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Abstract 
Due to the advances in software and hardware support for 
virtualisation, virtualisation technology has been adapted 
for server consolidation and desktop virtualisation to save 
on capital and operating costs. The basic abstraction layer 
of software that virtualises hardware resources and 
manages the execution of virtual machines is called virtual 
machine monitor (VMM). A critical part of VMM is the 
CPU scheduler which slices and dispatches physical CPU 
time to virtual machines. Xen’s credit scheduler utilised 
blocked-to-boosted mechanism to achieve low latency on 
I/O intensive tasks. However, it suppresses event 
notifications for the guest domain that is not blocked. This 
may delays the response of a guest domain doing mixed 
workloads, as its virtual CPU is seldom blocked when 
processing CPU-intensive tasks. We enhance the credit 
scheduler by making it full-time aware of inter-domain 
events and physical interrupt request events. Our proposed 
scheduler not only improves the responsiveness of 
domains doing mixed workloads, but also minimises the 
possibly caused scheduling unfairness. The experimental 
evaluation demonstrates the benefits of our proposed 
scheduler. . 

Keywords:  Virtual machine, Xen, Paravirtualization. 

1 Introduction 
Virtualisation technology involves the virtualisation of 
several critical parts of a computer, such as CPU, memory, 
network and storage. It partitions the underlying physical 
resources and makes them shared among multiple virtual 
machines (VMs)  (or domains) either by assigning a 
portion of physical resources to each VM (e.g. hard disk) 
or by switching from one VM to another in a very short 
time frame to use the physical resources in turns (e.g. 
CPU). These VMs run in parallel on a single physical 
machine under the control of virtual machine monitor 
(VMM) and they can have different operating systems. 

Virtualisation technology opens up the possibility of 
server consolidation which increases the efficient use of 
server resources by consolidating multiple servers running 
different operation systems onto a single physical server. 
Desktop virtualization is another major application of the 
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virtualisation technology, in which case users  only need a 
thin client to display the desktop interface locally while 
have all backend processing done in a dedicated VM that 
resides remotely in the Cloud. Both situations involve the 
execution of CPU intensive tasks and I/O intensive tasks, 
and often need to process a mix of both kinds at one time. 
The complexity of workloads makes it a great challenge 
for the VMM scheduler to maximise throughput and 
minimise latency while ensuring fairness. 

This paper is based on the observation of Xen 4.0.1 
(Xen 2011) platform. Its default scheduler, named credit 
scheduler, employs the BOOST mechanism to achieve low 
I/O response latency which works reasonably well when 
VMs have relatively monotonous workloads. The 
schedulable entities of a VM are the virtual CPUs 
(VCPUs) it has. The priority of an idle VCPU is boosted to 
get an immediate execution when it receives an event. This 
allows VMs performing I/O tasks to achieve lower 
response latency. However, the responsiveness of a VM 
diverges if it also does CPU intensive tasks at the same 
time. A VCPU waiting in the run queue does not get 
properly boosted when it receives an incoming event. The 
event notification is suppressed and thus has no effect on 
the scheduling. This might make the event sender wait 
unnecessarily and delay the following jobs. 

    An enhanced version of credit scheduler is presented in 
this paper to improve the responsiveness of busy VMs by 
taking advantage of Xen’s split driver model and even 
channels. The device driver in Xen is split into two 
portions. Domain 0 or a dedicated driver domain hosts the 
front portion that directly interacts with the device, and the 
other portion resides in unprivileged guest domains. These 
two parts notify each other of waiting data using the Xen 
event channel mechanism and exchanged data via the I/O 
ring mechanism. The proposed scheduler monitors the 
events sent across VMM and boosts the runnable VCPUs 
receiving events originating from another domain or 
physical interrupt requests (PIRQs). To complement credit 
scheduler, the proposed scheduler prioritises not only 
blocked VCPUs but also runnable ones, and is called 
full-time event aware scheduler (FEAS). A VM processing 
mixed workloads can greatly benefits from prompt 
scheduling upon receiving an incoming event, particularly 
if it is an I/O related event. 

