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Abstract 

In feature selection we aim at reducing the dimensionality 

of a dataset by excluding characteristics that do not 

compromise, and potentially enhance, the classification of 

a set of samples. We present a new type of supervised and 

multivariate feature selection approach that works by 

constructing proximity graphs in such a way that the 

number of edges connecting samples from different 

classes is minimised. We present this general idea using 

the Minimum Spanning Tree as a proximity graph and an 

Evolutionary Algorithm approach is used to search for a 

feature subset. We compare the performance of our 

algorithm against other feature selection methods, 

(alpha,beta)-k-Feature Set, and a ranking-based feature 

selection method, based on the use of CM1-scores. We 

employ two publicly available real-world datasets (one 

with training and test variants). The classification 

accuracies have been evaluated using a total of 49 

methods from an open source data mining and machine 

learning package WEKA.
 .
 

Keywords:  Feature selection, evolutionary algorithm, 

proximity graph, minimum spanning tree. 

1 Introduction 

Feature selection is an essential task in data mining, and it 

is particularly relevant in bioinformatics where, in many 

cases, the number of features greatly exceed the number 

of samples (e.g., see (Dash & Liu, 1997; Guyon & 

Elisseeff, 2003; Liu & Yu, 2005; Saeys, Inza, & 

Larrañaga, 2007; Yang et al., 2012)). The core idea is to 

select the best subset of features that may potentially 

describe the whole dataset without losing important 

information, which may be useful for discrimination in 

classes of interest. Feature selection methods are 

generally classified as either: filter, wrapper or hybrid by 

the nature of its approach. The filter approach is simple, 

fast, and generally computational efficient however, does 

not consider the potential benefits given by learning 

algorithms, which may influence the selection of features 

that act synergistically (Dash & Liu, 1997; Kohavi & 

John, 1997; Yu & Liu, 2003). The filter approach consists 

of two types: univariate and multivariate. Univariate 

methods start by individually ranking the features and by 
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assigning a score to each of the available features 

according to a pre-defined criterion (Dash & Liu, 1997). 

In this manner, generally the best-scored features are 

selected, while the others are discarded. However, this 

process does not consider the mutual information 

between features. When the top-scoring features are 

highly correlated in a given dataset it may be necessary to 

also consider other features for discriminating all pairs of 

samples. On the other hand, multivariate methods rank a 

group of features instead of individual features and decide 

which combination of a subgroup of features is the best. 

The wrapper approach combines, in a feedback loop, the 

selection process into search, learning and evaluation 

phases, employing a classifier to evaluate the selected 

subset of features. Therefore, it is computationally more 

expensive. At the same time, it is more accurate than 

other methods, even though it may overfit the training 

data which is an issue of concern for small datasets (Dash 

& Liu, 1997; Kohavi & John, 1997). The hybrid approach 

includes characteristics of both the filter and wrapper 

approaches, allowing for a feedback loop between the 

feature selection process and the learning algorithm. 

The proposed method (FSMEC) is a supervised filtering 

multivariate approach. To understand its rationale we first 

note that we are given an m x n matrix of values in which 

each of the m rows represents a feature and each of the n 

columns a sample.  In addition, for each of the n samples 

we have an associated class label. If k rows are selected, 

we can then calculate (using the resulting k x n submatrix) 

an n x n distance matrix between the samples. A 

coefficient in this matrix represents a distance between a 

pair of samples only considering the subset of selected 

features. Using this n x n matrix as input, a Minimum 

Spanning Tree (MST) can be found. The number of edges 

in the resulting MST that are connecting samples from 

different classes as well as the total number of selected 

features can then be used as a quality measure of the 

subset of features. This contribution explores some 

variants of interest involving these quality measures. 

Evolutionary Computation (EC) is a technique (Back, 

Fogel, & Michalewicz, 1997; Fogel, 2006), that has been 

successfully used in a variety of fields including feature 

selection (ElAlami, 2009; Wu, Tang, Hor, & Wu, 2011). 

We propose its use for searching a subset of features that 

produces a MST with the best fitness value. We 

investigate in this contribution as set of fitness functions 

and details will be given later in the paper. The proposed 

FSMEC method is tested on two datasets and the results 

are compared with those of two other feature selection 

techniques. One method is based on the use of CM1 

scores (Marsden, Budden, Craig, & Moscato, 2013) and 
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the other one based on the (α,β)-k-Feature Set problem 

(Berretta, Costa, & Moscato, 2008). To evaluate the 

performance of each feature selection algorithm, we used 

several classifiers available in the widely used WEKA 

software package (Witten, Frank, & Hall, 2011). 

The structure of this paper is as follows. Section 2 

explains how we use the MST to evaluate the quality of a 

subset of features. In Section 3 the proposed evolutionary 

algorithm is described in details. Section 4 presents the 

results. Finally, Section 5 concludes this paper. 

2 The MST and Feature Selection 

The input of the problem is a matrix Hmxn and an array Cn, 

where m denotes the number of features, n denotes the 

number of samples, hij holds the value of feature i in 

sample j and cj holds the class of the sample j. Next, 

giving k selected features, a distance matrix Dnxn is 

calculated, where dij is the distance between samples i 

and j. Note that each subset of features will, in general, 

lead to the computation of a different distance matrix. 

 A complete, undirected and weighted graph G(V,E,W) is 

used to represent the matrix Hkxn (considering only the k 

features), where the nodes in V represent each sample 

(|V|= n), E is a set of edges reflecting the relationship 

between samples, and W is a set of edge weights with wij

= dij. Given the graph G described above, a sub-graph of 

G named spanning tree is one that links all the nodes 

together with (n-1) edges. There are several possible 

spanning trees for a graph G. The MST is a spanning tree 

with the lowest total sum of weights of its (n-1) edges 

(Graham & Hell, 1985), which we will denote is as 

GMST(V,EMST,WMST). The search for the MST is a 

combinatorial optimization problem and there are 

different efficient algorithms to solve this problem. Two 

well-known algorithms are Kruskal’s (Kruskal, 1956) and 

Prim’s (Prim, 1957). In this paper, Prim’s algorithm is 

adopted due to the density of the graph and the minimal 

usage of memory (Graham & Hell, 1985). The quality of 

the subset of k features is evaluated based on its size, the 

number of edges connecting nodes (samples) from 

different classes (denoted by e) in the built MST, and a 

score calculated for the constructed MST (described 

later). An Evolutionary Algorithm, described in the next 

section, is applied for searching the best subset of 

features. The merit of different fitness functions is also 

evaluated. 

