head position of the run queue
if its quantum is still more than 1ms. Therefore, it can keep
consuming its quantum later on. Otherwise, it is inserted
into the run queue in the conventional way. For those
de-scheduled VCPUs de-queued from the immediate
queue, their position in the run queue is reserved. So the
usage of their allocated quantum for each rotation can be
accurately recorded.

FEAS maximises busy VCPUs’ responsiveness by
allowing temporary overdraft of future quantum. A
runnable VCPU receiving many I/O related events may
exhaust its quantum early by frequently joining immediate
queue or postponed queue. If that is the case, the VCPU
can no more be prioritised and have to wait in the run
queue for its turn. When it gets its turn, it is given a minor
slice of 500 microseconds to run. Therefore, the overdraft
is limited within the quantum that is worth one rotation.

4 Performance study
FEAS is implemented based on the credit scheduler of Xen
4.0.1 and tested on Linux-2.6.18.8. Since it works by
monitoring the events sent between domains and between
domain 0 (or driver domain) and physical devices, all
source code modifications made are within the hypervisor
and none is needed within the guest kernel. In our
implementation, nlimit is set to 1 and the tick which fires
every 10ms is reused as the trigger that indicates the start
of a new counting cycle. The machine we are testing with
has an Intel Core2 Duo 3.16 HZ CPU, 3.2 GB RAM and a
Gigabit Ethernet network interface. A separate machine is
used as the client for the network related experiments. The
client machine is guaranteed of no bottleneck in any
experiments. Two machines are connected via a 10/100M
switch.

Four guest domains each of which has one VCPU are
created. They all have the default weight of 256. Domain 0
is chosen as the driver domain. Its VCPU is pinned to CPU
core 1 and VCPUs of four guests are pinned to CPU core 2.
Dedicating a CPU core to Domain 0 can achieve better
system performance since all I/O requests have to go
through Domain 0 and this can reduce the number of CPU
context switches required. This is also a common
configuration in production servers. Guest 4 is connected
to the client machine in all experiments. In the experiments
guest domains, excluding Domain 0, are loaded in groups
with CPU intensive tasks to simulate various production
environments. Table 1 enumerates the different setups.
The VCPUs are kept busy using cpuburn 1.4 (Softpedia
2011).

Domains Explanation

All busy VCPUs of all guest domains are running at 100%.

Others busy VCPUs of all guest domains except Guest 4 are

running at 100%.

All idle VCPUs of all guest domains are idle most of the

time.

Table 1: Experimental setup

4.1 Scheduling fairness
Fairness is one of the main goals of a scheduler, especially
the scheduler of a VMM. Domains should not be starved
and a malicious domain cannot take an unfair amount of
CPU time slicing at any time. When CPU resources are in
contention, each domain should receive CPU time
proportional to their weights. Domains with the same
weights are expected to receive the same amount of CPU
time.

Figure 5: CPU time distribution
This experiment proves the scheduling fairness of

FEAS by keeping all domains busy. Each domain runs
cpuburn and eats as much CPU time as they are given. As
can be seen from Figure 5, every domain can receive
roughly equal amount of physical CPU time. This figure
holds in all experiments where all guest domains are CPU
hogging and guest 4 constantly receives ping or
downloading requests. The CPU time slicing guarantor
module described in section 3.2.3 keeps the influences of
pre-emption on round robin scheduling to a minimum. A
VCPU is marked inactive and its credits are forfeited when
it accumulates too many credits. Ideally, excessive credit
accumulation is due to the VCPU’s little demand.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

7

However, it may also be caused by undesirable starvation.
Undesirable starvation is more frequent in FEAS than in
credit scheduler, since the former boosts runnable VCPUs
greedily to achieve high responsiveness even if its credit
balance is negative. The CPU time slicing guarantor can
efficiently ease this kind of starvation by guaranteeing that
pre-empted VCPUs fully use their CPU slice in every
rotation and that pre-empting VCPUs cannot overdraft
their CPU time too much.

4.2 Latency sensitive processes
This experiment tests the performance of latency sensitive
tasks in a domain doing mixed workloads. The client
machine sends ping requests to the Guest 4 for 100 times
and its response time is recorded.

