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Abstract

Dimensionality reduction of the problem space
through detection and removal of variables, contribut-
ing little or not at all to classification, is able to relieve
the computational load and instance acquisition ef-
fort, considering all the data attributes accessed each
time around. The approach to feature selection in
this paper is based on the concept of coherent accu-
mulation of data about class centers with respect to
coordinates of informative features. Ranking is done
on the degree to which different variables exhibit ran-
dom characteristics. The results are being verified us-
ing the Nearest Neighbor classifier. This also helps to
address the feature irrelevance and redundancy, what
ranking does not immediately decide. Additionally,
feature ranking methods from different independent
sources are called in for the direct comparison.

Keywords: classification, feature ranking, feature se-
lection, dimensionality reduction, optimization.

1 Introduction

Supervised Classification implies that unique associ-
ation of instances with classes of data is known on
the training stage for a data sample. This mapping
is then used to develop an algorithm by which any
new instance can be assigned to a correct class
based on the data. A classification algorithm has
to be able to deal with computational complexity
commonly caused by the magnitude of instances
often driven by the multitude of data attributes.
This problem is huge in text categorization, every
word expanding the attribute space to a whole new
dimension. This area received much attention in
the past, but continues to be in the focus despite
the processing power of computers has increased
dramatically. Some terminology has settled over the
time. (Saeys et al. 2007) give a contemporary view
of feature selection methods in bioinformatics.

Without knowing better, we can certainly assume
that disengaging of variables, assumed all contribut-
ing, will cause reduction of the classification accuracy.
We can stage experiments to ascertain influence of
different variables, referred commonly to as features,
indirectly, via responses we get from a classifier.
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Various models of feature-set are entered sequentially
into the classifier, no matter what kind, and the best
response is learned. This generic technique of feature
selection is called wrapping. In this work we use
accuracy of the k-NN classifier as an indirect measure
of fitness of feature-set. Where a pre-selection of
features is possible, it is termed filtering. Devices of
different sorts are in employ, and if they can provide
answers to feature irrelevance and redundancy -
whether features align with no class or their input is
equivalent to others - the better. Filtering, which can
be rather elaborate, is independent from the method
of classification, although it inevitably uses the class
information. Information Gain and Relief are two fil-
tering techniques considered widely a standard, each
coming from a different perspective: probabilistic -
the former, deterministic - the latter. Ultimately,
there are methods of classification, selecting features
to best suit the class distribution for the tune-up.
This is referred to as embedding. SVM is an example
of classifier where feature selection is embedded. We
discuss these and other methods when comparing
them to those introduced in this paper.

Only wrapping offers a universal approach for
feature-set selection. A chosen set has to be con-
sistent with the agenda of classification, that is, be
sufficient for class discrimination. The enumeration
of different subsets of features is computationally
challenging. If monotonicity holds, so that any
addition of a feature can only improve fitness of the
current set, the exhaustive search can be escaped via
branch-and-bound arrangement setting a qualifying
level for fitness (Narendra and Fukunaga 1977).
While same features may add differently to fitness of
different sets, knowing fitness of individual features
can be useful. Embedding may or may not produce a
shortlist of features best describing data as a whole.
In SVM it does. In Decision Trees, instead, one best
feature is selected for spawning at different stages of
tree growing (Quinlan 1993) with Information Gain
often used as the criterion. The feature is different
for different subsets of data included in subsequent
branches of the tree. Globally or locally, it helps
knowing how to rank features by relevance.

While ranking of features can be obtained as a
byproduct of feature subset selection by a wrapper
or embedded method, often ranking is an element of
design of filter methods. Conversely, having features
ranked is attractive for quick assembly of a desired
feature-set. For example, (Huda et al. 2010) pair
a Neural Network wrapper with a filter, akin to
Information Gain, to facilitate selection of sufficient
quality a feature-set. Feature ranking is also the
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element of design of the proposed method, although
we do not systematically explore the aspect of best
feature-set, if only for verification. The ranking
is done on the degree to which different variables
exhibit random characteristics. Similar methods
are known as filters. It may be interpreted as a
method of classification adapted for feature ranking.
So, it may be seen also as a wrapper or embedded
technique. In fact, a number of methods, particularly
those used for comparison in this paper, are exposed
to such interpretations. These methods share the
idea of misclassification counts. We pay Relief (Kira
and Rendell 1992, Kononenko et al. 2008) a special
attention for conceptual likeness to our method. The
algorithm is given a remake to fit the new agenda.

2 Feature Ranking Algorithm

Introduction of a measure of similarity is a founding
step in any approach to classification. If a class
can be described as a cluster of data points in the
problem space, then its center may be defined as a
point most similar to them all, that is, containing the
class information signature. One measure, commonly
used, is distance in the problem space. Any new data
can then be class assigned running the affinity check
for different class centers. We imply sufficiency of
the information signature for class identification.

2.1 Formulation

In this section we lay out an approach, whereby
features are selected step-by-step, more informative
/ relevant first. In the formulation t stands for the
iteration number and It ⊂ {1, . . . , n} are indices of
the reduced set of features contending at time t.

Consider data A consisting of m ≥ 2 classes
(finite sets) Aj ⊂ IRn, j = 1 . . . m, so that: Aj �= ∅;
Aj1

�
Aj2 = ∅, ∀j1, j2, j1 �= j2; and A =

�m
j=1 Aj .

Let aij be elements of the sets, i = 1 . . . |Aj |, where
| · | is the notation for set cardinality.

Let � ·� defines the metric for IRn space as follows:

�a−x� = (
�

l∈It

|al−xl|2)1/2 , ∀ a, x ∈ IRn , n > 1 .

IRn is a space of variable dimensionality from 1 to n.

Algorithm 1 (Forward Selection)

Step 1. (Initialization). Set t = 0, It = {1, . . . , n} .

Step 2. (Class Centers). Determine class centers xj

assuming that sets Aj each form a unique cluster.
Compute the centers by solving the following problem
of convex programming:

minimize 1/|Aj | ·
�

i

�aij − xj�2
. (1)

(See Theoretical Aspects.)

Step 3. (Misclassified Points). Find points of sets
Aj , which are closer to class centers of other sets
coordinate-wise. Let xj

∗ be solutions to the Problem 1.

Evaluate sets:

N j =
�

aij : min
s �=j

|aij − xs
∗|

2 ≤ |aij − xj
∗|

2
�

,

where s = 1 . . . m is the class index.
Get the resulting set:

N =
m�

j=1

N j .

The coordinate index l ∈ It is implied in the above.

Step 4. (Relevant Attribute). To determine the coor-
dinate of highest relevance find

l∗ = arg min l∈It(|Nl|/|A|) .