The rest of this paper is organized as follows. Section 2 
discusses previous research on VM scheduling and relates 
the virtual-machine monitor Xen. Section 3 presents the 
design of our proposed scheduler for Full-time event 
aware scheduling. Some experimental tests have been 
conducted to verify/demonstrate the performance 
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improvements and the analysis of results has also been 
included in Section 4. Finally, the conclusions and future 
work are presented in Section 5. 

2 Related work 
This section firstly discusses previous research on VM 
scheduling, then describes the architecture of Xen’s split 
driver model and its credit scheduler. 

2.1 VM scheduling 
Three different VM schedulers have been introduced over 
the course of Xen’s history, which are Borrowed Virtual 
Time (BVT) scheduler, Simple Earliest Deadline First 
(SEDF) scheduler, and Credit Scheduler. All these three 
are Proportional Share schedulers which allocate CPU in 
proportion to the VMs’ weight. Cherkasova et al. (2007) 
comprehensively analysed and compared the impacts of 
schedulers and their respective scheduler parameters on 
the performance of I/O intensive applications running on 
virtual machines. 

Ongaro et al. (2008) study the impact of the credit 
scheduler with various configurations on the performances 
of guest domains concurrently running a mixed workload 
of processor-intensive, bandwidth-intensive, and 
latency-sensitive applications. They suggest in their work 
that latency-sensitive applications should be placed in 
their own VMs to achieve the best performance. The 
purpose of our paper is to address this problem. 

Govindan et al. (2009)’s communication-aware 
scheduler monitors the I/O ring and preferentially 
schedules the VMs that receive more data packets or are 
anticipated to send more data packets. However, the 
scheduler relies on accumulating the number of packets 
received or sent over a certain period of time and does not 
provide the immediate response to an incoming event.  

Kim et al. (2009) made scheduler task aware by using 
the gray-box knowledge. The scheduler infers the 
guest-level I/O tasks by identifying the tasks using the 
CR3 register and then monitoring their time slices. A task 
is considered to be an I/O task based on two grey-box 
criteria: it immediately pre-empts the running task if the 
guest VM receives an event and its time slice is short. 
However, classifying the tasks just based on the CPU 
usage is not enough (Xia et al., 2009). 

Xia et al. (2009) propose a pre-emption aware 
scheduling (PaS) interface. Same with our scheduler, PaS 
also improves the responsiveness of busy VMs by 
allowing the VCPU to pre-empt when an event is pending 
while it is waiting in the run queue. But in that approach 
the event channels on which the pre-empting condition is 
based need to be pre-known and registered to the guest 
kernel. 

2.2 Xen and Split driver model 
Xen 4.0.1 is used in our research. Xen adopts the 
paravirtualization approach and its guest operating 
systems require modifications to be able to run on the Xen 
platform. The Xen hypervisor sits between the hardware 
and the co-existing virtual machines. It has full control 
over hardware resources and dispatches them to different 
VMs according to a set of predefined rules. 

Device drivers are the essential software for any 
operating system to communicate with physical hardware. 

Xen’s split driver model divides the device driver into two 
portions, the front end and the back end (Figure 1). The 
back end handles the physical device and the front end acts 
as the proxy of the back end. The back end is typically in 
Domain 0 but sometimes in a dedicated driver domain. 
Unprivileged guest domains have the front end with which 
they can accomplish a network or disk request. 

The two portions of device driver notify each other of 
critical events using event channels and pass messages 
using I/O ring buffers. Event channel is the primitive 
notification mechanism within Xen. When the remote 
domain is busy or yet to be scheduled, an event is 
asynchronously delivered from its source to it to indicate 
the relevant event on the source domain. The ring buffers 
are implemented in the shared memory pages shared by 
both driver ends. Front end and back end exchange data by 
sending over the memory addresses of data pages rather 
than doing a full copy. This zero-copy feature enables fast 
message passing and consequently fast I/O. 
 

