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Abstract

In this paper, we reduce computation time of ellip-
tic curve signature verification scheme by proposing
the minimal joint Hamming weight conversion for
any binary expansions of d integers. The computa-
tion time of multi-scalar multiplication, the bottle-
neck operation of the scheme, strongly depends on the
joint Hamming weight. As we represent the scalars
using redundant representations, we may represent
a number by many expansions. The minimal joint
Hamming weight conversion is the algorithm to se-
lect the expansion which has the least joint Hamming
weight. Many existing works introduce the conver-
sions for some specific representations, and it is not
trivial to generalize their algorithms to other repre-
sentations. On the other hand, our conversion, based
on the dynamic programming scheme, is applicable to
find the optimal expansions on any binary represen-
tations. We also propose the algorithm to generate
the Markov chain used for exploring the minimal av-
erage Hamming density automatically from our con-
version algorithm. In general, the sets of states in
our Markov chains are infinite. Then, we introduce
a technique to reduce the number of Markov chain
states to a finite set. With the technique, we find the
average joint Hamming weight of many representa-
tions that have never been found. One of the most
significant results is that, for the expansion of inte-
ger pairs when the digit set is {0,±1,±3} often used
in multi-scalar multiplication, we show that the min-
imal average joint Hamming density is 0.3575, which
improves the upper bound value.

Keywords: Elliptic Curve Cryptography, Minimal
Weight Conversion, Average Joint Hamming Weight,
Digit Set Expansion

1 Introduction

The multi-scalar multiplication is the bottleneck op-
eration of elliptic curve signature verification scheme.
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The operation is to compute

K =

d
∑

i=1

riPi = r1P1 + · · ·+ rdPd,

when ri is a natural number, and Pi is a point
on the elliptic curve. In this paper, we propose a
method to reduce the computation time using a com-
puter arithmetic technique considering the represen-
tation of each scalar ri. In some redundant repre-
sentations, we can represent each ri in more than
one way. Each way, called expansion, has a differ-
ent value of Hamming weight, which directly affects
the computation time of multi-scalar multiplications.
Since the lower weight expansion makes the opera-
tion faster, many methods have been explored the
lower weight expansion on many specific representa-
tions (1, 2, 3, 4, 5, 6, 7). These include the work by
Solinas (1), which proposed the minimal joint weight
expansion on an integer pair when digit set (defined
in Section 2) is {0,±1}. Also, the work by Heuberger
and Muir (2, 3) presented the expansions for digit set
{−l,−(l−1), . . . ,−1, 0, 1, . . . , u−1, u} for any natural
number l, and positive integer u.

However, minimal weight conversions of many
digit sets have not yet been found in the literature.
This is caused by the fact that most of previous work
presented the conversions based on the mathematical
construction of the representation, which is hard to
apply to many types of digit sets.

In this work, we propose a conversion method and
an algorithm to find the average weight without con-
cerning mathematical construction. This enables us
to find the minimal weight conversions of digit sets
used for multi-scalar multiplication. One of the signif-
icant result is the minimal weight conversion when the
digit set is {0,±1,±3} (8). Compared to the digit set
that the minimal weight conversion have been found
such as {0,±1± 2} (2, 3), {0,±1,±3} uses the same
amount of memory to store the pre-computed points
as {0,±1,±2}, but it is proved that {0,±1,±3} has
lower minimal average weight when d = 2.

To evaluate the effectiveness of each representation
on elliptic curve cryptography, we utilize the average
joint Hamming density, and we also propose a method
to find the value for a class of digit set in this pa-
per. Similar to the minimal weight conversions, most
of the existing works proposed analysis based on the
mathematical construction, which makes it hard to
apply to many digit sets. On the other hand, we are
able to calculate the value for our minimal weight con-
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version algorithms, by proposing an algorithm to au-
tomatically generate the Markov chain from the con-
version algorithms. In general, the sets of states in
our Markov chains are infinite. Then, we introduce
a technique to reduce the number of Markov chain
states to a finite set.

One of our results is the expansion when the
digit set is {0,±1,±3} and d = 2. For this digit
set, many previous works have proposed conversion
methods and analysis for multi-scalar multiplication
(5, 9, 10, 11). They can find the upper bound for the
minimal average joint Hamming density. Our algo-
rithm can find the minimal average joint Hamming
density for this digit set, which is 0.3575. This im-
proves the lowest upper bound 0.3616 in (5, 6).

It is shown in Appendix C that our minimal weight
conversion algorithm is applicable to all finite digit
sets. However, the algorithm to find average joint
Hamming density is not. In many digit sets, the
number of states in the Markov chain in the Markov
chain is not finite, e.g. the representation in which
DS = {0, 1, 3} and d = 1. In (12), we provide the
proof of the finiteness of the Markov chain in a class of
representation which cover all representations practi-
cally used in multi-scalar multiplication. Also, we are
working on finding other reduction methods, which
enable us to discover the value for wider class of rep-
resentations.

The remainder of this paper is organized as fol-
lows: We discuss the background knowledge of this
research in Section 2. In Section 3, we propose a
minimal weight conversion algorithm, with the expla-
nation and the example. In Section 4, we present the
algorithm to construct the Markov chain used for an-
alyzing the digit set expansion from the conversion
in Section 3. Then, we use that Markov chain to find
the minimal average joint Hamming density. Last, we
conclude the paper in Section 5.

2 Definition

Let DS be the digit set, n, d be positive integers,
E{DS , d} be a conversion function from Zd to (Dn

S)d

such that if

E{DS , d}(r1, . . . , rd) = 〈(ei,n−1 ei,n−2 . . . e1,0)〉
d
i=1

= 〈(ei,t)
n−1
t=0 〉

d
i=1,

when
∑n−1

t=0 ei,t2
t = ri, where ri ∈ Z and ei,t ∈ DS for

all 1 ≤ i ≤ d. We call 〈(ei,t)
n−1
t=0 〉

d
i=1 as the expansion

of r1, . . . , rd by the conversion E{DS, d}. We also
define a tuple of t-th bit of ri as,

E{DS , d}(r1, . . . , rd)|t = 〈e1,t, . . . , ed,t〉.

As a special case, let Eb{d} be the binary conver-
sion changing the integer to its binary representation
where DS = {0, 1}.

Eb{1}(12) = 〈(1100)〉,

Eb{2}(12, 21) = 〈(01100), (10101)〉.

Also, define Rt as

Rt = Eb{d}(r1, . . . , rd)|t = 〈e1,t, . . . , ed,t〉

. In our minimal weight conversion, Rt is considered
as the input of bit t.