If ties exist choose arbitrary.

Step 5. (Contending Features). Make t = t + 1, and
construct the new set of contributing factors:

It = It−1\ {l∗} .

If |It| = 1 then stop, else go to Step 2.

The � · �, way we define it, is the radial, or
Euclidian, distance. Square omission throughout
the algorithm gives rise to formulation in so called
Manhattan (the city block), or Hamming distances.

Plainly, the algorithm finds class centers and
enumerates elements that belong to a class, but
considering a particular feature, are closer to centers
of other classes. The total of these counts, normal-
ized by the number of elements in the whole set,
establishes the feature rating. The higher the rating,
the less relevant is the feature. The best performing
feature out, search is repeated again to select a
next one. The idea is stemming from the approach
suggested in (Bagirov et al. 2003). However, the
technique there engages subset selection directly,
without having features ranked.

A variable in this method has the higher rele-
vance, the more distant are values taken at class
centers. If, instead, a variable has close readings
for different classes, this results in the number of
misclassified points growth. Obviously, a variable
with the same value for all classes is irrelevant given
data. Irrelevance correlates with rating close to unity
obtained for a feature. However, it is theoretically
impossible to judge irrelevance given only data. No
matter how big is the set, it is merely a sample reveal-
ing the data concept, largely unknown, only partially.

At the same time, the algorithm is adaptable for
other search tactics (Saeys et al. 2007). Generally,
if the selection criterion is sensitive enough and
consistency of the feature-set for classification is not
violated, dismissal of insignificant has advantage over
selection of significant - despite not the shortest, the
complete reliable subset of features is immediately
known after each elimination. Certain time saving is
achievable on a big set of features if forward selection
and backward elimination is done concurrently, that
is, one best and one worst feature are taken out in a
single swoop, steps 4 and 5 of Algorithm 1 adjusted
accordingly for this mixed scheme.
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Even with the full set of features, all being
relevant, no classifier can guarantee the absolute
precision. Harnessing minor features can not help
overcoming this inherent classifier limitation. In-
stead, it may cause overfitting: a classifier gets
perfectly trained, but performs poorly on a test
data. Yet a classifier can have less overhead if fewer
performance boosting features are used, explaining
preference that we give to forward selection.

The one cluster per class representation holds by
the slim assumption that classes may be described
as ”connected” and ”convex” sets. This can be
improved, if classes are subdivided into clusters,
although the complexity of the algorithm increases
significantly. The Incremental Global Search featur-
ing k-Means by (Bagirov 2008) makes this possible,
but other clustering methods are also available.
(Kaufman and Rousseeuw 1987) partition data
around medoids, so they call their algorithm PAM.
They refer to the structural model assumed for
data as k-Medoid. Confusion in the literature exists
about origins of the k-Medoids algorithm. In fact,
k-Medoids is a featured component of PAM. Both
k-Means and k-Medoids find only local solutions for
k clusters, for the Euclidian or Manhattan metric
respectively, and corresponding to the formulation
with or without squares. The algorithms do the
same by redistributing data between clusters based
on proximity of cluster centers. The difference is
only in how cluster centers are obtained (Theoretical
Aspects). The hard, unconstrained objective applies.
That is, each element of data belongs to one and only
one natural cluster. The algorithm by (Kaufman
and Rousseeuw 1987) is reconfigurable for k-Means.
Likewise, the algorithm by (Bagirov 2008) can be
recast for k-Medoids. Both algorithms strive to find
a near global solution for k clusters.

Algorithm 1 can be generalized as follows.

Algorithm 2 (Class Overlay Counts)

Step 1. (Initialization). Set t = 0, It = {1, . . . , n}.

Step 2. (Class Centers). Compute centers xjk ∈ IRn

of clusters Ajk making class Aj by solving the follow-
ing problem of convex programming:

minimize 1/|Ajk| ·
�

i

�aijk − xjk�2
, (2)

where aijk ∈ Ajk are the cluster elements, i =
1 . . . |Ajk|, j = 1 . . . m, k = 1 . . . pj . Subdivision of
classes into clusters is assumed known.

Step 3. (Misclassified Points). Find points of sets
Ajk, which are closer to cluster centers of other classes
coordinate-wise.

Let xjk
∗ be solutions to Problem 2. Evaluate sets:

N jk =
�

aijk : min
s �=j

min
r

|aijk − xsr
∗ |2 ≤ |aijk − xjk

∗ |2
�

,

where s = 1 . . . m and r = 1 . . . ps are the class and
the cluster within class indices respectively.

This results in the set:

N =
m�

j=1

pj�

k=1

N jk .

The coordinate index l ∈ It is implied.

Step 4. (Relevant Attribute). To determine the most
relevant coordinate find

l∗ = arg min l∈It(|Nl|/|A|) .

If ties exist make an arbitrary choice.

Step 5. (Contending Features). Make t = t + 1, and
construct the new set of contributing factors:

It = It−1\{l∗} .

If |It| = 1 then stop, else go to Step 2.

If Algorithm 2 is reconfigured for backward elim-
ination, it makes sense reclustering data after each
cycle. Irrelevant features may cause misrepresenta-
tion of the instance space structure by significantly
changing distances in concerned directions. This can
make subsequent feature deselection less certain.

Even though the unconstrained clustering condi-
tion may be fulfilled by class, in the united set it is
not guaranteed to hold. Conversely, partitioning of
the superset leaves no tension between clusters. The
tension between classes helps achieving the algorithm
goal. However, the class interaction weakens with
number of clusters increasing. Also, smaller clusters
are rounder in shape, their eccentricity less expressed.

The circumstance of Algorithm 1 not taking
parameters is attractive. In Algorithm 2 the number
of clusters per class has to be selected. Generally,
more clusters per class should be improving the
model description. However, if this number is not
small enough, the centers become close to each
other and number of instances per cluster small,
rendering less reliable counts. Clearly, having sta-
tistically sound data props precision of the algorithm.

This does not answer the question, though, of
how to choose an appropriate number of clusters for
each class - after all, classes may vary in size and
have simple or complex mapping. In this regard we
propose the following approach: the data is clustered
first as a whole with a set number of clusters. A
label is assigned to each cluster based on the leading
class membership. The classes are then clustered
independently using the information obtained. So,
we search the data undivided by class for clusters to
the best isolation as in (Bagirov 2008). After class
labels are assigned to clusters we initiate the stan-
dard k-Means procedure (MacQueen 1967) to make
clusters conform to the topology of individual classes.