 

Figure 1: Xen split driver model 

    Based on the source of events, there are four types of 
events sent over the event channel. They are physical 
interrupt request (PIRQ) events, virtual IRQ (VIRQ) 
events, inter-domain events and intra-domain events. 
PIRQ events are mapped to the real IRQs of various 
physical devices. As an incoming IRQ generated by a 
device is likely not for the currently running domain, its 
corresponding PIRQ event is enqueued on the target 
domain and then processed when the domain is scheduled. 
Only privileged domains, such as domain 0 and driver 
domains, can handle PIRQ events. VIRQs are related to 
virtual devices created by Xen, like the timer virtual 
device. The main use of inter-domain events is for the 
front end and the back end of paravirtualised devices to 
notify each other of waiting data. Intra-domain events are a 
special case of inter-domain events where the events are 
delivered between the VCPUs of a single domain. 

2.3 Credit scheduler 
The current default scheduler of Xen is the credit 
scheduler. It allocates fair shares of processor resources to 
guest domains. Each slice of physical CPU time is 
weighted by a certain number of credits. Thus, if domains 
receive the same number of credits, they should expect an 
equal amount of CPU time. 
    Each VCPU’s state and credits are managed and 
scheduled separately. The VCPU’s credit balance can be 
positive or negative, and correspondingly its state can be 
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under or over. VCPUs trade credits for CPU time. A tick 
interrupt is triggered every 10ms. At each tick event, the 
currently running domain is debited some credits for the 
period it has run. An accounting event occurs every 30ms. 
During the accounting process, VCPUs are recharged with 
credits proportional to their weights. Their states are 
adjusted accordingly. The under state is assigned for 
VCPUs with positive credit balance while the over state 
for the ones with negative credit balance. To fully utilise 
available CPU resources, the accounting process caps 
VCPU’s credits at an amount that is worth one rotation’s 
CPU time slice. If a VCPU’s accumulating credits exceeds 
the cap, it is marked inactive and will not receive any more 
credits until it is active again. Its credits are forfeited and 
shared by other active VCPUs. A scheduling event occurs 
when a scheduling decision is needed, which triggers a 
function that firstly refreshes the current VCPU’s credit 
balance based on how long it has run and then decides the 
next VCPU to be scheduled. The order of scheduling 
VCPUs is based on their priorities. VCPUs with the under 
priority are always run before those with the over priority. 
VCPUs with same priority are scheduled in a round robin 
manner. The scheduled VCPU is allowed to run for 30ms 
or until pre-empted by other VCPUs with higher priority 
whichever comes first. If a running VCPU runs out of 
credits during its scheduled interval, it will not 
spontaneously yield the CPU. Contrarily, it will continue 
running and its credit simply goes negative. 
 

 

Figure 2: Run state transitions 

A VCPU in Xen could be in one of the following four 
possible run states, running, runnable, blocked and offline. 
The VCPU that is currently running on a physical CPU is 
in the running state. Since multiple VCPUs share a limited 
number of CPUs, VCPUs might not be scheduled on any 
physical CPU as soon as they become runnable. These 
VCPUs in the runnable state are essentially waiting in a 
queue for their turn. In a conventional system an idle 
thread occupies the physical CPU when there are no jobs 
to do. A virtualised system avoids such a waste by letting 
other busy VCPUs have the unused CPU time when some 
are idle. Idle VCPUs are given a blocked state. An offline 
VCPU is neither runnable nor blocked. Typically it is 
paused by the administrator. Figure 2 depicts the transition 
of the states that are tightly related to scheduling. 