Next, we define JWE{DS ,d}(r1, . . . , rd), the joint
Hamming weight function of integer r1, . . . rd repre-
sented by the conversion E{DS, d}, by

JWE{DS ,d}(r1, . . . , rd) =
n−1
∑

t=0

jwt,

where

jwt =

{

0, if E{DS , d}(r1, . . . , rd)|t = 〈0〉,
1 otherwise ,

For instance,

JWEb{1}(12) = 2,

JWEb{2}(12, 21) = 4.

The computation time of the scalar point multipli-
cation depends on the joint Hamming weight. This is
because we deploy the double-and-add method, that
is

d
∑

i=0

riPi = 2(. . . (2(2Kn−1 + Kn−2)) . . . ) + K0,

where

Kt =

d
∑

i=0

ei,tPi.

Since Kt = O, if

E{DS , d}(r1, . . . , rd)|t = 〈0〉,

we need not to perform point addition in that
case. Thus, the number of point additions is
JWE{DS ,d}(r1, . . . , rd)− 1. For instance, if

K = 12P1 + 21P2,

we can compute K as

K = 2(2(2(2P2 + P1) + D)) + P2,

where D = P1 + P2, that has already been precom-
puted before the computation begins. We need 4
point doubles and 3 point additions to find the re-
sult.

When {0, 1} ⊂ DS , we are able to represent some
number ri ∈ Z in more than one way. For instance,
if DS = {0,±1},

12 = (01100) = (101̄00) = (11̄100) = . . . ,

when 1̄ = −1.
Let Em{DS, d} be a minimal weight conversion

where

Em{DS, d}(r1, . . . , rd) = 〈(ei,n−1 . . . ei,0)〉
d
i=1

is the expansion such that for any 〈(e′i,n−1 . . . e′i,0)〉
t
i=1

where
∑n−1

t=0 ei,t2
t =

∑n−1
t=0 e′i,t2

t, for all 1 ≤ i ≤ d,

n−1
∑

t=0

jw′
t ≥ JWEm{DS ,d}(r1, . . . , rd),

and
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jw′
t =

{

0 if 〈e′1,t, . . . , e
′
d,t〉 = 〈0〉,

1 otherwise .

For instance,

Em{{0,±1}, 2}(12, 21) = 〈(101̄00), (10101)〉,

JWEm{{0,±1},2}(12, 21) = 3.

Then, the number of point additions needed is 2.
Also, we call Em{DS , d}(r1, . . . , rd) as the minimal
weight expansion of r1, . . . , rd using the digit set DS .

If DS2
⊆ DS1

, it is obvious that

JWEm{DS2
,d}(r1, . . . , rd) ≥ JWEm{DS1

,d}(r1, . . . , rd).

Thus, we can increase the efficiency of the scalar-
point multiplication by increaseing the size of DS .
However, the bigger DS needs more precomputation
tasks. If d = 2, we need one precomputed point when
DS = {0, 1}, but we need 10 precomputed points
when DS = {0,±1,±3}.

Then, one of the contributions of this paper is to
evaluate an efficiency of each digit set DS on multi-
scalar multiplication. We use the average joint Ham-
ming density defined as

AJW (E{DS , d}) =

lim
n→∞

2n−1
∑

r1=0

· · ·

2n−1
∑

rd=0

JWE{DS ,d}(r1, . . . , rd)

n2dn
.

It is easy to see that AJW (Eb{d}) = 1− 1
2d . In this

paper, we find the value AJW (Em{DS, d}) of some
DS and d. Some of these values have been found in
the literature such as

AJW (Em{{0,±1,±3, . . . ,±(2p−1)}, 1}) =
1

p + 1
(4).

Also,

AJW (Em{{−l,−(l− 1), . . . ,−1, 0, 1, u− 1, u}, d})

for any positive number d,u, and natural number l,
have been found by Heuberger and Muir (2, 3).

3 Minimal Weight Conversion

In this section, we propose a minimal weight conver-
sion algorithm based on the dynamic programming
scheme. The input is 〈r1, . . . , rd〉, and the output is
Em{DS, d}(r1, . . . , rd), which is the minimal weight
expansion of the input using the digit set DS . The
algorithm begins from the most significant bit (bit
n − 1), Rn−1, and processes left-to-right to the least
significant bit (bit 0), R0.

For each t (n > t ≥ 0), we calculate minimal
weight expansions of the first n − t bits of the in-
put r1, . . . , rd (

⌊

r1

2t

⌋

, . . . ,
⌊

rd

2t

⌋

) for all possible carry
Gt defined below. We state some notations in our
algorithm as follows:

• The carry array Gt = 〈g1,t, . . . , gd,t〉 is a possible
integer array as carry from bit t − 1. For the
input

Rt = 〈e1,t, . . . , ed,t〉

and output

R∗
t = 〈e∗1,t, . . . , e

∗
d,t〉 ∈ Dd

S ,

the following formula should be satisfied:

Rt + Gt = R∗
t + 2Gt+1.

Since R∗
t ∈ Dd

S , possible values of gi,t is cal-
culated from DS. We define the carry set CS

by the set of possible carry values for DS . In
Appendix B, we give the detail of the carry
set CS , and prove that the set is always finite
if DS is finite. For example, when the digit
set DS = {0,±1,±3}, the carry set is CS =
{0,±1,±2,±3}. It is noted that Gt = 〈0〉 for
t = 0 and t = n as boundary conditions.

• The minimal weight array wt is the array of the
positive integer wt,Gt

for any Gt ∈ Cd
S . The inte-

ger wt,Gt
is the minimal joint weight of the first

n− t bits of the input r1, . . . , rd (
⌊

r1

2t

⌋

, . . . ,
⌊

rd

2t

⌋

)

for carry Gt = 〈gi,t〉
d
i=1, e.g.

wt,Gt
= JWEm{DS ,d}(

⌊r1

2t

⌋

+g1,t, . . . ,
⌊rd

2t

⌋

+gd,t).

• The subsolution array Qt is the array of the
string Qt,〈i,Gt〉 for any 1 ≤ i ≤ d and Gt ∈

Cd
S . Each Qt,〈i,Gt〉 represents the minimal weight

expansion of the first n − t bits of the input
r1, . . . , rd when we carry Gt = 〈gi,t〉

d
i=1, e.g.

Qt,Gt
= 〈Qt,〈i,Gt〉〉

d
i=1 =

Em{DS, d}(
⌊r1

2t

⌋

+ g1,t, . . . ,
⌊rd

2t

⌋

+ gd,t).