Choice of parameters in Algorithm 2 involves
preprocessing and this poses a significant setback.
However, if the number of clusters is increased to the
number of elements, each point becomes a cluster
of its own. This seems to be solving the problem
of parameter setting, neither clustering needs to be
performed. At the same time, this removes tension
between classes. Unless attribute values repeat,
no instance can possibly cross to a different class
because now the center of a cluster coincides precisely
with its only element. All features important - makes
the selection a futile exercise. This, however, inspires
the idea of following approximation to Algorithm 2.

Algorithm 3 (Estimated Overlay)

Step 1. (Initialization). Set overlay encounter by fea-
ture to none: Nl = ∅, l = 1 . . . n. Iterate by coordi-
nate (index l is implied) with the following.
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Step 2. (Closest Points). Find two points for each
point aij : indices of a1 are i1 �= i, j1 = j, and indices
of a2 satisfy j2 �= j; that is, points belonging to the
same and a different class, but not aij , so that

|a1− aij |2 = min
a ∈ Aj\ {aij}

|a− aij |2,

and
|a2− aij |2 = min

a ∈ A \ Aj

|a− aij |2.

Step 3. (Misclassification). Add point aij to set Nl if

|a1− aij |2 ≥ |a2− aij |2.

Keep iterating from Step 2 until point and coordinate
cycles are exhausted.

Step 4. (Attribute Relevance). To determine rele-
vance of coordinates find |Nl|/|A|, l = 1 . . . n. Order-
ing on this ratio prioritizes the feature relevance.

In words, Algorithm 3 examines each attribute
to establish whether it is good a class separator,
as if for discretization purposes, that is, whether
single class layers of data characterize the variable,
or it is inundated by the class mix. This can be
improved if k values of each class are drawn in the
vicinity of current value and their averaged distances
to the instance projection are compared to establish
whether the instance is in the midst of its own class.
It is clear that ranking obtained by this algorithm is
independent from feature selection tactics. It is why
usual steps articulating the tactics are not included.
The ranking is also independent from the metric
of problem space. We include squares for outward
compatibility with other algorithms only.

Followed so far is the global feature weighting
approach. It can be seen in the light of overlaying
distributions for different classes along individual
dimensions. Any overlapping of multivariate distri-
butions, the class noise, adds uncertainty, but is not
a problem nor the clue to feature weighting. It is the
potential overlapping in respect of coordinates that
matters. At the same time, data is borderless, rep-
resented by a finite set. Without fitting a structural
model it is not possible to infer from the position of
knowing the data concept. Nonetheless, it is possible
to weight features locally by examining immediate
neighborhoods of known instances. The results then
can be generalized for the whole space hosting the
data. This is the idea of Relief (Kira and Rendell
1992). In Relief feature-wise distance differences
establish the rating. We use misclassification counts,
and so let us call the version ReliefC.

Algorithm 4 (ReliefC)

Step 1. (Initialization). Set the encounter of class
mix by feature to none: Nl = ∅, l = 1 . . . n.

Step 2. (Closest Points). Find two points for each
point aij : indices of a1 are i1 �= i, j1 = j, and indices
of a2 satisfy j2 �= j; that is, points belonging to the
same and a different class, but not aij , so that

�a1− aij�2 = min
a ∈ Aj\ {aij}

�a− aij�2
,

and

�a2− aij�2 = min
a ∈ A \ Aj

�a− aij�2
.

Step 3. (Misclassification). Update coordinate sets
Nl by including points aij if

|a1l − aij
l |

2
≥ |a2l − aij

l |
2
.

Reiterate from Step 2 to cover all data.

Step 4. (Attribute Relevance). To determine rele-
vance of coordinates find |Nl|/|A|, l = 1 . . . n. Order-
ing on this ratio prioritizes the feature relevance.

Ranking obtained by this algorithm is space
metric dependent. We can achieve refinement of the
result if we adopt the tactics of backward elimina-
tion. Irrelevant dimensions may cause a significant
distortion of the perceived data distribution. We
can get a better understanding of other coordinate
significance if we run Algorithm 4 again with the
confusing attribute withheld, which, of course, can
be repeated until each feature rank is adjusted. As in
ReliefF (Kononenko et al. 2008) we can draw k > 1
nearest neighbors to the current instance for each
present class to rely more on the distance statistics.

In Algorithm 4 each point is treated as a self-
contained cluster, but having no other cluster
elements required in Algorithm 2, we find a closest
same class point to the instance of choice, which is to
play the role of its cluster center. This makes the ap-
proximation. The data mapping used by Algorithm 2
has to be scaled down to fulfill the local feature
weighting approach, which is impossible. We can no-
tice semblance of Algorithms 4 and 3. Nevertheless,
Algorithm 3 follows global, not the local general-
ized approach. It is value-wise, but not instance-wise.

2.2 Evaluation

We tested Algorithms 2, 3, 4 and ran a comparison
with some other methods of feature ranking from
this study and outside sources on data from (UCI
Machine Learning Repository) and a proprietary
data-set. The data space was assumed Euclidian in
all metric dependent algorithms. Characteristics of
data examples appear in Table 1. The numbers in
columns reflect any transformations data required.
”Clusters” applies to the data undivided by class.
”k-NN” is the number of nearest neighbors in clas-
sification by the k-NN method to verify the results.
Other columns are self-explanatory.

Data Features Instances Classes
Housing Prices 13 336 7
Congressional V oting 16 435 2
Wall Following 24 5456 4
Diabetes Diagnostic 63 291 2
Data Clusters k-NN
Housing Prices 21 1
Congressional V oting 6 3
Wall Following 20 5
Diabetes Diagnostic 10 3

Table 1: Data-sets used in experiments.
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Housing Prices in suburbs and their defining
factors is a snapshot of state of affairs in Boston,
USA some time ago (Harrison and Rubinfeld 1978).
The Housing Price is a continuous variable, and so
the problem is of regression type. To represent it as a
classification problem, we cluster the class variable by
the same method we apply to data generally (Bagirov
2008). Whenever a conversion like this takes place,
certain amount of noise is inevitably created, as
data in the middle, between any two values defining
adjacent classes, can not be successfully assigned to
either of them. Therefore, the data was denoised
after conversion using a technique we developed in
(Stranieri and Yatsko 2009). Also, attributes of the
data were re-scaled / standardized to zero mean and
unit deviation (the absolute mean deviation).

Next two examples are exact classification tasks;
neither the data requires a standardization. The
Congressional Voting records on selected issues
from a particular period in the past for each of
the U.S. House of Representatives congressmen,
either democrats or republicans, were interpreted
by (Schlimmer 1987). The data can be treated as
three-value numeric. In the Wall Following case
a robot navigates around a room using ultrasonic
sensors. This has to be seen as a time series; however,
the moves are elementary and replicating: the robot
either ”follows and follows” directly or it ”turns and
turns”. So, this is approached as a classification
problem by (Freire et al. 2009), creators of the data.
All the measurements are uniform, also having same
upper limit defined by the sensor reachability.