When an event comes, credit scheduler wakes a 
blocked VCPU and puts it back to the run queue. 
Furthermore, if the waken VCPU is in under priority, its 
priority is promoted to boost. So it is high likely that the 
boosted VCPU pre-empts the running one and gets 
scheduled immediately. This function is carried out by the 
boost module which lowers the latency of I/O related 
tasks. However, this only benefits blocked VCPUs with 
positive credits. A runnable VCPU receiving an I/O 
related event cannot be promptly scheduled. This often 

happens with the domains doing mixed workloads of CPU 
intensive tasks and I/O intensive tasks. 

3 Full-time event aware scheduling 
This section firstly identifies the problems that cause long 
latency of I/O tasks. Then the full-time event aware 
scheduler is proposed and detailed. 

3.1 Scheduling delays 
Figure 3 shows the typical delays happening within a disk 
reading process. Delay D1 and D2 are associated with the 
scheduling of Domain 0. D1 is the duration between when 
the Domain U sends a reading request to Domain 0 and 
when Domain 0 is scheduled to actually send the reading 
IRQ to the hard disk. D2 is the duration between when the 
hard disk notifies Domain 0 the data to be retrieved is 
ready and when Domain 0 gets scheduled to set up the I/O 
ring and then notifies the Domain U. D3 happens on the 
Domain U side. It is the duration between when Domain 0 
sends the notification and when Domain U is scheduled to 
finish the data reading process. A data writing process is 
similar. 

 
Figure 3: Scheduling delays within a disk reading 

process 

    All aforementioned scheduling delays can be reduced 
by scheduling the events’ respective target domains soon 
after the events are received. The events of interest are 
either inter-domain events or PIRQ events (Chisnall, 
2007). The current credit scheduler boosts the VCPU upon 
an incoming event call only when the VCPU is blocked 
and has not consumed more than its fair share of CPU 
time. In other cases, event calls get suppressed and have no 
effect on the scheduling. Our enhanced version of credit 
scheduler makes the scheduler always aware of event 
notifications, in other words, the scheduler is full-time 
event aware. Once detecting an eligible incoming event 
the scheduler changes the course of scheduling 
accordingly. 

3.2 FEAS design 
In FEAS every physical CPU has two additional queues: 
immediate queue and postponed queue, complementing 
the original run queue (Refer to Figure 4). VCPUs on the 
immediate queue are always preferentially scheduled over 
those on the run queue. The postponed queue is the 
temporary depository of the VCPUs that need to be 
scheduled as soon as possible but they have been 
scheduled more often than allowed. Once a designated 
trigger fires, postponed queue is swapped with immediate 
queue. In other words, postponed queue becomes 
immediate queue and the previous immediate queue 
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becomes the new postponed queue. Therefore, postponed 
VCPUs can get preferential scheduling after the trigger 
fires. The VCPU retains its position in run queue when 
joining or leaving immediate queue or postponed queue. 
VCPUs on the run queue are executed in round robin 
fashion. In such way the time slice VCPUs receive each 
rotation can be tightly controlled, and the side-effects 
caused on scheduling fairness by frequent pre-emption are 
kept minimal. 

    In general, similar with credit scheduler, FEAS also 
consists of three parts, namely en-queuing, queue 
processing and de-queuing. Figure 4 depicts the structure 
of FEAS. VCPUs that need to run are en-queued. Only 
runnable VCPUs can join queues and wait to be executed 
by CPU. Thus, blocked VCPUs that receive incoming 
events are set to be runnable beforehand. This process is 
called being waken. Credit scheduler boosts waken 
VCPUs by given them a boost priority to lower response 
latency because incoming events are often I/O related. 
FEAS prioritises VCPUs differently. It boosts VCPUs by 
assigning them to immediate queue or postponed queue 
(Explained in Sec. 3.2.2). Queue processing takes on 
heavy workloads off the de-queuing process since 
de-queuing process is in the critical path and meant to be 
fast. After queue processing, the de-queuing process 
usually de-queues the head VCPU in a queue straightaway 
and scheduled it to run next.   