3 FSMEC-Feature Selection Based on MST 

using Evolutionary Computation 

Evolutionary Computation EC is used as a search strategy 

for finding a subset of k features. The evolutionary 

algorithm (EA) used in our approach is presented in 

Algorithm 1. 

First, a population of p individuals is created by 

initialisePop(). An individual represents a solution to the 

problem, which in our case is a subset of features. It is 

represented by an array S of size m, where si=1 if feature 

i is selected and 0 if otherwise. 

At each generation, the algorithm applies the 

following operators: parent selection (selectParents 

(parent1, parent2)), crossover (crossover (parent1, 

parent2)), and mutation (mutation(offspring)). We apply 

an update procedure updatePop(P) that replaces the worst 

individual with a new  one if the latter has a better fitness 

than the former. 

Algorithm 1: Pseudo-code of the Evolutionary 

Algorithm implemented for the FSMEC. 

n: number of samples; m: number of features  

p: number of individuals in the population. 

P: population of individuals and their fitness values. 

1  P ← initialisePop()  

2  REPEAT 

3  selectParents(parent1,parent2) 

4  offspring ← crossover(parent1,parent2) 

5  offspring ← mutation(offspring) 

6  fitness(offspring) 

7  population ← updatePop(P) 

8  UNTIL max_numberOfGenerations or 

numberOfGenerationWithoutImprovement 

3.1 Population Initialisation 

The population is structured as a list P of objects with 

each object containing an individual and its fitness value. 

The initialisePop() initialises the population of 40 

individuals ordered by their fitness values. At each 

generation, a new individual is generated and may replace 

the worst individual in the population according to 

updatePop(P). Since the population is ordered, a binary 

search procedure is used to locate the new individual in 

the population. It is worth mentioning that the time 

complexity of this process, O(log(|S|)), is significantly 

better than re-sorting the population for each new 

generation which would cost O(|S|log(|S|)). Two 

population initialisation strategies have been 

implemented in the EA: 

Population initialisation strategy 1 - 5Bins. In this 

strategy we divide P into five equal bins. Each bin b, 

1≤b≤5, for each individual, (b*10)% of features are 

randomly selected. For example, for b=1, 10% of features 

are randomly selected in each individual, for b=2, 20% of 

features are selected, and so forth. 

Population initialisation strategy 2 (5Bins-CM1). It is 

similar to strategy 1 (5Bins), but uses the CM1 score to 

influence the probability of a feature to be chosen. 

Initially, we compute the CM1 score (described in 

Section 4) for each feature and normalise the CM1 values 

(CM1_norm). Similarly to strategy 1 (5bins), P is divided 

in 5 bins. In the first bin, 10% of features are chosen, but 

features with CM1_norm greater than 0.5 will have 90% 

chance to be chosen, while the features with CM1_norm 

score less than 0.5 will have 10% of probability to be 

chosen. In the second bin, 20% of features are chosen, but 

features with CM1_norm greater than 0.5 will have 80% 

chance to be chosen, while the features with CM1_norm 

score less than 0.5 will have 20% chance to be chosen. 

For the bins 3, 4 and 5, an equivalent strategy is 

employed.  

3.2 Optimisation criteria - Fitness functions 

In this work, we are considering only two classes. We 

have four fitness functions to deal with them: 
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Mine. Minimising the number of edges, e, connecting 

samples from different classes in the MST. (Min e) 

MineMink. Minimising the summation of the normalised 

e (i.e. the number of inter-class edges in the MST 

connecting samples from different classes divide by the 

total number of edges in the MST) and normalised k (the 

number of selected features).  

m

k
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−

For the next two we need to define a score for the built 

MST (MSTscore). Consider a MST as a graph 

GMST(V,EMST,WMST). The set of nodes V has a bipartition 

in VA and VB; VA are the set of samples that belong to 

class A and VB are the set of samples that belong to class 

B. Using the weights of the edges that connect nodes 

from the same class, we can define a score for the MST 

given a partition of its set of vertices as follows: 
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Note that in general MSTscore(A,B) is different than 

MSTscore(B,A). We can then define the other two 

functions: 

MineMaxMSTscore: In this case the objective is to 

minimize the ratio between the number of edges, e, 

connecting samples from different classes in the MST and 

the score of the MSTscore(A,B) 

)B,A(MSTscore

e
Min

MineMinkMaxMSTscore: In this case the objective is to 

minimize the summation of normalised e and normalised 

k; divided by the MSTscore(A,B) 

)B,A(MSTscore
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3.3 Breeding 

We refer to the process in which two “parent” solutions 

are selected and a new solution is created. It consists of 

four operations: selecting parent solutions from the 

population; creating a new offspring solution from the 

selected parents using crossover and mutation operations 

and (in case the new offspring has a better fitness 

function than the worst individual in the population) 

replacing the worst individual in the population with the 

new offspring. Each operation is described below. 

Selection: selects two solutions as parents: the solution 

with the best fitness value in the population and another 

selected uniformly at random. 

Crossover: a uniform crossover with a crossover rate of 

40% is used.  

Mutation: two mutation strategies have been applied in 

the EA and both are 1-flip mutation with 5% mutation 

rate. In strategy 1 – Mutation1 – 5% of each of the 

individual solutions are randomly mutated. In the second 

mutation strategy – Mutation-CM1 – normalised scores 

(as used in the 5Bins-CM1 population initialisation) are 

used in the following way. If the feature is selected and 

the CM1_norm is less than 0.5, then the feature is 

discarded. If the feature is not selected and the 

CM1_norm is greater than 0.5, then it is selected. 