 All domains including Guest 4 are running CPU
intensive tasks. As a result, they are hardly blocked. So
under credit scheduler, even though Guest 4 constantly
receives ping requests, it is not boosted. It cannot get
scheduled and respond to the request until other VCPUs
ahead of it in the run queue finish execution. So the latency
under the credit scheduler is high and unpredictable.

On the other hand, FEAS can capture the incoming
event notification all the way and scheduled the target
domain immediately. It prioritises runnable VCPUs
receiving an event call at most once per 10ms no matter
whether its priority is under or over. Since the ping request
is sent every second which is way longer than 10ms, the
domain doing CPU intensive tasks can always respond to
ping requests immediately.

Figure 6: Ping Latency

4.3 Network intensive processes
The performance of a CPU-consuming domain on network
intensive tasks is evaluated in this experiment. Guest 4
hosts a FTP server using vsftpd-2.3.4 (vsftpd, 2011) and
the client machine downloads files of different sizes from
it. The average transfer speed is recorded.

Figure 7 illustrates the results achieved in different
situations. Both schedulers achieve similar results when
Guest 4 is idle no matter whether other domains are busy.
The boost mechanism from credit scheduler efficiently
ensures the performance of idle domains on I/O related
tasks when they co-exist on the same server with other
domains that are doing CPU intensive tasks. However,
when Guest 4 is also doing CPU intensive tasks, the
download speed under FEAS doubles that under credit
scheduler. Since Guest 4’s VCPU is runnable most of the
time when fully loaded, credit scheduler does not
discriminate it from other co-currently running busy

domains. Scheduling delays regarding handling I/O related
events are thus much longer than when Guest 4 is idle.
However, FEAS keeps I/O devices busy by promptly
handling of incoming events and thus speeds up the
transmission process.

Figure 7: FTP downloading speed

4.4 Impact of co-working VMs
This experiment examines the I/O performances under
FEAS when multiple co-located VMs concurrently
process mixed workloads. Five duplicated guest domains
are set up for this experiment on the same physical server
used in previous experiments. Also, Domain 0 is pinned to
CPU core 1 and Domain 1-5 are pinned to CPU core 2. All
five guest domains are configured with a FTP server
facilitated by vsftpd-2.3.4, and each hosts a 16384 KB file
ready for download. To keep guest domains’ VCPUs
under constant pressure, they all run cpuburn. A
multi-threaded C# program is designed to simultaneously
download the hosted file from guest domains. Hence,
during the period of concurrent network streaming dense
inter-domain events and PIRQ events are fired across by
all domains at the same time. All these events are caught
by FEAS and its decision has a direct impact on the I/O
performances and CPU fairness.

 The multi-threaded program is modified to run with 1 to
5 threads respectively on the client machine and each
thread downloads the test file from an exclusive VM.
Suppose that n threads simultaneously stream files from n
VMs (where), and that the ith streaming
thread starts at and finishes at (where

). Downloading speed is evaluated to
reflect the system performance as

where
The results are recorded and shown in Figure 8. The

overall system throughput increases when downloading
files from more VMs, and the I/O devices tend to operate
at full speed if downloading files from all VMs. The
reason is that the overall system performance depends on
the CPU time and the scheduling latency of all streaming
VMs. Thus, if all five VMs are delivering files, no matter
which VM is scheduled, they all contribute to the overall
system throughput. All in all, FEAS performs better than
the original credit scheduler in terms of I/O throughput
even when multiple VMs do mixed workloads at the same
time.

CRPIT Volume 122 - Computer Science 2012

8

Figure 8: Download from multiple VMs

4.5 Scheduling overhead

Seconds Others busy All idle Domain 0

Original 32.43754 8.78261 8.123744

FEAS 32.5931 8.80411 8.146923

Table 2: Duration for prime searching in seconds

To quantify the scheduling overhead FEAS causes over
the original credit scheduler, we observe the running time
of the prime searching function which is a lengthy and
CPU-intensive process. This experiment finds all the
664,579 prime numbers less than 10^7 using the trial
division algorithm (Wikipedia, 2011). The time required
to complete the process in three cases is illustrated in Table
2. The percentage increase of running time introduced by
FEAS in all three cases is less than 1%, which indicates
that the overhead is negligible.