 

Figure 4: FEAS structure 

    The proposed scheduler involves three modules 
complementing the original credit scheduler. 

3.2.1 New scheduling decision trigger 
In credit scheduler a scheduling decision is made when a 
VCPU blocks, yields, completes its time slice, or is 
awaken (Xen wiki, 2007). A runnable VCPU with an 
incoming event call is not prioritised properly. It cannot 
process the event until it crawls to the head position of run 
queue. This may delay the processing of some events that 
are related to latency sensitive tasks. The proposed 
scheduler captures the event notifications for runnable 
VCPUs and then tickles the scheduler for a new 
scheduling decision. When scheduler is tickled, if the 
currently running VCPU is rather than prioritised, it is 
pre-empted and a new VCPU is selected to run next. Since 
the runnable VCPU receiving an event is prioritised, it is 
very likely for it to get an immediate execution.  

FEAS is configured to react merely on inter-domain 
events and PIRQ events received merely by runnable 
VCPUs. As such an event may also wake and boost a 

blocked VCPU with under priority, a waken flag is set if 
the VCPU is woken. The scheduler only promotes 
runnable VCPUs whose waken flag is off.  

3.2.2 Interchangeable immediate queue and 
postponed queue 

FEAS prioritises VCPUs doing I/O tasks no matter 
whether the VCPU is blocked and whether its priority is 
under or over. However, if there is no constraint, an I/O 
intensive domain can hold the PCPU for an unfair amount 
of time by taking advantage of this preference. So two new 
queues: immediate queue and postponed queue, are 
introduced to limit the frequency of VCPUs getting 
scheduled. A limit on the number of times a VCPU can get 
scheduled within a counting cycle is enforced on every 
VCPU. Let nlimit denote the upper limit of the number of 
scheduling times, c denote the cth counting cycle and ni, c 

denote the scheduling times of VCPU i during the cth 
counting cycle. A trigger which is usually a timer indicates 
the start of a new counting cycle. nlimit is a constant over all 
counting cycles and ni, c is initialised to 0 at the start of 
every counting cycle. VCPUs join immediate queue or 
postponed queue following the two rules below. Note that 
FEAS prioritises runnable VCPUs even if they have 
negative credits, so that, VCPUs can achieve optimal 
responsiveness. 

If ni, c < nlimit, then VCPU i joins the immediate queue

If ni, c >= nlimit, then VCPU i joins the postponed queue
 

On every scheduling decision, the scheduler always 
preferentially schedules the VCPUs in the immediate 
queue. If the immediate queue is empty, the VCPUs in the 
run queue are executed in the decreasing order of their 
priorities as usual.  

Postponed queue is used as the temporary depository 
for those VCPUs that needs prompt execution but have 
already run more often than allowed. Upon the start of 
each counting cycle, the scheduler checks the status of 
immediate queue and postponed queue. If it finds the 
immediate queue empty while the postponed queue is not, 
it swaps these two queues and then sends a rescheduling 
request. As a result, postponed VCPUs can receive 
preferential and properly delayed scheduling. 

The boost priority of a VCPU in credit scheduler is 
replaced by the action of joining the immediate queue. A 
waken and boosted VCPU can be recognised by checking 
the waken flag (refer to sub-section 3.2.1) and whether it is 
in the immediate queue. 

Every VCPU also has an is_immediate flag. It is turned 
on when a VCPU scheduled from the immediate queue  
and turned off when it is de-scheduled or a tick event fired. 
Conditional pre-emption of the running VCPU is decided 
based on the is_immediate flag instead of by comparing 
priorities. A VCPU with the is_immediate flag set cannot 
be pre-empted. 