The Diabetes Diagnostics data is a collection
of medical records of various signs of presence or
absence of this condition in patients and the expert
opinion. This data array is available to the Univer-
sity of Ballarat Centre for Informatics and Applied
Optimization Health Informatics Laboratory through
collaboration with Charles Sturt University under
provisions of DiScRi screening research initiative.
Although this is a classification problem, it has
specifics pertaining to diagnostic applications, with
all focus given to a single small subset of data. A
mix of attribute types required to be dealt with. So,
where appropriate, ordinal attributes were converted
to numeric. Otherwise, individual values of discrete
attributes were turned into binary attributes. All
the attributes except the class, numeric by the end
throughout, were standardized to zero mean and unit
deviation. Additional preprocessing relieved the data
of several attributes inundated by missing values and
involved generalization of the class for rare conditions.

Binary attributes qualify as numeric. At the
same time, value combinations of binary attributes
naturally subdivide the data, creating structures
varying in detail, depending on how specific is the
combination. This was used for setting missing values
of numeric attributes, based on average. Unknown
values of binary attributes themselves were entered
using the same technique, but based on mode. Only
selected binary attributes were used to narrow down
the search, their number reduced step-by-step, until
values left missing were set from all available data.
The class attribute represents a special case. These
missing values were set before any others from a
predictor earlier identified as the best.

Note, the proposed algorithm of feature ranking
can be adapted for missing values given cluster cen-
ters, and theoretically even the clustering algorithm
can. However, this is not granted in respect of any
other technique, and we do require a number of them

for comparison. Generally, absence of certain values
does not hurt predictability as this may seem - the
data structure may make them redundant.

Results of application of feature ranking Algo-
rithm 2 to different data-sets are shown in Tables 2,
3, 4, 5 and 6. In these tables: ”Order” is the feature
informativeness from highest to lowest - the rank;
and ”Rating” is the actual value corresponding to the
rank as obtained by the algorithm after the first cycle.

2.2.1 Housing Prices

The factors affecting Housing Prices are listed in
Table 2, their actual meaning can be found at the
source. Representation of factors and specific cir-
cumstances have bearing on the ranking. Standing of
several aspects of housing generally may be different.

Feature Order Rating
Rooms 1 0.6905
Income 2 0.7381
Employment 3 0.7768
Crime 4 0.7857
Pollution 5 0.8006
Industrial Area 6 0.8095
Education 7 0.8274
Building Age 8 0.8452
Black Culture 9 0.8631
Transport Access 10 0.8720
Tax 11 0.9315
Residential Area 12 0.9583
Natural Reserves 13 1.0000

Table 2: Housing Prices: factor significance.

The listing order corresponds to the result of
forward selection. However, no shift of position
of residual factors occurs through the factor set
reduction. This is a characteristic of the formulation
used and applies to all data-sets.

First impression of the ranking is that it does
not betray the common sense, especially the two
factors at the top. Indeed, housing price is higher for
more room and with less population on low income.
(Harrison and Rubinfeld 1978) also note the clean
environment as a factor gaining in significance.

For the Housing Prices data-set results by other
authors are also available (Bi et al. 2003), where fea-
ture weighting is a byproduct of classification using
Support Vectors. Results of numerical experiments
are presented graphically as star plots. We estimated
feature ranks for comparison out of this representa-
tion. The authors specifically mention the number
of rooms as the leading factor, influencing positively
the housing price. Interestingly, ranks are positively
or negatively charged. The next important factor
appears to be the income, and it is charged negatively.

2.2.2 Congressional Voting

The Congressional Voting example is good that it
refracts feature significance as heat of the debate,
whether due to issue controversy or its actuality,
and this is what Table 3 is meant to reflect. The
topical context has to be examined carefully to fully
understand significance of different issues and also
be seen in the historical frame, whether they were
routine or new matters at that time.
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Feature Order Rating
Physicians 1 0.0552
Budget 2 0.1356
Education 3 0.1931
Crime 4 0.2299
Nicaragua 5 0.2391
El− Salvador 6 0.2506
Missiles 7 0.2897
Superfunds 8 0.3448
Synfuels 9 0.3586
Exports 10 0.3862
Satellites 11 0.3931
Handicapped 12 0.4069
Religious 13 0.4115
Immigration 14 0.6529
South− Africa 15 0.7678
Water 16 0.7954

Table 3: Congressional Voting: issue controversy.

Although given identifiers do not reveal the full
story, it is clear that some up-to-date or pressing
issues do occupy leading positions on the list and,
instead, some issues of consensus appear down the
list. However, there is no clear divide between parties
only on two issues of physicians and budget at the top.

2.2.3 Wall Following

This data-set mirrors the Wall Following Robot
moves. Table 4 shows significance of one sensor
readings above others as obtained by the proposed
feature ranking algorithm. The robot has 24 ul-
trasonic sensors around its ”waist”, but it is clear
that the robot can get away with only two sensors:
one tracking the wall, and another the obstacle
ahead - the orthogonal wall, what the robot is
actually programmed for. At the same time, it
is obvious that in a small room or narrow space
all or some readings interpret the same informa-
tion. Represented appropriately, velocity of the robot
and / or radius inverse of the turn could capture it all.

Feature Order Rating Feature Order Rating
US15 1 0.6171 US24 13 0.8048
US19 2 0.7392 US05 14 0.8070
US06 3 0.7546 US13 15 0.8116
US18 4 0.7680 US14 16 0.8141
US08 5 0.7835 US02 17 0.8286
US20 6 0.7887 US11 18 0.8380
US17 7 0.7896 US16 19 0.8455
US22 8 0.7927 US21 20 0.8475
US01 9 0.7953 US10 21 0.8510
US23 10 0.7997 US03 22 0.8563
US07 11 0.8013 US04 23 0.8563
US12 12 0.8024 US09 24 0.8671

Table 4: Wall Following: sensor informativeness.

According to how the robot circumnavigates the
room (clockwise), half of its sensors is on its side
nearer to the wall, and other half is sounding the
outer space. The sensor numbers (not the rank)
closer to the wall are between 13 and 24 with US13
pointing exactly in the opposite direction of the
robot and US19 exactly towards the wall. Indeed,
we find US19 the second leading feature. Also,
among the eight leading features we encounter six
sensors next to the wall and, vise versa, among the
eight trailing features there are six sensors further
from the wall. It is reasonable to assume the sensor
range is insufficient to cover the space of the room,
which makes sensors next to the wall more valuable
predictors. However, US01 pointing directly ahead is
not in the leading third. Actually, only one of many
comparison methods in the next section places US01

at the top, and none the adjacent sensors. In this
regard we have to clarify that shape of the room in
(Freire et al. 2009) is not simply rectangular, but has
a rectangular concession in one corner, which coerces
the robot to make turns not only to the same side
(right) but also to the other (left).