5 Conclusion
VMs sharing the same hardware contend for limited
resources. It is important to appropriately allocate shared
resources among VMs that are running simultaneously.
While fairness requires that each VM receives CPU time
proportional to their weights, low latency is achieved by
scheduling a VM as soon as it needs CPU especially if the
VM has I/O tasks pending. Our scheduler is an enhanced
version of credit scheduler that prioritises VCPUs doing
I/O tasks by monitoring inter-domain events and PIRQ
events sent between domains and physical devices. FEAS
makes VMM full-time event aware and promptly
schedules with best effort runnable VCPUs that receive
I/O related events. The experiments show that VMs under
FEAS performs better on I/O intensive tasks than those
under credit scheduler if they also do CPU intensive tasks
at the same time. The cost for the modifications needed to
realise FEAS is proved to be negligible.

Currently, FEAS is only implemented and tested with
the guest domains virtualised in para-virtualisation mode.
Since hardware virtual machine (HVM) does not requiring
the guest operating system to be modified, it can run
proprietary operating systems like Windows as guest. Split
drive model is implemented differently in PV-on-HVM
kernels. Our future research will try to apply FEAS on
fully virtualised virtual machines.

6 References
Barham, P., Dragovic, B., Fraser, K., & et al (2003): Xen

and The Art of Virtualization, ACM Symposium on
Operating Systems Principles.

Cherkasova, L., Gupta, D. & Vahdat, A. (2007):
Comparison of the Three CPU Schedulers in Xen, ACM
SIGMETRICS Performance Evaluation Review, Vol.
35, Iss. 2, pp. 42–51.

Chisnall, D. (2007): The Definitive Guide to the Xen
Hypervisor. Sydney, Prentice Hall.

Goldberg, R.P. (1974), Survey of Virtual Machine
Research, IEEE Computer, Vol. 7, Iss. 6, pp. 34-45.

Govindan, S., Nath, A., Das, A., Urgaonkar, B. and
Sivasubramaniam, A. (2007): Xen and co.:
communication-aware CPU scheduling for consolidated
xen-based hosting platforms, Proceedings of the 3rd
international conference on Virtual execution
environments, New York, USA.

Gupta, D., Cherkasova, L., Gardner, R. & Vahdat, A.
(2006): Enforcing performance isolation across virtual
machines in Xen, In Proceedings of the
ACM/IFIP/USENIX 7th International Middleware
Conference, Melbourne, Australia.

Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P. &
Newell, D. (2009): VM3: Measuring, modeling and
managing VM shared resources, Computer Networks,
Vol. 53, Iss. 17, pp. 2873-2887.

Kim, H., Lim, H., Jeong, J., Jo, H. & Lee, J. (2009): Task
‐ Aware Virtual Machine Scheduling for I/O
Performance, ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environment.
Washington, DC, USA.

Lin, B., Dinda, P. & Lu, D. (2004): User ‐ Driven
Scheduling of Interactive Virtual Machines. 5th
IEEE/ACM International Workshop on Grid.
Washington, DC, USA.

Ongaro, D., Cox, A. and Rixner, S. (2008): Scheduling I/O
in virtual machine monitors, Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, New York, USA.

Softpedia (2011), cpuburn 1.4,
http://www.softpedia.com/get/System/Benchmarks/cpu
burn.shtml, Accessed May, 2011

vsftpd: vsftpd - Secure, fast FTP server for UNIX-like
systems. https://security.appspot.com/vsftpd.html.
Accessed May, 2011.

Weng, C., Wang, Z., Li, M. & Lu, X. (2009): The Hybrid
Scheduling Framework for Virtual Machine Systems,
ACM International Conference on Virtual Execution
Environments. Washington, DC, USA.

Wikipedia: Trial division.
http://en.wikipedia.org/wiki/Trial_division. Accessed
May, 2011.

Xia, Y.B., Yang, C. & Cheng, X. (2009): PaS: A
Preemption-aware Scheduling Interface for Improving
Interactive Performance in Consolidated Virtual
Machine Environment. International Conference on
Parallel and Distributed Systems. Shenzhen, China.

Xen: Home of the Xen Hypervisor. http://xen.org/.
Accessed Jun, 2011.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

9

CRPIT Volume 122 - Computer Science 2012

10