We note that the length of the string Qt,〈i,Gt〉

is n− t, and wt,Gt
is the joint Hamming weight

of the string Qt,〈1,Gt〉, . . . , Qt,〈d,Gt〉. There may

exist some gi,t ∈ CS such that
⌊

r1

2t

⌋

+gi,t can not
be represented using the string length n − t of
DS. In that case, we represent Qt,〈i,Gt〉 with the
null string, and assign wt,Gt

to ∞.

In the process at the bit t, we find the minimal
weight array wt and the subsolution array Qt from
the input Rt, the minimal weight array wt+1, and the
subsolution array Qt+1. For the process, we define
the function MW such that

(wt,Gt
, Qt,Gt

) = MW (wt+1, Qt+1, Rt, Gt).

Since wt = 〈wt,Gt
〉Gt∈Cd

S
and Qt = 〈Qt,Gt

〉Gt∈Cd
S
, we

also define

(wt, Qt) = MW (wt+1, Qt+1, Rt).

It is important to note that wt is only depend on
wt+1 and Rt, and we can use only two arrays to repre-
sent all wt and wt+1 to reduce memory consumption.
Similarly, we store all Qt using two arrays.

Here, we will show the basic idea of our proposed
algorithm with an example.

Example 1 Compute the minimal weight expan-
sion of 3 and 7 when the digit set is {0,±1,±3},
Em{{0,±1,±3}, 2}(3, 7). Note that the binary rep-
resentation Eb{2}(3, 7) = 〈(011), (111)〉.

• Step 1 Consider the most significant bit, the in-
put

R2 = Eb{2}(3, 7)|t=2 = 〈0, 1〉.
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For the digit set DS = {0,±1,±3}, the carry
set is calculated as CS = {0,±1,±2,±3}. Thus,
there are 25 pairs for possible carries G2. For
example, when G2 = 〈0,−1〉, R2 + G2 = 〈0, 1〉+
〈0,−1〉 = 〈0, 0〉, so that the Hamming weight
w2,〈0,−1〉 = 0. As a boundary condition, we do
not generate carry from the most significant bit
because we want to keep the length of the bit
string unchanged.

If G2 = 〈1, 0〉, the input with the carry,

R2 + G2 = 〈0, 1〉+ 〈1, 0〉 = 〈1, 1〉,

and w2,〈1,0〉 = 1. The Hamming weight w2,G2
is

1 for any G, such that

R2 + G2 ∈ Dd
S − {〈0〉}.

If G2 = 〈0, 1〉,

R2 + G2 = 〈0, 1〉+ 〈0, 1〉 = 〈0, 2〉,

and w2,〈0,1〉 = ∞, because 2 is not in DS . The
Hamming weight w2,G is∞ for any G2, such that
R2 + G2 /∈ Dd

S .

• Step 2 Next, we consider bit 1. In this bit,

R1 = Eb{2}(3, 7)|t=1 = 〈1, 1〉.

Consider the case when the carry from the least
significant bit G1 = 〈1, 0〉. Then, R1 + G1 =
〈2, 1〉. There are 4 ways to write 〈2, 1〉 in the
form 2Gt+1 + R∗

t where Gt+1 ∈ Cd
S is the carry

to the most significant bit and R∗
t ∈ Dd

S is the
candidate for the output. That is

〈2, 1〉 = 2× 〈1, 0〉+ 〈0, 1〉

= 2× 〈1,−1〉+ 〈0, 3〉

= 2× 〈1, 1〉+ 〈0,−1〉

= 2× 〈1, 2〉+ 〈0,−3〉.

The Hamming weight should be

wt,Gt
= min

Gt+1,R∗

t

[wt+1,Gt+1
+ JW (R∗

t )].

From the calculation for bit 2 shown in Page 3,

w2,〈1,0〉 = w2,〈1,−1〉 = w2,〈1,2〉 = 1,

w2,〈1,1〉 =∞.

And,

JW (〈1, 0〉) = JW (〈0, 3〉)

= JW (〈0,−1〉)

= JW (〈0,−3〉)

= 1.

Then,

w1,〈1,0〉 = min
G2,R∗

t

[w2,G2
+ JW (R∗

1)] = 1 + 1 = 2.

We show the array w1,G1
on this bit in Table 1.

• Step 3 On the least significant bit, the input
R0 = 〈1, 1〉. Also, as a boundary condition, we
set G0 = 〈0〉, and therefore, the value w0,〈0,0〉

is the minimal Hamming weight. When G0 =
〈0, 0〉, R0 + G0 = 〈1, 1〉. Similar to bit 1, we find

w0,〈0,0〉 = min
G1,R∗

0

[w1,G1
+ JW (R∗

0)],

such that 2×G1+R∗
0 = 〈1, 1〉, and G1 ∈ Cd

S , R∗
0 ∈

Dd
S. We show the value of each possible G1, R

∗
0

with w1,G1
, JW (R∗

0), and w1,G1
+JW (R∗

0) in Ta-
ble 2. Shown in the table, the minimal Hamming
weight is

min
G1,R∗

0

[w1,G1
+ JW (R∗

0)] = 2.

Algorithm 1 Minimum joint weight conversion to
any digit sets DS in the binary expansion

Require: r1, . . . , rd

The desired digit set DS

Ensure: Em{DS, d}(r1, . . . , rd)
1: Let CS be a carry set such that for all c ∈ CS and

d ∈ DS , c+d
2 , c+d+1

2 ∈ CS .

2: Let wt be an array of wt,Gt
for any Gt ∈ Cd

S .
wn,Gn

← 0 if Gn−1 = 〈0〉.
wn,Gn

←∞ otherwise.
3: Let Qt ← 〈Qt,〈i,Gt〉〉 for any 1 ≤ i ≤ d and Gt ∈

Cd
S .

All Qn,〈i,Gt〉 are initiated to a null string.
4: for t← n− 1 to 0 do
5: Rt ← Eb{d}(r1, . . . , rd)|t.
6: (wt, Qt)←MW (wt+1, Qt+1, Rt)

(We define the function MW in Algorithm 2)
7: end for
8: Let Z ← 〈0〉.