3.2.3 Guaranteed VCPU’s time slicing 
Credit scheduler is a weighted round-robin (WRR) based 
fair scheduler. It achieves proportional fairness by 
adjusting VCPU’s credits to control the frequency that the 
VCPU is selected to run and by running each VCPU for 
the same size of time quantum. Ideally, a VCPU is only 
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pre-empted when its time slicing expires or it 
spontaneously yields the CPU. However, credit scheduler 
pre-empts the running VCPU when a blocked VCPU is 
waken and boosted. Also, in the proposed scheduler the 
running VCPU is pre-empted when a runnable VCPU 
receives an inter-domain or PIRQ event. Both cases of 
pre-emption can happen anytime. So the pre-empted 
VCPU becomes the victim of pre-emption, because once 
being pre-empted it will lose its remaining time slice in 
this rotation and have to wait in the run queue until its next 
turn. Time slices allocated to VCPUs are loosely 
controlled in credit scheduler and usually the long term 
CPU time received by VCPUs is bound and balanced by 
the credits they receive. However, this does not work well 
with CPU affinity. Scheduling unfairness may be caused 
when VCPUs are pinned to some specific CPUs since they 
earn more credits than they could spend. Over-earned 
credits allow VCPUs that block and wake regularly to 
excessively pre-empt their competitors. Also, as FEAS 
allows temporary overdraft of future quantum and it 
prioritises VCPUs receiving events even if they have 
negative credit balance, this module limits the overdraft to 
one rotation’s range. 

In this module, every VCPU is allocated a quantum of 
30ms each rotation and this quantum is guaranteed to be 
exhausted in this rotation. The quantum is deducted at the 
same time with debiting credits. After being pre-empted, 
the VCPU is inserted to the head position of the run queue 
if its quantum is still more than 1ms. Therefore, it can keep 
consuming its quantum later on. Otherwise, it is inserted 
into the run queue in the conventional way. For those 
de-scheduled VCPUs de-queued from the immediate 
queue, their position in the run queue is reserved. So the 
usage of their allocated quantum for each rotation can be 
accurately recorded.  

FEAS maximises busy VCPUs’ responsiveness by 
allowing temporary overdraft of future quantum. A 
runnable VCPU receiving many I/O related events may 
exhaust its quantum early by frequently joining immediate 
queue or postponed queue. If that is the case, the VCPU 
can no more be prioritised and have to wait in the run 
queue for its turn. When it gets its turn, it is given a minor 
slice of 500 microseconds to run. Therefore, the overdraft 
is limited within the quantum that is worth one rotation. 

4 Performance study 
FEAS is implemented based on the credit scheduler of Xen 
4.0.1 and tested on Linux-2.6.18.8. Since it works by 
monitoring the events sent between domains and between 
domain 0 (or driver domain) and physical devices, all 
source code modifications made are within the hypervisor 
and none is needed within the guest kernel. In our 
implementation, nlimit is set to 1 and the tick which fires 
every 10ms is reused as the trigger that indicates the start 
of a new counting cycle. The machine we are testing with 
has an Intel Core2 Duo 3.16 HZ CPU, 3.2 GB RAM and a 
Gigabit Ethernet network interface. A separate machine is 
used as the client for the network related experiments. The 
client machine is guaranteed of no bottleneck in any 
experiments. Two machines are connected via a 10/100M 
switch. 

Four guest domains each of which has one VCPU are 
created. They all have the default weight of 256. Domain 0 
is chosen as the driver domain. Its VCPU is pinned to CPU 
core 1 and VCPUs of four guests are pinned to CPU core 2. 
Dedicating a CPU core to Domain 0 can achieve better 
system performance since all I/O requests have to go 
through Domain 0 and this can reduce the number of CPU 
context switches required. This is also a common 
configuration in production servers. Guest 4 is connected 
to the client machine in all experiments. In the experiments 
guest domains, excluding Domain 0, are loaded in groups 
with CPU intensive tasks to simulate various production 
environments. Table 1 enumerates the different setups. 
The VCPUs are kept busy using cpuburn 1.4 (Softpedia 
2011). 