Instead of the sensor pointing directly ahead, we
have US15 as the leading factor, pointing almost
backwards, which is sensible to rely on when making
a turn without arriving at the obstacle. US15
actually sounds parallel to the wall in places, because
for whatever reason trajectory of the robot is turned
by about the same angle as the misdirection of US15
against the robot opposite, as appears on images
in (Freire et al. 2009), which also makes the sensor
sounding distance shorter. In the limited space of the
room many sensors provide reasonable whereabouts,
which explains appearance of versions of the data-set
with four or even two features, although they are
not the readings from sensors pointing in ”compass”
directions. Indeed, sensors rate close, due likely to
their mutual redundancy. Yet the situation compre-
hensiveness can be improved via sensor combination.

2.2.4 Diabetes Diagnostics

The Diabetes Diagnostics is a medical data-set
and without specialist knowledge it is difficult to
comment on significance of different symptoms
and results of tests. At the same time, because
the publicity acknowledged burden of the spread
condition on health funds and its link to the obesity,
some general awareness exists.

Feature Order Rating
DM Diagnostic 1 0.0584
Screening Glucose 2 0.1478
Glucose 3 0.2062
LDL 4 0.2887
HT Diagnostic 5 0.3058
TC 6 0.3127
HbA1c 7 0.4467
HT Status 8 0.4708
LSBP 9 0.4777
DM Family History 10 0.4880
Ewing − Early 11 0.4880
Ewing Score 12 0.5292
DBHR 13 0.5395
BMI 14 0.5533
V AHR 15 0.5704
TC/HDL ratio 16 0.5704
Age 17 0.5876
Ewing − Normal 18 0.6186
DBHR result 19 0.6426
Grade 10 sec 20 0.6598
LSHR 21 0.6667
Lying DBP 22 0.6976
HDL 23 0.7320
Triglyceride 24 0.7388
Lying SBP 25 0.7801
PQ 10 sec 26 0.7938
Waist Circumference 27 0.8007
QRS 10 sec 28 0.8419
HGBP 29 0.8522
QRS Axis 10 sec 30 0.8832
QTc 10 sec 31 0.9003
Ewing − Atypical 32 0.9141

Table 5: Diabetes Diagnostics: symptom significance.

From Tables 5 and 6 we notice that some top
ranking factors do imply the high content of sugars in
specimens and, consulting the dictionary, the leading
factor, Diabetes Mellitus (DM) diagnostic, appears to
be a very specific carbohydrate metabolism disorder,
besides reoccurring. While the DM diagnostic may
be lacking analytic qualities as a forgone conclusion,
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Feature Order Rating
QTd 10 sec 33 0.9313
Atrial F ibrillation 34 0.9588
Ewing − Definite 35 0.9588
Hearth Attack 36 0.9656
Pain in Left Arm 37 0.9794
CV D Diagnostic 38 0.9863
Palpitations 39 0.9863
Smoking 40 0.9897
Stroke 41 0.9931
Nausea 42 0.9931
V omiting 43 0.9931
LSHR result 44 0.9931
V AHR result 45 0.9931
QTc 10 sec > 1/2 46 0.9931
Gender 47 0.9966
CV D Status 48 0.9966
Angina 49 0.9966
Hearth Failure 50 0.9966
Chest Pain 51 0.9966
CA Neuropathy 52 0.9966
Bloating 53 0.9966
Abdominal Pain 54 0.9966
Alcohol 55 0.9966
CV D Family History 56 0.9966
HGBP result 57 0.9966
Ewing − Severe 58 0.9966
QTc 5 min > 1/2 59 0.9966
Dizziness 60 1.0000
Pacemaker 61 1.0000
LSBP negative 62 1.0000
LSBP result 63 1.0000

Table 6: Diabetes Diagnostics: symptom significance
(continued).

a number of factors immediately after it show a very
strong predictive ability of the condition according
to the rating. General awareness factors have an
advanced position on the list, but can not be a match
for specialist testing. The DM family history and
the age appear in the first third of the list. Perhaps
the waist circumference in the first half of the list
by itself does not offer a measure sensitive enough
without linking to other sizes, like height. It is likely,
though, that BMI (the body mass index) in the first
third of the list does take this into account. The
host of factors towards the end of the list is either
general complicities or those having a circumstantial
effect. However, misplacement of two last features
may have had occurred because the data scarcity
and substitution of missing values. A number
of features in this data-set are present in both nu-
merical and categorical forms, one implying the other.

At the end of this section let us restate that no
additional passes through Algorithm 2 are required
to fine-tune the ranking, unless Algorithm 2 is run in
the mode of backward elimination and the data-set is
restructured. The observation that the order of signif-
icance of features does not change in the reduced set
is a characteristic of the formulation used. Following
result holds (applicable also to Algorithm 2):

Proposition 1 Rating of features as obtained after
application of Algorithm 1 does not change after a
feature is removed from the set.

This follows directly from the lemma proved in
Theoretical Aspects. �

3 Comparison

Classification opens a way for indirect comparison, as
previously explained, and there are different methods
of feature ranking that can be compared directly with.

3.1 Classification

The results were undergone a verification using a
classification method. The purpose was to ascertain
that performance of the classifier is predictable.
This is exactly the wrapping technique, except the
ranking is known beforehand and only designated
combinations of features need testing. Specifically,
we are interested to find how the accuracy changes
when features are subtracted from the end or begin-
ning of the ranked list. The accuracy is found via the
leave-one-out procedure, always fetching unwavering
results, a special case of multi-fold cross-validation
whereby credibility of each instance class is tested
in turn against the whole instance base excepting
that instance. The result will fluctuate if folds of
cross-validation contain more than one instance.

The Nearest Neighbor classifier (k-NN) is easy
implementable and suits our approach that it deals in
distances. A good survey of instance-based methods,
those with k-NN in their core, is contained in (Wilson
and Martinez 2000). Precisely, the crisp version of
fuzzy k-NN algorithm described in (Keller et al.
1987) is used. The only difference we introduce is
that all neighbors are included in the radius given by
the farthest of k initially selected nearest neighbors
of the instance to be classed from the reference base.
This allows to capture all repeating instances. Where
data was treated for noise, a single nearest neighbor
is often the best. Where it was not, a bigger k may
be more optimal, as appears in Table 1, although in
the Wall Following example k = 1 is still the best.