Em{DS, d}(r1, . . . , rd)← 〈Q0,〈i,Z〉〉
d
i=1

Algorithm 2 Function MW compute the subsolu-
tion for bit t given the subsolution of bit t+1 and the
input in bit t

Require: The minimal weight array of more signifi-
cant bits wt+1, the subsolution of more significant
bits Qt+1, and the input Rt

Ensure: The minimal weight array wt and the sub-
solution Qt

1: for all Gt = 〈gi,t〉
d
i=1 ∈ Cd

S do
2: AE = 〈aei〉

d
i=1 ← Rt + Gt

3: for all R∗
t = 〈r∗i,t〉

d
i=1 ∈ Dd

S do
4: if 2|(aei − r∗i,t) for all 1 ≤ i ≤ d then

5: Gt+1 ← 〈
aei−r∗

i,t

2 〉di=1

6: weR∗

t
← wt+1,Gt+1

if Gt+1 = 〈0〉.
weR∗

t
← wt+1,Gt+1

+ 1 otherwise.
7: else
8: weR∗

t
←∞

9: end if
10: end for
11: Let weEA is the one of the minimal values

among we.
12: wt,Gt

← weEA

13: Let EA = 〈eai〉
d
i=1.

14: CE = 〈cei〉
d
i=1 ← 〈

aei−eai

2 〉di=1

15: Qt,〈i,Gt〉 ← 〈Qt+1,〈i,CE〉, eai〉 for all 1 ≤ i ≤ d
16: end for

We show the detailed algorithm in Algorithm 1
and Algorithm 2, which is shown on Page 5. There
are some points to be noted as follows:
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Table 1: The minimal Hamming weight of bit 1, w = w1,G1
, when the input bit R1 = 〈1, 1〉, and the array

w1,G1
of the most significant bit is computed as in the first bullet of Example 1

G1 w G1 w G1 w G1 w G1 w G1 w G1 w
〈−3,−3〉 1 〈−2,−3〉 1 〈−1,−3〉 0 〈0,−3〉 1 〈1,−3〉 1 〈2,−3〉 1 〈3,−3〉 ∞
〈−3,−2〉 2 〈−2,−2〉 1 〈−1,−2〉 1 〈0,−2〉 1 〈1,−2〉 2 〈2,−2〉 1 〈3,−2〉 ∞
〈−3,−1〉 1 〈−2,−1〉 2 〈−1,−1〉 1 〈0,−1〉 2 〈1,−1〉 1 〈2,−1〉 2 〈3,−1〉 ∞
〈−3, 0〉 2 〈−2, 0〉 1 〈−1, 0〉 1 〈0, 0〉 1 〈1, 0〉 2 〈2, 0〉 1 〈3, 0〉 ∞
〈−3, 1〉 ∞ 〈−2, 1〉 ∞ 〈−1, 1〉 ∞ 〈0, 1〉 ∞ 〈1, 1〉 ∞ 〈2, 1〉 ∞ 〈3, 1〉 ∞
〈−3, 2〉 2 〈−2, 2〉 2 〈−1, 2〉 2 〈0, 2〉 2 〈1, 2〉 2 〈2, 2〉 2 〈3, 2〉 ∞
〈−3, 3〉 1 〈−2, 3〉 2 〈−1, 3〉 1 〈0, 3〉 2 〈1, 3〉 1 〈2, 3〉 2 〈3, 3〉 ∞

Table 2: List of possible G1, R
∗
0 such that 2×G1 + R∗

0 = 〈1, 1〉 and G1 ∈ {0,±1,±2,±3}2, R∗
0 ∈ {0,±1,±3}2,

with w1,G1
(refer to Table 1), JW (R∗

0), w1,G1
+ JW (R∗

0) of each G1,R
∗
0

G1 R∗
0 w1,G1

JW (R∗
0) w1,G1

G1 R∗
0 w1,G1

JW (R∗
0) w1,G1

+JW (R∗
0) +JW (R∗

0)
〈−1,−1〉 〈3, 3〉 1 1 2 〈1,−1〉 〈−1, 3〉 1 1 2
〈−1, 0〉 〈3, 1〉 1 1 2 〈1, 0〉 〈−1, 1〉 2 1 3
〈−1, 1〉 〈3,−1〉 ∞ 1 ∞ 〈1, 1〉 〈−1,−1〉 ∞ 1 ∞
〈−1, 2〉 〈3,−3〉 2 1 3 〈1, 2〉 〈−1,−3〉 2 1 3
〈0,−1〉 〈1, 3〉 2 1 3 〈2,−1〉 〈−3, 3〉 2 1 3
〈0, 0〉 〈1, 1〉 1 1 2 〈2, 0〉 〈−3, 1〉 1 1 2
〈0, 1〉 〈1,−1〉 ∞ 1 ∞ 〈2, 1〉 〈−3,−1〉 ∞ 1 ∞
〈0, 2〉 〈1,−3〉 2 1 3 〈2, 2〉 〈−3,−3〉 2 1 3

• Algorithms 1,2 have been proved to be the op-
timal algorithm, i.e. minimal joint Hamming
weight conversion algorithm. The proof is shown
in Appendix C.

• The size of the array wt and Qt is equal to ||CS ||
d

and dn||CS ||
d respectively. That number makes

the memory required by our algorithms larger
than the previous works. As this algorithm is
generalized for any digit sets, further optimiza-
tion is difficult. It might be possible to make the
array size lower when the method is implemented
on their specific digit set.

• Shown in Algorithm 1 Lines 4-7, we run the algo-
rithm from left to right (the most significant bit
to the least significant bit). Left-to-right algo-
rithms is said to be faster than right-to-left algo-
rithms, as the more significant bits usually arrive
to the system before. However, Algorithm 1,2 is
not online, as it cannot produce the subsolution
before all input bits arrive.

4 Average Joint Hamming Density Analysis
with Markov Chain

In this section, we propose the algorithm to analyze
the average joint Hamming density for each digit set.
For this purpose, we propose a Markov chain where
its states are minimal weight arrays w, and transi-
tion is function MW . As we will focus on only the
joint Hamming weight without regarding which bit
we are computing, we represent wt+1, wt with wx, wy

respectively. Also, we refer Gt as G.
As we have seen in the previous section, we do

not have to consider Q in function MW when we are
interested only the Hamming weight. Then, we can
redefine the function MW as

wy = MW (wx, R).