Replacement. Finally, the mutated offspring is tested in 

the replacement strategy. If its fitness is better than the 

worst individual, then it is included in the population and 

the worst individual is discarded. A binary search is 

performed to locate the position of the offspring in the 

population. Two stopping criteria have been used in the 

FSMEC algorithm: the EA will stop after a predetermined 

maximum number of generations (10000) or the best 

individual is unchanged for a fix number of generations 

(1000). 

4 Computational Results 

For the purpose of evaluating the performance of our 

FSMEC algorithm, two datasets are used to carry out the 

computational experiments, which are described next. 

Our algorithm was coded in Python 2.7 and executed 

under Unix operating system in a machine with Dual 

Xeon 2.67 GHz, 8 cores and 32 GB RAM.  

4.1 Datasets  

The properties of the two datasets used are summarised in 

(Table 1) and described next. 

Dataset Name features samples Classes 

Shakespearean era plays and 
poems  (Craig & Whipp, 2010) 

220 256 
Plays 202 

Poems 54 

Alzheimer’s disease 
(Ray et al., 2007)  

Training 120 83 
AD 43 

NDC 40 

Test 120 81 
AD 42 

NDC 39 

Table 1.  Datasets used for evaluating the FSMEC 

algorithm. 

Shakespearean era plays and poems dataset. This 

dataset contains 256 works of the Shakespearean era and 

they belong to two classes: plays (202) and poems (54) as 

samples and 220 functional words as features. The 

“frequency of use” of these 220 words have been 

extracted from a cohort of 66907 words previously 

analysed by Arefin et al. in (Arefin, Vimieiro, Riveros, 

Craig, & Moscato, 2014). The goal is then to identify ‘a 

subset of functional words’ that is able to group the texts 

into the two classes; plays and poems. 

Alzheimer’s Disease dataset. It consists of two sub-

datasets: the training and test datasets from Ray et al. 

(Ray et al., 2007). The training dataset contains the 

relative abundances 120 proteins (z-scores, which will be 

used as features) measured on 83 people who have been 

classified into two classes: 43 Alzheimer’s Disease (AD) 

samples and 40 Non Demented Control (NDC) samples. 

The test dataset contains 120 proteins and 81 patients 

classified into two classes - 42 AD samples and 39 NDC 

samples. The test dataset also contains 11 samples 

labelled as ‘Other Dementia’ OD samples, which were 

excluded from the analysis.  

Different methods have been introduced to find an 

optimum molecular test for an earlier diagnosis of 
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Alzheimer's disease (Berretta et al., 2008; Ravetti & 

Moscato, 2008; Ray et al., 2007). They define the 

signatures that are able to distinguish between NDC and 

AD samples and hence predict the AD samples that 

already have a Mild Cognitive Impairment. In the same 

manner, the FSMEC is used to find a subset from the 120 

proteins that can separate the AD patients from NDC 

ones.  

4.2 Evolutionary Algorithm Analysis 

The initial tests were conducted to evaluate and setup an 

initial configuration for the EA. All the results were 

analysed using the Wilcoxon test. We tested different 

crossovers operators, mutation rates, population sizes and 

stop criteria. Our preliminary tests indicate that the best 

results are achieved when we apply the uniform crossover 

(crossover rate 0.4), a 1-flip mutation (mutation rate 

0.05), a population size of 40, and when the number of 

generations without improvements is equal to 1000.  

EA 
Population 
Strategy 

Mutation Strategy 

EA1 5Bins Mutation1 

EA2 5Bins-CM1 Mutation-CM1 

Table 2. The configuration of the two Evolutionary 

Algorithms tested (according to population 

initialisation and mutation strategies). 

Fitness function EA k e Fit Time Gen 

Mine 
EA1 64 2 2.0 333 1599 

EA2 101 3.2 3.2 303 1686 

MineMink 
EA1 2 96 0.01 320 1702 

EA2 5 40 0.02 422 1616 

MineMaxMSTscore 
EA1 112 2.8 9.5 1511 5847 

EA2 59.6 4 13.7 2363 9143 

MineMinkMaxMSTscore 
EA1 107 3 0.036 1541 5110 

EA2 60.8 3.6 0.052 2586 10000 

Table 3. Average number of selected features k, inter-

class edges e, fitness Fit, running time, and generations 

gen obtained by EA1 and EA2 using the Shakespeare 

era plays and poems dataset for each optimisation 

criteria. 

Fitness function EA  k e Fit Time Gen 

Mine 
EA1 43 5.9 5.9 18.3 1683 

EA2 53 5.8 5.8 19.5 1950 

MineMink 
EA1 53 5 0.068 25.6 2114 

EA2 35 7 0.086 24.2 1647 

MineMaxMSTscore 
EA1 55.3 7.6 44.3 103.1 5934 

EA2 31.4 6.5 35.0 115.3 7592 

MineMinkMaxMSTscore 
EA1 52.2 7.1 0.98 76.2 4385 

EA2 17.6 9.6 1.20 92.9 6587 

Table 4: Average number of selected features k, inter-

class edges e, fitness Fit,  running time, and generation 

gen obtained by EA1 and EA2 using the Alzheimer 

disease training dataset for each optimisation criteria. 

In the next set of experiments we tested the two different 

population initialisation strategies (5Bins and 5Bins-

CM1) and the two mutation strategies (Mutation1 and 

Mutation-CM1) as depicted in Table 2. Tables 3 and 4 

show the results obtained from the Shakespearean era 

plays and poems and Alzheimer’s disease training 

datasets, respectively, for each optimisation criteria. Each 

row in these tables is the average of 10 executions. These 

tables highlight the best EA for each optimisation criteria. 