Computation results appearing next as accu-
racy percentile charts represent classification series
driven by leading (or trailing) feature-sets, that is,
with features below (or above) any given line on
the ranked list removed to obtain each series element.

3.1.1 Housing Prices

The k-NN classification accuracy on the Housing
Prices data-set in the forward run, first series on
Figure 1, exhibits a slow decreasing trend at the be-
ginning, getting more intense as factors are discarded
one-by-one from the end of ranked list, that is, less
informative first. The slide of accuracy at the run
end reflects its accumulated loss as weighed against
significance of the topmost factors. Conversely, the
backward run, second series on Figure 1, where more
informative factors are discarded first, is notable
for abrupt, going less dramatic fall of accuracy;
respective of the order but with some grouping;
although unable to contain the accumulated loss at
the end, having no factors of significance left. These
two observations thus support the result of ranking.

(Bi et al. 2003), while applying Support Vector
Machines, compare responses from the classifier
with and without some unrelated variables mixed
in, so that features performing no better than the
artificial ones could be discarded as irrelevant. They
could not find any not contributing, however, in
the Housing Prices example. This corresponds to
our finding, despite the other authors scheme is for
regression, not for classification, which required us
to discretize the class variable. We should expect
a temporary increase of accuracy when discarding
irrelevant features and this does not happen.

However, irrelevance can be full or it can be
partial. We may find a number of features being a
burden on a classifier overall, while contributing for
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Figure 1: Housing Prices classification accuracy
change with leading features removed first (2nd se-
ries, left-to-right) or last (1st series, right-to-left).
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Figure 2: Congressional Voting classification accu-
racy change with leading features removed first (2nd
series, left-to-right) or last (1st series, right-to-left).

a small subset of data. If no such subset exists then,
of course, these features are fully irrelevant, as long
as the data truly represents the underlying concept.
The subtle differences may be lost in data conversion.

3.1.2 Congressional Voting

It is remarkable that the Congressional Voting
data shows no visible loss of classification accuracy
throughout in the forward run, represented by the
first series on Figure 2. At the same time, the back-
ward run exhibits a profile suggesting significance
of leading factors when removed - the second series
on Figure 2. The increase of accuracy at the end of
backward run belies the insignificance of left features
as k-NN switches to the implicit mode of predicting
the biggest class anyway with all irrelevant features,
which is an issue with imbalanced data-sets. Closer,
behind the chart, result examination reveals that
parity of class prediction deteriorates abruptly,
reducing to zero by the end. Note, irrelevance does
not mean the question on agenda is unimportant,
simply parties both agree or disagree. One could be
interested to see the feature list from this perspective.

At the same time, the accuracy in the forward run
does not grow noticeably. This can be simply because
the accuracy is already high at the beginning, and
there is a limit of achievable with k-NN. Although,
there are may be a background connection between
debated topics. For instance, despite all of them may
seem independent, there is a monetary component to
any of them, which the budget attribute, emerging
at the top of significance list, fully embraces.
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Figure 3: Wall Following classification accuracy
change with leading features removed first (2nd se-
ries, left-to-right) or last (1st series, right-to-left).
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Figure 4: Diabetes Diagnostics classification accuracy
change with leading features removed first (2nd series,
left-to-right) or last (1st series, right-to-left).

3.1.3 Wall Following

In predicting Wall Following Robot moves the
features are likely much related. Nonetheless, the
forward run, first series on Figure 3, is characterized
by a notable growth of accuracy, continuing up to the
moment when only four top features is left. This can
not be explained by irrelevance. The second series
on Figure 3 certainly does not confirm this. These
features are all redundant, and the improvement
is purely due to reduction of overhead - distance
calculations for k-NN classification become simpler.
Although the backward run has a weak profile, it
supports correctness of the feature ranking. Despite
the accuracy elevates slightly again by the end, it is
still below the level the forward run even takes off.

This leads to quite a different idea of how a
feature list may be shortened, not only from the
position of little relevance. If groupings of similar
features are known, then keeping top features of each
lot is sufficient. Yet, if it is not for the knowledge of
domain, then how to tell that features are redundant?

3.1.4 Diabetes Diagnostics

The Diabetes Diagnostics is certainly an example of
feature little relevance or even irrelevance. At the
same time, features in the first half of the list are
much different in relevance, spanning rating from
very small to very high, see Table 5. We observe
from the forward run, first series on Figure 4, that
the classification accuracy is only increasing, allowed
some fluctuation. This chart shows features in groups
of three counted off the end of ranked relevance list.

The backward run, depicted as the second se-
ries on Figure 4, arranged similarly, portrays the
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increasing insignificance of left features. Again,
because this set is imbalanced, which is usual for
medical diagnostics, it has the problem previously
explained, causing the accuracy to increase at the end
of run, while the relevance of features left is vanishing.

3.2 Ranking

The end result of feature rating is the order of infor-
mativeness, to know what features to keep and which
to discard. It is only by luck that ratings calculated
by different algorithms are compatible. There must
be a way to compare methods based only on ranking
they produce, and this is what we deal with in this
section. A number of independent methods of feature
ranking is brought in for comparison, (Weka Data
Mining Tools) being the main source, find guidance
where required from the book by (Witten and Frank
2005). We identify all these methods in Table 7.

ID Name Design Origin
NNS Single Feature k-NN Wrapper Proposed
NNX Feature Excepted k-NN Wrapper Proposed
EO Estimated Overlay Filter Proposed
RC ReliefC Filter Proposed
RF ReliefF Filter Weka
H2 Chi Square Filter Weka
IG Information Gain Filter Weka
1R One Attribute Rule / One R Embed. Weka
SV M Support Vector Machine Embed. Weka

Table 7: Feature ranking methods for comparison.

3.2.1 Alternative Methods of Ranking

Let us recount methods sourced from (Weka Data
Mining Tools) first, although this does not explain
their exact implementation.

Chi Square statistic and Information Gain are
probabilistic filters, which expect nominal data, but
this can be arranged through discretization.

Chi Square statistic is the mean quadratic de-
viation of observed against expected frequencies,
approaching one of the classic types of probability
distribution introduced by Pearson when the number
of data points increase. Each attribute produces a
different result depending on how closely it follows
the expected frequency for each class. No difference
means that the feature is contributing nothing special
to classification. So, smaller values of the statistic
correspond to higher independence of the class from
a given attribute, and feature ranks are assigned
accordingly. (Liu and Setiono 1997) adapt a Chi
Square discretization method by (Kerber 1992) to
rank features on the number of intervals, different
for different attributes, but obtained with the same
significance level for the statistic.