4.1 Markov Chain Construction Algorithm

Algorithm 3 Construct the Markov chain used for
finding the minimal average Hamming density

Require: the digit set DS

The number of scalars d
Ensure: Markov chain A = (QA, Σ, σA, IA, PA)

1: Σ← {0, 1}d, QA ← �, σA ← �
2: CS : carry set for DS

3: wI ← 〈wI,G〉G∈Cd
S
, where

wI,〈0〉 ← 0 and wI,G ←∞ otherwise
4: Qu← {wI}
5: while Qu 6= � do
6: let π ∈ Qu
7: wx ← π, Qu← Qu− π
8: for all R ∈ Σ do
9: wy ←MW (wx, R)

10: σA ← σA ∪ {(wx, R, wy)}
11: PA(wx, R, wy)← 1

|Σ|

12: if wy /∈ QA and wy 6= wx then
13: Qu← Qu ∪ {wy}
14: end if
15: end for
16: QA ← QA ∪ {wx}
17: end while
18: IA(w)← 1 if w = wI , IA(w)← 0 otherwise.

From Algorithms 1,2, we propose Algorithm 3 to
construct the Markov chain. We illustrate the main
idea of Algorithm 3 in Figure 1 for DS = {0,±1}
and d = 1. Thus, the figure shows the Markov
chain for finding AJW (Em{{0,±1}, 1}). Initially, the
Markov chain is considered as a tree rooted by the
node 〈∞, 0,∞〉, which is the initial state of Algo-
rithm 1. Note that CS = {0,±1} for DS = {0,±1},
and each state of the Markov chain represents w
which contains three values 〈w〈−1〉, w〈0〉, w〈1〉〉 asso-
ciated with each value in CS . Because of the bound-
ary solution explained in Section 3, the initial state
should be 〈∞, 0,∞〉. Each node wx has two children,
wy = MW (wx, 〈0〉) and wy′ = MW (wx, 〈1〉). The
Markov chain should be a tree with infinite length.
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Figure 1: A state of constructing the Markov chain
for finding AJW (Em{{0,±1}, 1}) by Algorithm 3.
States 〈0, 1,∞〉 and 〈1, 2,∞〉 are shown to be equiv-
alent, and can be grouped.

Now, consider nodes with same label as one node.
Also, all children of 〈1, 2,∞〉 are almost similar to the
children of 〈0, 1,∞〉. The only difference is the addi-
tion of one to every entries of each node. Then, we
can consider 〈0, 1,∞〉 to be equivalent to 〈1, 2,∞〉,
and note this information as the weight of the transi-
tion from 〈0, 1,∞〉 to 〈1, 2,∞〉. We consider 〈0, 1,∞〉
and 〈1, 2,∞〉 to be in the same equivalent class . This
example will be shown in detail in Example 3 of Ap-
pendix A.

Let
A = (QA, Σ, σA, IA, PA),

where

• QA is a set of states,

• Σ is the alphabet, i.e., the set of all possible dig-
its,

• σA ⊆ QA × Σ×QA is a set of transitions,

• IA : QA → R+ is an initial-state probabilities for
each state in QA,

• PA : σA → R+ is the transition probabilities for
each transition in σA.

The algorithm is described as follows:

• We define the set QA as the set of equiva-
lence classes of the possible value of wt in Al-
gorithms 1,2. Let wx = 〈wx,G〉G∈Cd

S
and wx′ =

〈wx′,G〉G∈Cd
S

be the possible value of wt. We con-

sider wx and wx′ equivalent if and only if

∃p∀G(wx,G + p = wx′,G)

when p ∈ Z and G ∈ Cd
S .

With this method, the number of states in
Markov chain becomes finite in our interested
digit sets. However, the number can be very large
when the digit set becomes larger. For example,
the number of states is 1, 216, 376 for d = 3 and
DS = {0,±1,±3}.

In many digit sets, the number of states in the
Markov chain in the Markov chain is not finite,
e.g. the representation in which DS = {0, 1, 3}
and d = 1. In (12), we provide the proof of the
finiteness of the Markov chain in a class of rep-
resentation which cover all representations prac-
tically used in multi-scalar multiplication. Also,
we are working on finding other reduction meth-
ods, which enable us to discover the value for
wider class of representations.

• To find the average joint Hamming density, we
need to find the possibility that the Markov chain
is on each equivalence class after we input a bit
string length n → ∞. That is the stationary
distribution of the Markov chain. We consider
the function MW , defined in Algorithm 2, as
the transition from the equivalence class of wx

to the equivalence class of wy, where the input
of the transition is R. It is obvious that if wx is
equivalent w′

x and wy = MW (wx, R),

wy′ = MW (w′
x, R),

wy and wy′ are equivalent. Then, the transition
is well-defined. By this definition,

Σ = {0, 1}d,

as in Line 1 of Algorithm 3. Also, the set of
transition σA is defined as

σA = {(wx, R, wy)|wy = MW (wx, R)}.

• We initiate wt in Algorithm 1 Line 2. We refer
the value initiated to wt as wI , as shown in Line 3
of Algorithm 3. We set the value wI as the initial
state of the Markov chain. By the definition of
IA, IA(wI ) = 1, and IA(w) = 0 if w 6= wI , as
shown in Algorithm 3 Line 18.

• We generate the set of state QA using the algo-
rithm based on the breadth-first search scheme
starting from wI . This is shown in Algorithm 3
Lines 5-17.

• Since the occurence possibility of all alphabets is
equal, the transform possibility PA(γ) = 1

|Σ| for

all γ ∈ σA. This is shown in Algorithm 3 Line
11.

Let C be a number of states. We number each
state d ∈ QA as dp where 1 ≤ p ≤ C. Let πT = (πT

p )

be a probabilistic distribution at time T , i.e. πT
p is

the possibility that we are on state dp after received

input length T . Let P = (Ppq) ∈ R|QA|×|QA| be the
transition matrix such that

Ppq =
∑

R∈Σ

PA(dp, R, dq).

Without loss of generality, assume d1 representing the
state that corresponds to the equivalence class of wI .
Then, π0 = (1, 0, . . . , 0)t. From the equation πT+1 =
πT P , we find the stationary distribution such that
πT+1 = πT by the eigen decomposition.