For the Shakespearean era plays and poems dataset 

(Table 3), the EA1 achieved the best average fitness score 

(Fit) for the four optimisation criteria. For the 

Alzheimer’s disease training dataset, the EA1 was the 

best for two optimisation criteria (MineMink and 

MineMinkMaxMSTscore) and EA2 performed better for 

the other two optimisation criteria. EA1 was superior for 

Shakespearean era plays and poems dataset, and for the 

Alzheimer’s disease training dataset there was a tie 

between EA1 and EA2. 

4.3 Classification Performance 

The next computational test aimed to evaluate the 

practical use of the set of features obtained by our 

FSMEC for a learning algorithm.  

Type Classifier Type Classifier 

Bayes BayesNet Meta RandomSub_Space 

Bayes NaiveBayes Meta RotationForest 

Bayes NaiveBayesUpdatable Meta ThresholdSelector 

Function Logistic Mesc HyperPipes 

Function SimpleLogistic Mesc VFI 

Function RBFNetwork Rules ConjunctiveRule 

Function SMO Rules DecisionTable 

Function SPegasos Rules Jrib 

Function VotedPerceptron Rules NNge 

Lazy IB1 Rules OneR 

Lazy Kstar Rules Part 

Lazy LWL Rules Ridor 

Meta AdaBoost Tree ADTree 

Meta AttributeSelectedClassifier Tree BFTree 

Meta Bagging Tree FT 

Meta ClassificationViaRegression Tree LADTree 

Meta Dagging Tree LMT 

Meta Decorate Tree DecisionStump 

Meta END Tree J48 

Meta FilteredClassifier Tree J48graft 

Meta LogitBoost Tree RepTree 

Meta MultiBoostAB Tree NBTree 

Meta MultiClassClassifier Tree Random_Forest 

Meta OrdinalClass Tree RandomTree 

Meta RandomCommittee 

Table 5: List of classifiers associated with their types 

as categorised in WEKA (Witten et al., 2011) version 

3.6.4. 

For each row in the tables 3 and 4, the subset of features 

(out of 10 solutions) that has the best fitness value (Fit) 

was selected to be evaluated by a learning algorithm. We 

have used 49 machine learning algorithms from the well-

known WEKA software package (Witten et al., 2011). 

Table 5 lists all of the classifiers considered, along with 

their respective types as categorised in WEKA (version 

3.6.4). In each case, the average specificity, sensitivity, 
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classification accuracy, and the Matthews’ correlation 

coefficient (MCC) have been calculated using 10-fold 

cross validation, which means that the original dataset is 

randomly divided into 10 equal subsets: 9 are used as 

training sets, and the remaining subsets are used as test 

sets. Evaluation is repeated 10 times, such that each 

subset is utilised exactly once for this purpose (Witten et 

al., 2011). The results are shown in Tables 6 and 7. Each 

row in these tables shows the evolutionary algorithm 

applied (EA1 or EA2), the size of the subset of features 

(k), the number of inter-class edges (e), and the fitness 

value (Fit) for the specific optimisation criterion. It also 

shows the average classification accuracy and the average 

MCC of 49 classifiers.  

Optimisation Criteria EA  k e Fit ACC MCC 

Mine 
EA1 84 1 1 0.959 0.876 

EA2 89 1 1 0.952 0.855 

MineMink 
EA1 94 1 0.018 0.957 0.869 

EA2 33 4 0.016 0.955 0.866 

MineMaxMSTscore 
EA1 117 2 6.7 0.954 0.861 

EA2 50 3 6.3 0.959 0.876 

MineMinkMaxMSTscore 
EA1 110 2 0.027 0.960 0.880 

EA2 52 1 0.028 0.956 0.868 

Table 6: Average accuracy and Matthews' correlation 

coefficient (MCC) using the best subset of features 

from FSMEC for the Shakespeare era plays and 

poems dataset. Each row shows number of features 

(k), the number of inter-class edges (e), the fitness 

value (Fit), the average accuracy and MCC.  

Optimisation Criteria EA  k E Fit ACC MCC 

Mine 
EA1 56 5 5 0.859 0.720 

EA2 41 5 5 0.861 0.725 

MineMink 
EA1 4 57 0.045 0.860 0.721 

EA2 6 35 0.073 0.867 0.737 

MineMaxMSTscore 
EA1 55 6 35.4 0.862 0.725 

EA2 27 5 29.8 0.875 0.752 

MineMinkMaxMSTscore 
EA1 42 7 0.888 0.873 0.748 

EA2 15 8 0.795 0.880 0.762 

Table 7. Average accuracy and Matthews' correlation 

coefficient (MCC) using the best subset of features 

from FSMEC for the Alzheimer’s disease dataset. 

Each row shows number of features (k), the number of 

inter-class edges (e), the fitness value (Fit), the average 

accuracy ACC and MCC.  

Table 6 illustrates the results for the Shakespearean era 

plays and poems dataset and Table 7 for the Alzheimer’s 

disease training dataset. The FSMEC has been applied on 

the Alzheimer disease training dataset to find subsets of 

features, which in turn have been used to build a 

classification model over the Alzheimer disease test 

dataset. For each dataset and optimisation criterion, the 

best classification accuracy and MCC results are 

highlighted. In the previous experiment, EA1 performed 

better for the Shakespearean era plays and poems dataset 

(see Table 3). When we evaluate the classification 

performance, the results were similar, showing that EA1 

obtained better results for 3 out of 4 optimisations criteria 

(see Table 6). In the case of the Alzheimer’s disease 

dataset (see Table 7) the results showed a better 

performance of EA2. After analysing the different 

optimisation criteria, we found that the 

MineMinkMaxMSTscore obtained slightly better 

classification performance for both datasets, 

independently of the EA applied. 

4.4 Benchmark Techniques 

To examine the performance of the proposed method 

(FSMEC), two feature selection methods ((α,β)-k-Feature 

set and CM1 score) are used as benchmark techniques. 