Information Gain is often a choice among methods
using probabilities. It is based on calculation of
Entropy, a measure of uncertainty of a particular
outcome. Entropy is calculated for each class and
the total is found. It is then reduced by entropy
calculated on class posterior probabilities for each
value of a variable. The difference is the Information
Gain. The less uncertain outcome from using a
feature, the more is the information gain, and this
makes the basis for ranking. The technique is widely
used in Decision Trees (Quinlan 1993). (Fayyad and
Irani 1993) extend the splitting mechanism of deci-
sion trees to discretization of features. Because they

utilize the Minimum Description Length principle,
put into theory by (Rissanen 1978), in the stopping
criteria, potentially, this also can be used for ranking
of features by the number of intervals.

Methods not using probabilities but having a
statistical interpretation are as follows.

One Attribute Rule, used for classification, com-
pares different attributes and relies solely on the
attribute giving the least error (Holte 1993). The
error is how features are rated. This is an embedded
technique that could be identified as a filter, the
wrapping clad kind, if not the design hierarchy.

The idea of Relief by (Kira and Rendell 1992)
is that a feature should have distinct readings for
different classes about same locality. Therefore, we
can find two closest instances of data to the instance
acting as probe, of a different and the same class,
and subtract coordinate distances to these points.
Positive differences characterize inner points of a
class. The feature-wise differences are then averaged
for a random selection of instances or all data to
obtain weights for ranking. Larger weights identify
features of better class separation. The technique is
a filter: its design has a connection to, but does not
include classification by k-NN. ReliefF is a multi-class
implementation of Relief, taking care of noisy and
incomplete data by (Kononenko et al. 2008).

The simplification One Attribute Rule implies
makes it more of a filter than embedded type, and so
is ReliefF. Both have certain design similarities with
our method. The algorithm of Class Overlay Counts
is of filter type, although a substantial preparatory
phase is involved if it is not run in the simple mode.

Support Vector Machine (SVM), as a method of
classification, finds separation hyperplanes maximiz-
ing the margin between classes, for which purpose
it locates base points called support vectors. This
results in weighting of variables, establishing their
ranks. Clearly, this is an example of embedded
method. Other authors result of using SVM on the
Housing data (Bi et al. 2003) is also available.

Also included are: two k-NN wrapper estimators
and two alternative ranking schemes of own making.
The wrapping technique for obtaining ranking from
accuracy of classification by nearest neighbors is
using either single features or sets found by exception
of single feature. No forward selection or backward
elimination was pursued on this occasion to enhance
the selection. Estimated Overlay and ReliefC are
the two alternative schemes suggested in this study
to circumvent necessity to cluster the data. ReliefC
is an interpretation of Relief, counting occurrences
of class overlap instead of summing up the standard
feature-wise distance differences.

3.2.2 Method of Ranking Comparison

One approach to ranking goodness evaluation is
extraction of longest sequence of preserved order
of features of a scheme taken for a standard. The
discrepancy with total number of features is then rel-
ative error, or variation. This method of comparison,
while clear for understanding, on implementation side
is not trivial. Also, it is not taking into account local
changes of the position, tending to overestimation
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of error, especially on long feature-sets. Sequences
of different length may be compared instead. By
this method features of the alternative ranking, the
principal sequence includes up to a given position,
are counted. This turns to be similar to a method of
Kendall discussed in (Bhamidipati and Pal 2006) if
rankings are compared instead of ratings.

However, our way of implementing it gave no
different result than simply summing up absolute
displacements of the rank for each feature, which is
attributed to Spearman (Bhamidipati and Pal 2006).
Therefore, we use this simple and recognized method
to represent results of comparison. Thus found totals
are rated by a like result, obtained for opposite
ordering of the principal sequence, to measure how
”wrong” the contending ranking is. Approaches of
forward selection and backward elimination explain
interest to validity of leading or trailing features
ranked by significance. Therefore, comparison of
ranking as produced by Algorithm 2 with other
methods is conducted not only for all features but
also for leading and trailing thirds of the list.

3.2.3 Ranking Comparison Results

Table 8 summarizes results of feature ranking using
different methods, identified in Table 7, for each of
examined sets. The comparison elements are: the
absolute rank displacement for all features (1st-),
for top (-2nd) and bottom (-3rd) portions of the
ranked list. Columns denote alternative ranking
schemes stated in Table 7. Because ranking differ-
ences on short data-sets can be rather imprecise,
and to get a qualitative rather than quantita-
tive evaluation of different methods, we use tenths
rather than hundredths (percents) parts of the whole.

Dataset NNS NNX EO
Housing Prices 6-4-4 5-1-3 2-2-1
Congressional V oting 2-1-1 6-5-3 0-0-0
Wall Following 4-3-3 5-2-3 7-6-5
Diabetes Diagnostic 5-4-4 4-3-3 2-3-0
Dataset H2 IG 1R
Housing Prices 3-3-1 4-4-2 3-3-3
Congressional V oting 2-1-1 1-1-1 2-1-1
Wall Following 4-2-3 4-3-3 4-3-3
Diabetes Diagnostic 1-1-0 1-1-0 5-3-4
Dataset RC RF SVM
Housing Prices 2-0-1 6-6-4 6-6-3

4-1-4
Congressional V oting 5-3-4 5-3-3 6-5-5
Wall Following 5-4-4 7-6-5 5-3-5
Diabetes Diagnostic 3-2-2 4-2-5 6-5-4

Table 8: Ranking method comparison summary on
variation scale of 0 to 10.

Of all represented methods Chi Square and
Information Gain give the best support for the
proposed method of Class Overlay Counts. This is
not a surprise because Chi Square and Information
Gain are based on the same idea in the guise of
probabilities. Estimated Overlay is of the same type,
but is much dependent on data. On one occasion
we see a significant departure from the principal
method, and on a different occasion we obtain fully
indifferent ranking, thus making the comparison
trivial. Estimated Overlay offers, otherwise, a very
undemanding alternative to the main method.

One Attribute Rule and Single Feature k-NN give
the proposed method a more cautious support than
Chi Square or Information Gain. Single Feature
k-NN is a wrapper and One Attribute Rule can be

interpreted as a wrapper, because it calculates the
prediction error. Single Feature k-NN has specifics
that can make it insensitive to irrelevant features, as
k-NN switches into the mode that simply predicts
the biggest class, and on imbalanced data-sets this
accuracy can be high. This, however, affects only
the end of ranked list. Wrapper methods are thus
potentially exposed to a loss of detective ability
on features of little relevance, and so the backward
elimination makes a wrong design of feature selection
algorithms relying on wrapping.