The next step is to find the average Hamming den-
sity from the stationary distribution π. Define WK
as a function from σA to the set of integer by

WK(τ) = wy,〈0〉 − wx,〈0〉,

when τ = (wx, G, wy) ∈ σA. The function can be
described as the change of the Hamming weight in
the case that the carry tuple is 〈0〉. We compute the
average Hamming density by the average value of the
change in the Hamming weight when n is increased
by 1 in the stationary distribution formalized as

AJW (Em{DS, d}) =
∑

τ∈σA

πf(τ)WK(τ)

|Σ|
,

when f(τ) = wx if τ = (wx, G, wy).
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Table 4: The average joint Hamming density, AJW (Em{DS , d}), when DS = {0,±1,±3, . . . ,±(2h+1)} found
by our analysis method, with the number of states in the Markov chain on each case

h d = 1 d = 2 d = 3 d = 4

1
3 ≈ 0.3333 1

2 = 0.5 23
39 ≈ 0.5897 115

179 ≈ 0.6424
0 (Existing work (14)) (Existing work (1)) (Existing work (15)) (Existing work (15))

(9 states) (64 states) (941 states) (16782 states)

1
4 = 0.25 281

786 ≈ 0.3575 20372513
49809043 ≈ 0.4090

1 (Existing work (4)) (Improved result) (New result)
(38 states) (3189 states) (1216376 states)

2
9 ≈ 0.2222 1496396

4826995 ≈ 0.3100
2 (Existing work (11)) (New result)

(70 states) (19310 states)

1
5 = 0.2 0.2660

3 (Existing work (4)) (New result)
(119 states) (121601 states)

4
21 ≈ 0.1904 0.2574

4 (Existing work (11)) (New result)
(160 states) (130262 states)

Table 3: Comparing our result with the other pre-
vious works when expand a pair of integers using
{0,±1,±3}

Research Average Joint
Hamming Weight

Avanzi, 2002 (9) 3
8 = 0.3750

Kuang et al., 2004 (10) 121
326 ≈ 0.3712

Moller, 2004 (11) 4
11 ≈ 0.3636

Dahmen et al., 2007 (5) 239
661 ≈ 0.3616

Our Result 281
786 ≈ 0.3575[Optimal]

4.2 Analysis Results

By using the analysis method proposed in Subsection
4.1, we can find many crucial results on the average
joint Hamming density. Some results are shown in
Table 4. Our results match many existing result (1,
4, 7, 14). And, we discover some results that have
not been found in the literature. We can describe the
results as follows:

• When d = 1, we can find the average joint
Hamming density of all digit sets DS =
{0,±1,±3, . . . ,±(2h + 1)} when h ≤ 31. If
h = 2p− 1 for some p ∈ Z, our results match the
existing results by Muir and Stinson (4). And,
we observe from the results that there is a rela-
tion between h and the average joint Hamming
density. Let p be an integer such that

2p−1 − 1 < h < 2p − 1,

AJW (DSh
, 1) =

2p

(p + 1)2p + (h + 1)
.

where DSh
= {0,±1,±3, . . . ,±(2h + 1)}.

• When d = 2, we can find the average joint Ham-
ming density of DS = {0,±1,±3, . . . ,±(2h+1)}

when h ≤ 5. And, when d = 3, we can find
the average joint Hamming density of DS =
{0,±1,±3}. The most significant results is the
case when d = 2, and DS = {0,±1,±3}. This
problem was raised as a future work by Solinas
in 2001 (1), and there are many works proposed
the upper bound of the minimal average joint
Hamming density in this case. We can find the
minimal average Hamming density, and give the
solution of this open problem. We show our re-
sult compared with the previous works in Table
3.

5 Conclusion and Future Works

In this paper, we propose the generalized minimal
weight conversion algorithm for d integers. The algo-
rithm can be applied to any finite digit set DS . Then,
we propose the algorithm to construct a Markov chain
which can be used for finding the average joint Ham-
ming density automatically. As a result, we can
discover some minimal average joint Hamming den-
sity automatically without the prior knowledge of the
structure of the digit set. This helps us explore the av-
erage Hamming density of the unstructured set. For
example, we find that the minimal average density is
281
786 ≈ 0.3575 when d = 2 and DS = {0,±1,±3}. This
improves the upper bound presented by Dahmen et
al., that is 239

661 ≈ 0.3616.
Many ideas proposed in this paper are also intro-

duced in the minimal weight conversion algorithm for
double-base chain (16), and the analysis of the ef-
ficiency of the chain is one of the most interesting
problem we are challenging.
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Appendix A: More Examples

In this section, we give more examples for better un-
derstanding of the algorithm proposed in Section 3,4.
Example 2 is the example for the minimal weight con-
version in Section 3, and Examples 3,4 are the exam-
ples for the Markov chain construction proposed in
Section 4.

Example 2 Compute Em{{0,±1,±3}, 2}(23, 5) us-
ing Algorithm 1,2.

• Eb{2}(23, 5) = 〈(10111), (00101)〉.

• When DS = {0,±1,±3}, Cs = {0,±1,±2,±3}.

• To simplify the explanation, we present it when
the loop in Algorithm 1 Lines 4-7 assigned t to
0, that is the last time on this loop. This means
we have computed w1 and Q1. In this example,
wt = 〈wt,Gt

〉Gt
where Gt ∈ {0,±1,±2,±3}2. As

w1, Q1 has 49 elements, we are not able to list
them all. To show some elements of w1, Q1,

w1,〈0,0〉 = 3, w1,〈1,0〉 = 2, w1,〈2,0〉 = 3.

Q1,〈1,〈0,0〉〉 = (1011),

Q1,〈1,〈1,0〉〉 = (0300),

Q1,〈1,〈2,0〉〉 = (0301),

Q1,〈2,〈0,0〉〉 = (0010),

Q1,〈2,〈1,0〉〉 = (0010),

Q1,〈2,〈2,0〉〉 = (0010).

• Although, the loop in Algorithm 2 examines all
G0 ∈ Cs2, we focus our interested the step where
G0 = 〈0〉. Note that in this case

AE ← 〈1, 1〉+ 〈0, 0〉 = 〈1, 1〉.

• Now, we focus our interested to the loop in Algo-
rithm 2 Line 3-10. If R∗

0 = 〈0, 0〉, ae1 − r∗0,1 = 1
and 2 - (ae1 − r∗0,1). Then, we〈0,0〉 ←∞.

• If R∗
0 = 〈1, 1〉,

G1 ← 〈
ae1 − r∗0,1

2
,
ae2 − r∗0,2

2
〉 = 〈0, 0〉.

As stated on the first paragraph, w1,〈0,0〉 = 3.
Then, we〈1,1〉 ← 3 + 0 = 3 by Line 6.

• If R∗
0 = 〈−1,−3〉,

G1 ← 〈
ae1 − r∗0,2

2
,
ae1 − r∗0,2

2
〉 = 〈1, 2〉.

Then, we refer to w1,〈1,2〉 which is 1. Then,
we〈−1,−3〉 ← 1 + 1 = 2.
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• In Line 11, we select the least number among we,
and the minimum value is we〈−1,−3〉 = 2. Then,
w0,〈0,0〉 = 2.