 

Domains Explanation 

All busy VCPUs of all guest domains are running at 100%.  

Others busy VCPUs of all guest domains except Guest 4 are 

running at 100%.  

All idle VCPUs of all guest domains are idle most of the 

time. 

Table 1: Experimental setup 

4.1 Scheduling fairness 
Fairness is one of the main goals of a scheduler, especially 
the scheduler of a VMM. Domains should not be starved 
and a malicious domain cannot take an unfair amount of 
CPU time slicing at any time. When CPU resources are in 
contention, each domain should receive CPU time 
proportional to their weights. Domains with the same 
weights are expected to receive the same amount of CPU 
time. 

 

Figure 5: CPU time distribution 
This experiment proves the scheduling fairness of 

FEAS by keeping all domains busy. Each domain runs 
cpuburn and eats as much CPU time as they are given. As 
can be seen from Figure 5, every domain can receive 
roughly equal amount of physical CPU time. This figure 
holds in all experiments where all guest domains are CPU 
hogging and guest 4 constantly receives ping or 
downloading requests. The CPU time slicing guarantor 
module described in section 3.2.3 keeps the influences of 
pre-emption on round robin scheduling to a minimum. A 
VCPU is marked inactive and its credits are forfeited when 
it accumulates too many credits. Ideally, excessive credit 
accumulation is due to the VCPU’s little demand.  
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However, it may also be caused by undesirable starvation.  
Undesirable starvation is more frequent in FEAS than in 
credit scheduler, since the former boosts runnable VCPUs 
greedily to achieve high responsiveness even if its credit 
balance is negative. The CPU time slicing guarantor can 
efficiently ease this kind of starvation by guaranteeing that 
pre-empted VCPUs fully use their CPU slice in every 
rotation and that pre-empting VCPUs cannot overdraft 
their CPU time too much. 

4.2 Latency sensitive processes 
This experiment tests the performance of latency sensitive 
tasks in a domain doing mixed workloads. The client 
machine sends ping requests to the Guest 4 for 100 times 
and its response time is recorded.  

    All domains including Guest 4 are running CPU 
intensive tasks. As a result, they are hardly blocked. So 
under credit scheduler, even though Guest 4 constantly 
receives ping requests, it is not boosted. It cannot get 
scheduled and respond to the request until other VCPUs 
ahead of it in the run queue finish execution. So the latency 
under the credit scheduler is high and unpredictable.  

On the other hand, FEAS can capture the incoming 
event notification all the way and scheduled the target 
domain immediately. It prioritises runnable VCPUs 
receiving an event call at most once per 10ms no matter 
whether its priority is under or over. Since the ping request 
is sent every second which is way longer than 10ms, the 
domain doing CPU intensive tasks can always respond to 
ping requests immediately. 

 

 

Figure 6: Ping Latency 

4.3 Network intensive processes 
The performance of a CPU-consuming domain on network 
intensive tasks is evaluated in this experiment. Guest 4 
hosts a FTP server using vsftpd-2.3.4 (vsftpd, 2011) and 
the client machine downloads files of different sizes from 
it. The average transfer speed is recorded.  

Figure 7 illustrates the results achieved in different 
situations. Both schedulers achieve similar results when 
Guest 4 is idle no matter whether other domains are busy. 
The boost mechanism from credit scheduler efficiently 
ensures the performance of idle domains on I/O related 
tasks when they co-exist on the same server with other 
domains that are doing CPU intensive tasks. However, 
when Guest 4 is also doing CPU intensive tasks, the 
download speed under FEAS doubles that under credit 
scheduler. Since Guest 4’s VCPU is runnable most of the 
time when fully loaded, credit scheduler does not 
discriminate it from other co-currently running busy 

domains. Scheduling delays regarding handling I/O related 
events are thus much longer than when Guest 4 is idle. 
However, FEAS keeps I/O devices busy by promptly 
handling of incoming events and thus speeds up the 
transmission process.  