The (α,β)-k-Feature Set is a supervised, multivariate 

filter method based on combinatorial optimization first 

proposed by Cotta et al. (Cotta, Sloper, & Moscato, 2004) 

and then used by many other applications (Berretta et al., 

2008; Berretta, Mendes, & Moscato, 2005, 2007; de 

Paula, Ravetti, Berretta, & Moscato, 2011; Hourani, 

Berretta, Mendes, & Moscato, 2008; Ravetti, Rosso, 

Berretta, & Moscato, 2010). The task is to identify k 

features such that at least α features of these k can explain 

the dichotomy between samples that belong to different 

classes.In addition, those k features should satisfy that at 

least β features must explain the similarities between 

samples from the same class. A mathematical 

programming software called CPLEX has been used to 

obtain solutions using integer programming techniques 

(Berretta et al., 2008). For further details about the (α,β)-

k-Feature Set problem we refer to (Berretta et al., 2008).  

In contrast, the CM1 score (Marsden et al., 2013) is a 

supervised, univariate filter method. It works by 

individually ranking the features according to their 

expression values in order to identify features presenting 

differentiation between samples from a target class and 

samples from the outclass. Consider VA and VB are a 

partition of samples (V) in the dataset of interest (i.e.  VA 

⋃ VB = V and VA ∩ VA = ∅), such that VA is a set of all 

samples that belong to one class and VB is a set of all 

samples that are not labelled as class A. . The CM1 score 

for a feature k can then be defined as 

}{min}{max1

11

1
||||
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where hkxi, as described before, holds the value of the 

feature k in the sample i.  

Table 8 summarises the size of the features’ sets obtained 

by the benchmark techniques and the FSMEC. For CM1, 

we are following the same approach of [13], we select the 

20 highest and 20 lowest CM1 markers for both words in 

the Shakespeare era plays and poems dataset and features 

in the Alzheimer’s disease dataset.  

Table 9 summarises the average MCC obtained by the 

benchmark techniques and the FSMEC. It shows the 

average MCC results achieved using all (ALL) the 

features (ALL), the benchmark methods ((α,β)-k-Feature 

set and CM1) and the results obtained by the four 

FSMEC’s optimisation criteria. 
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Dataset 

Shakespeare Alzheimer’s 

All 220 120 

(α,β)-k-FEATURE SET 140 10 

CM1 40 40 

EA1 EA2 EA1 EA2 

k e k e k e K e 

Mine 84 1 89 1 56 5 41 5 

MineMink 94 1 33 4 57 4 35 6 

MineMaxMSTscore 117 2 50 3 55 6 27 5 

MineMinkMaxMSTscore 110 2 52 1 42 7 15 8 

Table 8. The size of resulting features’ subsets (k) 

obtained by the benchmark techniques and the 

number of inter-class edges e and the value of k for 

the FSMEC for each optimisation criteria and 

considering the EA1 and EA2. 

Dataset 

Shakespeare Alzheimer’s 

ACC MCC ACC MCC 

All 0.949 0.849 0.848 0.698 

(α,β)-k-FEATURE SET 0.952 0.856 0.891 0.784 

CM1 0.941 0.824 0.860 0.722 

EA1 EA2 EA1 EA2 

ACC MCC ACC MCC ACC MCC ACC MCC 

Mine 0.959 0.876 0.952 0.855 0.859 0.720 0.861 0.725 

MineMink 0.957 0.869 0.955 0.866 0.86 0.721 0.867 0.737 

MineMaxMSTscore 0.954 0.861 0.959 0.876 0.862 0.725 0.875 0.752 

MineMinkMaxMSTscore 0.960 0.880 0.956 0.868 0.873 0.748 0.880 0.762 

Table 9. The best average MCC and ACC (accuracy) 

results achieved from the FSMEC’ four optimisation 

criteria and the two benchmark methods for the 

dataset under study. The (All) means all features m 

without applying a feature selection.  

It also shows that most of FSMEC’s optimisation criteria 

demonstrated their superiority in terms of the MCC and 

the accuracy over the other methods in case of the 

Shakespearean era plays and poems dataset. If we 

compare our four FSMEC’s optimisation criteria, the 

MineMinkMaxMSTscore achieved the best MCC results 

with 0.880 and the best accuracy with 96.0% compared 

with Mine, MineMink and MineMaxMSTscore. Notably, 

the value of e is 2 in case of the best 

MineMinkMaxMSTscore while the value of e is 1 in case 

of both Min e and the MineMink with both providing very 

close MCC values.  

In case of the Alzheimer’s disease training dataset, the 

(α,β)-k-Feature Set provided the best average MCC result 

(0.784), however our proposed method is highly 

competitive with MineMinkMaxMSTscore attaining a 

MCC of 0.762. Additionally, the FSMEC obtained better 

results than CM1 and using all features (ALL). 

Notably, the MineMinkMaxMSTscore in case of both the 

Shakespeare era plays and poems dataset and Alzheimer’s 

disease dataset using EA1 or EA2 always obtained better 

classification performance compared with other 

optimisation criteria. However, there is no clear winner 

between EA1 and EA2. 

Next, we selected the five best performing WEKA 

classifiers in each experiment from Tables 8 and 9. These 

results are organised in Tables 10-13. Tables 10 and 11 

show the results achieved for the Shakespeare era plays 

and poems dataset using EA1 (Table 10) and EA2 (Table 

11). Tables 12 and 13 show the results for the Alzheimer’s 

disease dataset using EA1 and EA2, respectively. Each 

table shows the number of features (k), ACC and MCC 

achieved by each classifier. We also show the average 

and median of the results for each method in the last two 

rows. Note that the list of classifier methods in each table 

is the union of the five best performing methods in each 

experiment. In each row of each table we highlighted the 

best result(s). 