Q0,〈1,〈0,0〉〉 ← 〈Q1,〈1,〈1,2〉〉,−1〉 = (03001̄).

Q0,〈2,〈0,0〉〉 ← 〈Q1,〈2,〈1,2〉〉,−3〉 = (01003̄),

which is the output of the algorithm.

Example 3 Construct the Markov chain
A = (QA, Σ, σA, IA, PA) for finding
AJW (Em{{0,±1}, 1}).

• As DS = {0,±1}, Cs = {0,±1}. Then,

w = 〈w〈−1〉, w〈0〉, w〈1〉〉.

The initial value of w, wI is

wI = 〈∞, 0,∞〉.

• Consider the loop in Lines 5-17. On the first
iteration, wx = wI in Line 7. If R is assigned to
〈0〉 in Line 8, the result of the function MW in
Line 9, wy is

wA = 〈1, 0, 1〉.

Then, we add α = 〈wI , 〈0〉, wA〉 to the set σA as
shown in Line 10. The probability of the transi-
tion α is 1

|Σ‖ = 1
|{0,1}| = 1

2 . Also, we add wA to

the set Qu.

• Similarly, if R = 〈1〉, wy is

wB = 〈0, 1,∞〉.

Then, wB ∈ QA, and 〈wI , 〈1〉, wB〉 ∈ σA.

• Next, we explore the state wA, as we explore the
set QA by the breadth-first search algorithm. If
R = 〈0〉, wy is 〈1, 0, 1〉. And if R = 〈1〉, wy is
〈1, 1, 0〉. Then,

〈〈1, 0, 1〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,

〈〈1, 0, 1〉, 〈1〉, 〈0, 1, 1〉〉 ∈ σA.

The first transition is the self-loop. Hence, we
need not to explore it again.

• We explore the state wB , the result is

〈〈0, 1,∞〉, 〈0〉, 〈1, 1, 2〉〉 ∈ σA,

〈〈0, 1,∞〉, 〈1〉, 〈1, 2,∞〉〉 ∈ σA.

We note that 〈1, 1, 2〉 is equivalent to 〈0, 0, 1〉,
and we denote it as 〈0, 0, 1〉. Also, 〈1, 2,∞〉 is
equivalent to 〈0, 1,∞〉. Then, the second transi-
tion is the self-loop.

• Then, we explore the state 〈0, 1, 1〉. We get the
condition

〈〈0, 1, 1〉, 〈0〉, 〈1, 1, 2〉〉 ∈ σA,

〈〈0, 1, 1〉, 〈1〉, 〈1, 2, 1〉〉 ∈ σA.

We denote 〈1, 1, 2〉 and 〈1, 2, 1〉 by 〈0, 0, 1〉,
〈0, 1, 0〉 respectively.

Figure 2: The Markov chain constructed by Algo-
rithm 3 used for finding AJW (Em{{0,±1}, 1})

• We explore 〈0, 0, 1〉 and get the condition

〈〈0, 0, 1〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,

〈〈0, 0, 1〉, 〈1〉, 〈0, 1, 1〉〉 ∈ σA.

• Exploring 〈0, 1, 0〉 makes we get

〈〈0, 1, 0〉, 〈0〉, 〈1, 1, 1〉〉 ∈ σA,

〈〈0, 1, 0〉, 〈1〉, 〈1, 1, 0〉〉 ∈ σA.

We denote 〈1, 1, 1〉 as 〈0, 0, 0〉.

• From the state 〈0, 0, 0〉, we get

〈〈0, 0, 0〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,

〈〈0, 0, 0〉, 〈1〉, 〈0, 1, 0〉〉 ∈ σA.

• From the state 〈1, 1, 0〉, we get

〈〈1, 1, 0〉, 〈0〉, 〈2, 1, 1〉〉 ∈ σA,

〈〈1, 1, 0〉, 〈1〉, 〈1, 1, 0〉〉 ∈ σA.

We denote 〈2, 1, 1〉 as 〈1, 0, 0〉.

• Last, from the state 〈1, 0, 0〉, we get

〈〈1, 0, 0〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,

〈〈1, 0, 0〉, 〈1〉, 〈0, 1, 0〉〉 ∈ σA.

• We show the Markov chain in Figure 1.

Example 4 Construct the Markov chain
A = (QA, Σ, σA, IA, PA) for finding
AJW (Em{{0,±1}, 2}).

• As DS = {0,±1}, Cs = {0,±1}. Then,

w = 〈w〈−1,−1〉, w〈−1,0〉, w〈−1,1〉,
w〈0,−1〉, w〈0,0〉, w〈0,1〉,
w〈1,−1〉, w〈1,0〉, w〈1,1〉〉.

The initial value of w, wI is

wI = 〈∞, ∞, ∞,
∞, 0, ∞,
∞, ∞, ∞〉.
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Figure 3: The Markov chain constructed by Algo-
rithm 3 after the second iteration of the loop in Lines
8-17

• Consider the loop in Lines 5-17. On the first
iteration, wx = wI in Line 7. If R is assigned to
〈0, 0〉 in Line 8, the result of the function MW
in Line 9, wy is

wy = wA = 〈1, 1, 1,
1, 0, 1,
1, 1, 1〉.

Then, we add α = 〈wI , 〈0, 0〉, wA〉 to the set σA

as shown in Line 10. The probability of the tran-
sition α is 1

|Σ‖ = 1
|{0,1}2| = 1

4 . Also, we add wA

to the set Qu.

• The algorithm explores all R ∈ {0, 1}2. The re-
sult is shown in Figure 2.

• On the second iteration, wx = wA. If R is as-
signed to 〈0, 0〉, the result of the function MW is
wA itself. Therefore, the Markov chain consists
of the self-loop at the state corresponding to wA.

Appendix B: the Carry Set

In this section, we present the algorithm to find the
carry set CS in Algorithms 1,2. We show the method
in Algorithm 4. It is based on breadth-first search
scheme. And, we find the upper bound of the cardi-
nality of the carry set in Lemma 5.1.

Algorithm 4 Find the carry set of the given digit set

Require: the digit set DS

Ensure: the carry set CS

1: Ct← {0}, CS ← �
2: while Ct 6= � do
3: let x ∈ Ct
4: Ct← Ct ∪ ({x+d

2 ∈ Z|d ∈ DS} − CS − {x})

5: Ct← Ct ∪ ({x+d+1
2 ∈ Z|d ∈ DS} − CS − {x})

6: CS ← CS ∪ {x}
7: Ct← Ct− {x}
8: end while

Lemma 5.1 Given the finite digit set DS, Algorithm
3 always terminates. And,

||CS || ≤ maxDS −min DS + 2,

when CS is the output carry set.