While ReliefF is not a wrapper and Feature
Excepted k-NN is, these two methods use the same
principle of k-NN and do produce similar results but
are less supportive of the proposed ranking, even
to the point of disagreement. Interestingly, ReliefC,
despite being akin to ReliefF, gives much closer
results overall. Feature-wise distance differences in
ReliefF do appear more ambiguous than class overlap
in ReliefC. As to Feature Excepted k-NN, it has the
limitation that the impact on classification accuracy
of a single feature missing from the set can be very
small, resulting in features rating close assigned
same rank. Also, the method can mistake redundant
features for those with little expression.

A Support Vector Machine (SVM) has a very
different design than the rest of methods, although
it is not a fact that SVM has much a different
idea about what the correct ranking should be like,
because the independent results by other authors for
the Housing data, appearing as the second line, are
encouraging. We found though that SVM can be
computationally very demanding and unpredictable
even on small feature-sets. The necessity to output a
unique ranking possibly makes the algorithm loop.

Overall, probabilistic schemes used for compari-
son are in a good alliance with the feature ranking
method we propose, better than techniques not using
probabilities, while the proposed two alternatives to
the main method are competitive.

4 Conclusion

In this paper an approach to dimensionality reduc-
tion of the problem space through feature selection
is proposed. It is based on the concept of coherent
accumulation of data about class centers for informa-
tive features. Those in accord with this property can
be short-listed to represent the data or, alternatively,
discordant features can be removed, allowing for
faster classification and data acquisition. The con-
clusive rating of features becomes known after the
first cycle of the algorithm, making it possible to do
without selection refinement of residual feature-sets.

Comparison with other methods of feature
ranking shows a good correlation in many cases.
However, assumptions the proposed algorithm relies
on must be upheld. Firstly, the model should
allow interpretation of classes as unique, rotund in
shape sets, or classes can be subdivided into such
clusters. Secondly, better results can be expected
on statistically abundant data. The former poses a
dilemma between getting quick results and getting
the data model right first. Quicker results may be
desirable in some circumstances, so alternatives in
the spirit of main algorithm are considered, although
the clustering does not bear hugely on performance.
The latter is rather broad. In this regard the method
shares assumptions of many other algorithms using
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misclassification counts, whether in the guise of
probability or accuracy of classification.

The algorithm outputs a ranked list, where it is
only possible to say that a feature up the list is more
relevant than a feature down the list. It is impossible
to brand a feature irrelevant, although wrapping,
supplementing results of ranking, can help to make
the deselection. It appears that removal of less infor-
mative features from the end of the list may result
in a temporary increase of classification accuracy
before its starts to fall. This indicates that features
removed may be irrelevant. The classification on
results of ranking may also show that some, listed
one after another features are similar by their action,
that the top feature in a lot carries essentially the
same information as the rest. The accuracy plateaus
when these features get removed. However, ranking
by itself cannot answer the question of redundancy.

5 Theoretical Aspects

Assume, without loss of generality, that there is just
one set A. The objective function in Problem 1 then
can be expressed as follows:

1/|A| ·
�

i

�x− ai�2 =

�

l

(1/|A| ·
�

i

|xl − ai
l|

2). (3)

Proposition 1 is consequent from following.

Lemma 1 Minimizer of Problem 1 obtained on Step
2 of Algorithm 1 is the by-coordinate minimizer.

Proof. The objective function is representable in a
form of sum of non-negative continuous functions of
their arguments, according to Expression 3. Because
a global minimum exists for each of the components
it exists for the compound function. The exact
location of the minimum is governed by interaction
between components. In this case components are
independent of each other. Therefore, the compound
minimum is sum of minimums of the components.
Besides, each component is represented by a single
variable and all variables are included in the total.
Thus, minimizers of Problems 1 in respect of coor-
dinates together make the minimizer of Problem 1. �

The above applies to the Euclidian metric. How-
ever, it is easy to see that Lemma 1 also holds for the
Manhattan metric, all what is required is omission of
squares in Expression 3.

Lemma 1 is essential for Algorithm 1. Neverthe-
less, even a stronger result holds.

Proposition 2 Solution to Problem 1 is the centroid
of elements making the class in the Euclidian metric.

Proof. Taking partial derivatives from Expression 3
for the objective function by each of coordinates l and
equating them to zero we obtain:

�

i

(2 · xl − 2 · ai
l) = 0.

It immediately follows that

xl = 1/|A| ·
�

i

ai
l,

which is exactly the by-coordinate expression for the
centroid vector. The solution delivers a minimum,
because second derivatives are all greater than zero,
and so the Hessian matrix of the objective function
at the point is positive definite. It is also the only
minimum as no constraints apply. �

To do the same in the Manhattan metric we do
require Lemma 1 though.

Proposition 3 Solution to Problem 1 is the medoid
of elements making the class in the Manhattan metric.

Proof. Expression 3 for the objective function by
coordinate, unsquared, with index l omitted for clar-
ity, and scaling factor 1/|A| , a positive constant,
dropped for convenience, can be rewritten as:

E =
�

i

|x− ai| = E1 + ∆E + E2 ,

where

E1 =
�

i

(ap − ai) , i ≤ p ,

E2 =
�

i

(ai − ap) , i > p ,

∀ p ∈ {1 . . . |A|− 1}
and

∆E = (p− (|A|− p)) · (x− ap) , ap ≤ x ≤ ap+1 .

This describes change of the objective function, linear
on a segment between any two element values, all
arranged in increasing sequence, which can be done
without loss of generality. The first derivative, or
slope of function E on this segment is

s = 2 · p − |A| , ap ≤ x ≤ ap+1 .

For small p it is negative as |A| > 2 · p and
is increasing with p. Conversely, s > 0 for large
p. Thus, E being continuous decreases with p, but
reaches a minimum when the slope is minimal. This
depends on whether |A| odd or even.

If |A| is odd, and so the number of intervals is
even, the minimizer is

x∗ = ap , p = �|A| / 2� + 1 .

If |A| is even, and so the number of intervals is odd,
the whole middle interval is the minimizer:

ap ≤ x∗ ≤ ap+1 , p = [|A| / 2] .

Often a single reference point is taken to represent a
minimizer that is not unique. In this case by conven-
tion it is calculated as mean of interval ends:

x∗ = (ap + ap+1) / 2 .

Thus found point for any |A| is known as the
median of increasing sequence of values and for all
coordinates as the medoid. �

The term of medoid was introduced by (Kaufman
and Rousseeuw 1987), so as not to confuse a new
notion with that of median. In their clustering
algorithm medoid is the instance chosen to be central
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in a cluster. Elsewhere, the notion of medoid is being
used in the sense of definition above. The two do not
contradict. Indeed, the reference point can be shifted
to any of vertices of the minimum.
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