Analysing the results in Tables 10 and 11 we note that the 

MineMinkMaxMSTscore optimisation criterion continues 

to lead the results by achieving 14 best results (6 using 

EA1 and 8 using EA2). It also achieves the best average 

and median results. The MineMaxMSTscore optimisation 

criterion also obtained good results, achieving 8 best 

results (3 for EA1 and 5 for EA2).  Figure 1 shows the 

MST that has been constructed from the selected features 

and using the MineMinkMaxMSTscore optimisation 

criterion for Shakespeare era plays and poems dataset, 

using EA2, with 52 features. In the case of the 

Alzheimer’s disease dataset (see Table 12 and 13), the 

MineMinkMaxMSTscore optimisation criterion also 

achieves excellent results. When we compare using 

median, the best results are achieved by 

MineMinkMaxMSTscore and (α,β)-k-Feature Set method. 

In the next section, we show the effect of the different 

optimisation criteria in the classification performance. 

4.5 Effect of the number of fitness functions on 

the MCC 

An empirical study has been made in order to investigate 

the effect of the four optimisation criteria on the 

classification performance. We run EA2 five times for 

each optimisation criterion using Alzheimer’s disease 

training and the Shakespearean era plays and poems 

datasets.  Each 10 generations of the EA2, we saved the 

best individual of the population in a set. Then, for each 

solution in this set, we used the same 49 classification 

algorithms and calculated the average of MCC values.  

The results of this experiment are reported in Figures 2 

and 3. Figure 2 illustrates the results for the 

Shakespearean era plays and poems dataset while Figure 

3 for Alzheimer’s disease dataset, with the performance 

evaluated in terms of the MCC. The horizontal line (x-

axis) shows the fitness value for each solution during 

EA2 execution every 10 generations, while the average 

MCC values for each of the corresponding solution are 

shown in the vertical line (y-axis).  

The majority of the results indicate that minimising any 

one of the fitness functions under study generally results 

in maximising the average MCC. 
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5 Conclusion 

This work presents a new method based on the Minimum 

Spanning Tree to find a solution to the feature selection 

problem. Accordingly, four fitness functions (based on 

this criterion) have been tested: Mine, MineMink, 

MineMaxMSTscore, and MineMinkMaxMSTscore. An 

evolutionary algorithm (EA) has been used to address the 

combinatorial optimisation problem. Two sorts of 

experiments have been made on two real life datasets in 

order to select the best performing EAs (parameters, 

operators, and fitness functions). The first test is used to 

tune the population size, maximum number of 

generations, mutation rate, and crossover operator. The 

results of this experiment have been analysed by the 

Wilcoxon test and accordingly the best performing 

operators and parameters were selected. In the second 

test, two EAs have been implemented to investigate 

whether the CM1 score can improve the solutions 

evolved by the EA (i.e. EA2) or not (i.e. EA1).  First, the 

results were varied (i.e. EA1 performed better for the 

Shakespearean era plays and poems dataset while the 

EA2 attained better results for the Alzheimer’s disease).  

Next, we used 49 machine learning algorithms from the 

WEKA software package to evaluate the set of features 

obtained by our FSMEC.  Moreover, we selected the best 

five performing classifiers for each of the methods to 

better analyse the results. The results show that the 

proposed method can be successfully used to reduce the 

number of features and increase the classification 

performance. In other words, the FSMEC has produced 

improved classification performance, when compared 

against all the features before applying our method. We 

have also compared our method with two state of the art 

feature selection methods on two real world datasets.  

In case of the Shakespeare era plays and poems dataset 

the FSMEC’ four optimisation criteria were managed to 

outperform the others in terms of MCC using 49 Weka 

classifiers and even though using the best five performing 

classifiers. Our method did not attain the best MCC 

results in case of the Alzheimer’s disease using 49 Weka 

classifiers but using the best five performing classifiers 

our MineMinkMaxMSTvalue achieved the best results for 

both datasets. Finally, an investigation has been made to 

evaluate the effect of fitness function on the MCC values. 

Most of the results in this investigation drew an upward 

trend-line to increase the MCC values when the fitness 

value minimises.     

In the future, two-way improvement will be considered. 

In the first direction, we will continue improving the EA 

by employing Memetic Algorithms (Moscato et al., 

1989). In addition, we will test our method using different 

proximity graphs. 
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Figure 1. The MST constructed from our MineMinkMaxMSTscore optimisation criterion for the Shakespearean 

dataset using EA2. The size of resulted features is 52. The nodes represent the works, which are classified into 

plays (202 nodes in black) and poems (54 nodes in white). The red edges show the inter-class edges. 
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Figure 2. Effect of the Fitness functions (in x-axis):  Mine, MineMink, MineMaxMSTscore, and 

MineMinkMaxMSTscore optimisation criteria on the average MCC value (in y-axis) in case of the 

Shakespearean era plays and poems dataset.  

Figure 3. Effect of the Fitness functions (in x-axis):  Mine, MineMink, MineMaxMSTscore, and 

MineMinkMaxMSTscore optimisation criteria on the average MCC value (in y-axis) in case of the Alzheimer’s 

disease dataset.  
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ALL 

(αααα,ββββ)-k- 

FEATURE 

SET 

CM1 Mine MineMink 
MineMax 

MSTscore 

MineMinkMax 

MSTscore 

EA EA1 EA1 EA1 EA1 

k 220 140 40 84 44 117 110 

Classifier Name ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC 

Bayes_Net 0.977 0.934 0.934 0.977 0.957 0.883 0.973 0.922 0.984 0.955 0.969 0.915 0.984 0.955 

Simple_Logistic 0.984 0.955 0.905 0.969 0.957 0.872 1.000 1.000 0.965 0.892 0.984 0.953 0.988 0.965 

RBF_Network 0.977 0.934 0.945 0.980 0.969 0.910 0.977 0.932 0.977 0.934 0.973 0.924 0.980 0.945 

SMO 0.996 0.988 0.977 0.992 0.980 0.943 0.977 0.930 0.984 0.953 0.992 0.977 0.992 0.976 

S_Pegasos 0.965 0.892 0.905 0.969 0.953 0.856 0.977 0.930 0.988 0.965 0.969 0.905 0.996 0.988 