 

 

Figure 7: FTP downloading speed 

4.4 Impact of co-working VMs 
This experiment examines the I/O performances under 
FEAS when multiple co-located VMs concurrently 
process mixed workloads. Five duplicated guest domains 
are set up for this experiment on the same physical server 
used in previous experiments. Also, Domain 0 is pinned to 
CPU core 1 and Domain 1-5 are pinned to CPU core 2. All 
five guest domains are configured with a FTP server 
facilitated by vsftpd-2.3.4, and each hosts a 16384 KB file 
ready for download. To keep guest domains’ VCPUs 
under constant pressure, they all run cpuburn. A 
multi-threaded C# program is designed to simultaneously 
download the hosted file from guest domains. Hence, 
during the period of concurrent network streaming dense 
inter-domain events and PIRQ events are fired across by 
all domains at the same time.  All these events are caught 
by FEAS and its decision has a direct impact on the I/O 
performances and CPU fairness.  

   The multi-threaded program is modified to run with 1 to 
5 threads respectively on the client machine and each 
thread downloads the test file from an exclusive VM. 
Suppose that n threads simultaneously stream files from n 
VMs (where ), and that the ith streaming 
thread starts at  and finishes at  (where 

). Downloading speed  is evaluated to 
reflect the system performance as 

 

where   
The results are recorded and shown in Figure 8. The 

overall system throughput increases when downloading 
files from more VMs, and the I/O devices tend to operate 
at full speed if downloading files from all VMs. The 
reason is that the overall system performance depends on 
the CPU time and the scheduling latency of all streaming 
VMs.  Thus, if all five VMs are delivering files, no matter 
which VM is scheduled, they all contribute to the overall 
system throughput. All in all, FEAS performs better than 
the original credit scheduler in terms of I/O throughput 
even when multiple VMs do mixed workloads at the same 
time. 
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Figure 8: Download from multiple VMs 

4.5 Scheduling overhead 
 

Seconds  Others busy  All idle  Domain 0 

Original  32.43754  8.78261  8.123744 

FEAS  32.5931  8.80411  8.146923 

Table 2: Duration for prime searching in seconds 

To quantify the scheduling overhead FEAS causes over 
the original credit scheduler, we observe the running time 
of the prime searching function which is a lengthy and 
CPU-intensive process. This experiment finds all the 
664,579 prime numbers less than 10^7 using the trial 
division algorithm (Wikipedia, 2011). The time required 
to complete the process in three cases is illustrated in Table 
2. The percentage increase of running time introduced by 
FEAS in all three cases is less than 1%, which indicates 
that the overhead is negligible. 

5 Conclusion 
VMs sharing the same hardware contend for limited 
resources. It is important to appropriately allocate shared 
resources among VMs that are running simultaneously. 
While fairness requires that each VM receives CPU time 
proportional to their weights, low latency is achieved by 
scheduling a VM as soon as it needs CPU especially if the 
VM has I/O tasks pending.  Our scheduler is an enhanced 
version of credit scheduler that prioritises VCPUs doing 
I/O tasks by monitoring inter-domain events and PIRQ 
events sent between domains and physical devices. FEAS 
makes VMM full-time event aware and promptly 
schedules with best effort runnable VCPUs that receive 
I/O related events. The experiments show that VMs under 
FEAS performs better on I/O intensive tasks than those 
under credit scheduler if they also do CPU intensive tasks 
at the same time. The cost for the modifications needed to 
realise FEAS is proved to be negligible. 

Currently, FEAS is only implemented and tested with 
the guest domains virtualised in para-virtualisation mode. 
Since hardware virtual machine (HVM) does not requiring 
the guest operating system to be modified, it can run 
proprietary operating systems like Windows as guest. Split 
drive model is implemented differently in PV-on-HVM 
kernels. Our future research will try to apply FEAS on 
fully virtualised virtual machines. 
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