Proof Since

CS = {
c− d + e

2
∈ Z|d ∈ DS ∧ c ∈ CS ∧ e ∈ {0, 1}},

min CS ≥
min CS −maxDS

2
.

Then,
min CS ≥ −maxDS .

Also,
max CS ≤ −min DS + 1.

We conclude that if DS is finite, CS is also finite.
And, Algorithm 3 always terminates.

||CS || ≤ maxDS −min DS + 2.

Appendix C: The Optimality of Algorithm 1,2

In this section, we present the mathematical proof
that Algorithm 1,2 proposed in Section 3 is the min-
imal weight conversion.

Lemma 5.2 For any positive integer 0 ≤ t ≤ n− 1.
Qt+1,〈i,Gt+1〉, which are assigned in Line 7 of Al-

gorithm 1, represent the minimal weight expansion
of the prefix string length n − t of the bit string
Eb{d}(r1, . . . , rd), when the carry from less significant
bits to the prefix is Gt+1. And, wt+1,Gt+1

is the joint
hamming weight of Qt+1,〈1,Gt+1〉, . . . , Qt+1,〈d,Gt+1〉.

Proof We use the mathematic induction for proving
this lemma.

We begin the proof by the case when t = n−1. In
this case, all Qn−1,〈i,Gn−1〉 have length (n−(n−1)) =
1. The subsolution Qn−1,〈i,Gn−1〉 should satisfy

Qn−1,〈i,Gn−1〉 = 〈aei〉,

if AE ∈ Dsd, because it does not produce any carries
to more significant bits. Then, wn−1,Gn−1

= 0 when
AE = 〈0〉 and wn−1,Gn−1

= 1 otherwise.
We initialize lw in Algorithm 1 Line 2 such that

wn,Gn
= 0 if G = 〈0〉, and wn,Gn

= ∞ otherwise.
Then, weR∗

n−1
, which is assigned in Algorithm 2 Line

6, is ∞ if Gn 6= 〈0〉. If there are some finite elements
among we, weR∗

n−1
will not be the minimal element

on Algorithm 2 Line 11 and will not be assigned to
Qn−1,〈i,G〉 in Algorithm 2 Line 15. Hence, all selected

EA = 〈eai〉
d
i=1 satisfy

cei =
aei − eai

2
= 0,

for all 1 ≤ i ≤ d. That means aei = eai, and we can
conclude that Qn−1,〈i,G〉 = 〈aei〉. Also, we prove that
wn−1,Gn−1

= 0 when Gn−1 = 〈0〉 and wn−1,Gn−1
= 1

otherwise by Algorithm 2. We prove the statement
when T = n− 1.

It is left to show that if the lemma holds when
t = K, it also holds when t = K − 1, for any K ≥ 1.

Assume that when t = K, wK+1,GK+1
, QK+1,GK+1

are the optimal weight and the optimal expansion of
the prefix string length n−K for any G ∈ Csd. We
claim that wK,GK

, QK,GK
are also the prefix string

length n−K + 1.
First, we prove that wK,GK

is the joint Hamming
weight of

QK,〈1,GK〉, . . . , QK,〈d,GK〉

CRPIT Volume 125 - Information Security 2012

24



for any GK ∈ Csd. It is obvious that weEA selected
in Algorithm 2 Line 11 equals wK+1,CE , when EA =
〈0〉 and wK+1,CE + 1 otherwise, by Algorithm 2 Line
6 (CE is defined in Algorithm 2 Line 14). By the
assignment in Algorithm 2 Line 15,

QK,〈i,GK〉 = 〈QK+1,〈i,CE〉, eai〉.

Since, the joint hamming weight of
QK+1,〈1,CE〉, . . . , QK+1,〈d,CE〉 is equal to wK+1,CE

by induction, the property also holds for each QK,GK
.

Next, we prove the optimality of QK,〈i,GK〉.
Assume contradiction that there are some string
PK,〈i,GK〉 such that

PK,〈i,GK〉 6= QK,〈i,GK〉

for some 1 ≤ i ≤ d, and some GK ∈ Csd. And, the
joint hamming weight of PK,〈1,GK〉, . . . , PK,〈d,GK〉 is
less than QK,〈1,GK〉, . . . , QK,〈d,GK〉. Let the last digit
of PK,〈i,GK〉 be lpi. If lpi = eai for all 1 ≤ i ≤ d, the
carry is

〈
aei − eai

2
〉di=1 = CE.

By induction, the joint Hamming weight
QK+1,〈1,CE〉, . . . , QK+1,〈d,CE〉 is the minimal joint
Hamming weight. Then, the joint hamming weight
of P is greater or equal to Q. If lpi 6= eai for some
1 ≤ i ≤ d, the carry is

H = 〈hi〉
d
i=1 = 〈

aei − lpi

2
〉di=1.

By induction, QK+1,〈i,H〉 is the minimal weight ex-
pansion. Then,

JW (PK,〈1,H〉, . . . , PK,〈d,H〉) ≥

W (QK+1,〈1,H〉, . . . , QK+1,〈d,H〉) + JW (〈lp1〉, . . . , 〈lpd〉),

when JW is the joint hamming weight function.
By the definition of WE, it is clear that

JW (QK+1,〈1,H〉, . . . , QK+1,〈d,H〉) +

JW (〈lp1〉, . . . , 〈lpd〉) = weI ,

when I = 〈lp1, . . . , lpd〉.
In Algorithm 2 Line 11, we select the minimal

value of weEA. That is

weEA ≤ weI .

As

weEA = JW (QK,〈1,GK〉, . . . , QK,〈d,GK〉),

we can conclude that

JW (PK,〈1,GK〉, . . . , PK,〈d,GK〉) ≥

JW (QK,〈1,G〉, . . . , QK,〈d,G〉).

This contradicts our assumption.

Theorem 5.3 Let Z = 〈0〉. 〈Q0,〈i,Z〉〉
d
i=1 in Algo-

rithm 1 Line 9 is the minimal joint weight expansion
of r1, . . . , rd on digit set Ds.

Proof 〈Q0,〈i,G〉〉
d
i=1 are the optimal binary expansion

of the least significant bit by Lemma 5.2. Since there
is no carry to the least significant bit, 〈Q0,〈i,{0}〉〉

d
i=1

is the optimal solution.
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