IBK 0.945 0.832 0.856 0.953 0.973 0.917 0.973 0.917 0.977 0.929 0.957 0.868 0.961 0.880 

LWL 0.930 0.792 0.815 0.938 0.926 0.779 0.930 0.795 0.922 0.762 0.937 0.818 0.941 0.828 

Dagging 0.977 0.929 0.942 0.980 0.957 0.869 0.980 0.941 0.969 0.905 0.980 0.941 0.977 0.929 

Decorate 0.961 0.883 0.954 0.984 0.965 0.895 0.973 0.918 0.996 0.988 0.984 0.954 0.977 0.930 

Random_Committee 0.980 0.945 0.918 0.973 0.937 0.805 0.969 0.906 0.988 0.965 0.980 0.941 0.977 0.930 

OneR 0.910 0.722 0.749 0.918 0.910 0.722 0.918 0.749 0.926 0.771 0.926 0.771 0.937 0.815 

FT 0.977 0.930 0.918 0.973 0.961 0.881 0.988 0.965 0.965 0.892 0.973 0.917 0.988 0.965 

LMT 0.984 0.955 0.905 0.969 0.957 0.872 1.000 1.000 0.965 0.892 0.984 0.953 0.988 0.965 

NBTree 0.988 0.965 0.977 0.992 0.961 0.884 0.984 0.954 0.980 0.941 0.961 0.883 0.969 0.908 

Avearge 0.968 0.904 0.907 0.969 0.955 0.863 0.973 0.919 0.970 0.910 0.969 0.909 0.975 0.927 

Median 0.977 0.930 0.918 0.973 0.957 0.872 0.977 0.930 0.977 0.929 0.973 0.924 0.977 0.930 

Table 10. Performance results for the top five WEKA models for ALL (all features), CM1, (αααα,ββββ)-k-FEATURE 
SET, Mine, MineMink, and MineMaxkMSTscore and MineMinkMaxMSTscore in terms of accuracy and MCC 

achieved for Shakespeare era plays and poems dataset, using EA1. 

ALL 

(αααα,ββββ)-k- 

FEATURE 

SET 

CM1 Mine MineMink 
MineMax 

MSTscore 

MineMinkMax 

MSTscore 

EA EA2 EA2 EA2 EA2 

k 220 140 40 89 53 50 52 

Classifier Name ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC 

Bayes_Net 0.977 0.934 0.977 0.934 0.957 0.883 0.973 0.924 0.973 0.920 0.977 0.934 0.973 0.924 

Naive_Bayes 0.977 0.932 0.977 0.932 0.945 0.860 0.977 0.932 0.969 0.908 0.988 0.966 0.977 0.932 

Simple_Logistic 0.984 0.955 0.969 0.905 0.957 0.872 0.957 0.869 0.953 0.859 0.977 0.929 0.992 0.977 

RBF_Network 0.977 0.934 0.980 0.945 0.969 0.910 0.980 0.945 0.973 0.920 0.988 0.966 0.973 0.922 

S_Pegasos 0.965 0.892 0.969 0.905 0.953 0.856 0.973 0.917 0.941 0.821 0.984 0.953 0.996 0.988 

IBK 0.945 0.832 0.953 0.856 0.973 0.917 0.957 0.869 0.965 0.892 0.980 0.941 0.969 0.905 

Dagging 0.977 0.929 0.980 0.942 0.957 0.869 0.980 0.941 0.953 0.855 0.977 0.929 0.984 0.953 

Decorate 0.961 0.883 0.984 0.954 0.965 0.895 0.977 0.931 0.977 0.930 0.984 0.953 0.984 0.954 

Logit_Boost 0.969 0.905 0.961 0.883 0.953 0.859 0.969 0.910 0.973 0.917 0.969 0.905 0.980 0.941 

Hyper_Pipes 0.953 0.877 0.969 0.915 0.953 0.870 0.957 0.886 0.969 0.908 0.973 0.920 0.977 0.934 

FT 0.977 0.930 0.973 0.918 0.961 0.881 0.949 0.845 0.957 0.874 0.984 0.953 0.992 0.977 

LMT 0.984 0.955 0.969 0.905 0.957 0.872 0.957 0.869 0.953 0.859 0.977 0.929 0.992 0.977 

NBTree 0.988 0.965 0.992 0.977 0.961 0.884 0.977 0.932 0.973 0.917 0.969 0.905 0.953 0.861 

Random_Forest 0.973 0.918 0.973 0.917 0.957 0.869 0.977 0.932 0.957 0.868 0.973 0.917 0.973 0.918 

Avearge 0.972 0.917 0.973 0.921 0.958 0.878 0.969 0.907 0.963 0.889 0.979 0.936 0.980 0.940 

Median 0.977 0.930 0.973 0.918 0.957 0.872 0.973 0.921 0.967 0.900 0.977 0.932 0.979 0.938 

Table 11. Performance results for the top five WEKA models for ALL (all features), CM1, (αααα,ββββ)-k-FEATURE 
SET, Mine, MineMink, and MineMaxMSTscore and MineMinkMaxMSTscore in terms of accuracy and MCC 

achieved for Shakespeare era plays and poems dataset, using EA2. 
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ALL 

(αααα,ββββ)-k- 

FEATURE 

SET 

CM1 Mine MineMink 
MineMax 

MSTscore 

MineMinkMax 

MSTscore 

EA EA1 EA1 EA1 EA1 

k 120 10 40 56 23 55 42 

Classifier Name ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC 

Logistic 0.840 0.679 0.901 0.803 0.827 0.658 0.827 0.654 0.827 0.655 0.914 0.827 0.802 0.604 

Simple_Logistic 0.889 0.779 0.926 0.852 0.914 0.829 0.889 0.779 0.889 0.779 0.914 0.827 0.951 0.901 

SMO 0.864 0.728 0.951 0.902 0.926 0.852 0.889 0.778 0.926 0.852 0.951 0.902 0.963 0.926 

S_Pegasos 0.852 0.708 0.914 0.830 0.852 0.703 0.827 0.655 0.901 0.804 0.914 0.827 0.840 0.685 

Classification_Via_Regression 0.926 0.852 0.889 0.778 0.877 0.753 0.914 0.829 0.938 0.877 0.864 0.728 0.938 0.878 

Dagging 0.877 0.760 0.951 0.901 0.914 0.829 0.840 0.685 0.827 0.658 0.864 0.731 0.864 0.741 

Decorate 0.877 0.757 0.889 0.780 0.889 0.778 0.951 0.902 0.938 0.877 0.901 0.802 0.951 0.902 

Logit_Boost 0.852 0.703 0.889 0.778 0.877 0.753 0.926 0.852 0.889 0.778 0.901 0.802 0.901 0.804 

Multi_Class_Classifier 0.840 0.679 0.901 0.803 0.827 0.658 0.827 0.654 0.827 0.655 0.914 0.827 0.802 0.604 

Rotation_Forest 0.926 0.853 0.951 0.902 0.914 0.827 0.938 0.878 0.926 0.855 0.926 0.852 0.914 0.830 

NNge 0.877 0.753 0.926 0.852 0.914 0.827 0.951 0.902 0.926 0.853 0.889 0.780 0.926 0.853 

LMT 0.889 0.779 0.926 0.852 0.914 0.829 0.889 0.779 0.889 0.779 0.914 0.827 0.951 0.901 

Random_Forest 0.753 0.505 0.889 0.779 0.914 0.827 0.815 0.630 0.840 0.685 0.827 0.663 0.877 0.762 

AVERAGE 0.866 0.733 0.916 0.832 0.889 0.779 0.883 0.767 0.888 0.777 0.899 0.800 0.898 0.799 

Median 0.877 0.753 0.914 0.830 0.914 0.827 0.889 0.779 0.889 0.779 0.914 0.827 0.914 0.830 

Table 12. Performance results for the top five WEKA models for ALL (all features), CM1, (αααα,ββββ)-k-FEATURE 
SET, Mine, MineMink, and MineMaxMSTscore and MineMinkMaxMSTscore in terms of accuracy ACC and 

MCC achieved for Alzheimer’s disease dataset, using EA1. 

ALL 

(αααα,ββββ)-k- 

FEATURE 

SET 

CM1 Mine MineMink 
MineMax 

MSTscore 

MineMink 

MaxMSTscore 

EA EA2 EA2 EA2 EA2 

k 120 10 40 41 31 27 15 

Classifier Name ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC 

Bayes_Net 0.852 0.708 0.889 0.780 0.889 0.780 0.852 0.708 0.877 0.757 0.901 0.802 0.901 0.804 

Naive_Bayes 0.827 0.654 0.926 0.852 0.877 0.754 0.889 0.778 0.864 0.728 0.877 0.753 0.901 0.802 

Simple_Logistic 0.889 0.779 0.926 0.852 0.914 0.829 0.938 0.877 0.938 0.878 0.901 0.805 0.877 0.753 

SMO 0.864 0.728 0.951 0.902 0.926 0.852 0.901 0.802 0.914 0.827 0.951 0.902 0.926 0.855 

IBK 0.914 0.827 0.901 0.802 0.827 0.654 0.877 0.756 0.889 0.779 0.914 0.829 0.951 0.905 

LWL 0.889 0.783 0.889 0.783 0.889 0.783 0.864 0.729 0.914 0.833 0.889 0.788 0.901 0.810 

Classification_Via_Regression 0.926 0.852 0.889 0.778 0.877 0.753 0.889 0.778 0.938 0.877 0.877 0.753 0.877 0.753 

Dagging 0.877 0.760 0.951 0.901 0.914 0.829 0.901 0.807 0.901 0.807 0.901 0.802 0.926 0.852 

Decorate 0.877 0.757 0.889 0.780 0.889 0.778 0.926 0.852 0.926 0.852 0.938 0.877 0.914 0.827 

Filtered_Classifier 0.827 0.654 0.827 0.654 0.840 0.679 0.815 0.632 0.778 0.556 0.815 0.63 0.815 0.630 

Logit_Boost 0.852 0.703 0.889 0.778 0.877 0.753 0.901 0.802 0.877 0.754 0.877 0.753 0.901 0.802 

Random_Committee 0.84 0.687 0.914 0.833 0.889 0.783 0.889 0.780 0.889 0.791 0.864 0.728 0.938 0.877 

Random_Sub_Space 0.914 0.827 0.877 0.753 0.901 0.802 0.901 0.805 0.840 0.678 0.914 0.827 0.901 0.803 

Rotation_Forest 0.926 0.853 0.951 0.902 0.914 0.827 0.901 0.802 0.926 0.852 0.938 0.877 0.926 0.852 

Decision_Table 0.815 0.630 0.778 0.559 0.802 0.609 0.827 0.654 0.802 0.604 0.753 0.506 0.815 0.630 

NNge 0.877 0.753 0.926 0.852 0.914 0.827 0.889 0.778 0.914 0.827 0.926 0.852 0.926 0.852 

ADTree 0.864 0.728 0.852 0.703 0.864 0.728 0.864 0.728 0.852 0.708 0.877 0.753 0.877 0.753 

BFTree 0.915 0.830 0.915 0.830 0.902 0.804 0.915 0.855 0.864 0.728 0.927 0.854 0.940 0.879 

J48graft 0.864 0.729 0.901 0.802 0.864 0.729 0.84 0.678 0.864 0.728 0.889 0.779 0.901 0.803 

AVERAGE 0.875 0.751 0.889 0.779 0.881 0.762 0.881 0.765 0.875 0.751 0.884 0.769 0.897 0.793 

Median 0.877 0.753 0.889 0.780 0.889 0.778 0.889 0.780 0.877 0.754 0.889 0.779 0.901 0.803 

Table 13. Performance results for the top five WEKA models for ALL (all features), CM1, (αααα,ββββ)-k-FEATURE 
SET, Mine, MineMink, and MineMaxMSTscore and MineMinkMaxMSTscore in terms of accuracy ACC and 

MCC achieved for Alzheimer‘s disease dataset, using EA2. 
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