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Abstract
The queries in Online Analytical Processing (OLAP) are 
user-guided. OLAP is based on a multidimensional data 
model for complex analytical and ad-hoc queries with a 
rapid execution time. Those queries are either routed or 
on-demand revolved around the OLAP task. Most such 
queries are reusable and optimized in the system. 
Therefore, the queries recorded in the query logs for 
completing various OLAP tasks may be reusable. The 
query logs usually contain a sequence of SQL queries that 
show the action flows of users for their preference, their
interests, and their behaviours during the action.

This research investigates the feature extraction to 
identify query patterns and user behaviours from historical 
query logs. The expected results will be used to 
recommend forthcoming queries to help decision makers 
with data analysis. The purpose of this work is to improve 
the efficiency and effectiveness of OLAP in terms of 
computation cost and response time. Furthermore, the 
proposed OLAP system will be able to adjust some 
parameters for finding common behaviours from different 
users that make the recommendation system flexible and 
user-adaptive. .

Keywords: OLAP, session feature, query recommendation.

1 Introduction
The OLAP analysis system, a major part of business 
intelligence, is an effective approach to processing 
complex queries in multi-dimensions so that the user 
acquires a multi-dimensional view from a data warehouse 
(Dinter, Sapia, Hofling and Blaschka 1998). The typical 
applications of OLAP are in business reporting for sales, 
marketing, budgeting and forecasting, and similar areas. 
OLAP is interactive and is involved in a series of queries 
for either driven-down or roll-up queries to support 
specific tasks of decision making. During the analytical 
processing, a large amount of multidimensional data is 
required to be accessed and based on the online queries. 
Since OLAP is driven by the user query that the user needs 
a clear purpose and knowledge about areas of interest 
before operating OLAP processing (Sapia 1999). This 
approach is classified as query-driven centric as opposed 
to user centric techniques. However, when exploring a
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series of tasks, the user may not have clear ideas of what a
next query should be made. This might cause analysis 
latency or lead users into an irrelative area, and thus reduce 
the benefits of using the OLAP system. To overcome this 
problem, we present a framework for query 
recommendation embedded in the OLAP system, which 
helps users predict forthcoming queries.

In business processing, users always utilize a sequence 
of queries to interact with the OLAP system to finish a 
task. The operation is often monotonous and interrupted
since users could lose their orientation to the goal 
(Sarawagi 2000). Most frequently-used queries are 
recorded in the system as query logs. Those recorded 
queries may be reusable for completing similar OLAP 
tasks. The query logs usually contain a sequence of SQL 
queries that show the action flows of users for their 
preference, their interests, and their behaviours during the 
action. We will propose a new framework to provide
navigation and forecast forthcoming queries which 
maximizes efficiency of using OLAP systems. A sequence 
of queries/requirements is called an analysis session 
(Giacometti Marcel and Negre 2008). The new framework 
is based on a collaborative filtering method (Herlocker, 
Konstan, Terveen and Riedl 2004). This method assumes
if user A has the same interested area to user B, then they 
may be interested in the same data. The queries of user B 
may be reusable for user A. The proposed framework
utilizes all users’ query logs and summarises these query
records to capture different users’ query behaviour. The 
featured information is used to forecast what the 
forthcoming query could be. 

It is important for query recommendations to identify
the current user’s purpose in order to make an accurate 
recommendation. However, current users cannot supply 
much information at the beginning so that previous 
approaches could not match a session to current users. This 
problem can be considered as unbalanced data. Previous
sessions may include too many features that could not 
provide the central themes of the sessions, while the 
current session has little information. To overcome this 
drawback, our framework introduces a new approach that 
balances the features between the previous session and the 
current session. Our approach can satisfy the user’s 
requirement and provides appropriate query 
recommendations. The proposed framework is flexible 
and user-adaptive for recommender systems. 

This paper is organized as follows. Section 2 reviews
some existing work about query recommendations. 
Section 3 introduces our framework and its instantiation. 
The experimental results are shown in section 4. 
Conclusions are presented in section 5.
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2 Related work
Query recommendation is an important technique for 
business search engines. The majority of work on query 
recommendation focuses on measuring the similarity 
between the current query and the previous query (Fonseca,
Golgher, Moura and Ziviani 2003) in order to expand the 
query or cluster of queries (Baeza-Yates, Hurtado and
Mendoza 2004, Wen, Nie and Zhang 2001). The basic 
model of recommendation systems relies on two methods 
which are content-based methods and collaborative 
filtering methods (Adomavicius and Tuzhilin 2005).

2.1 Content-based methods
Content-based methods suggest items similar to the ones 
that users have previously shown interest in. They mainly 
extract information features, such as the different sales of 
cars each year, and decide which recommendations are 
appropriate. These methods compare various candidate 
items, and then the best matching items are presented to 
the user. Generally, they use a distance function to rate or 
order each candidate item. The cosine similarity measure 
(Adomavicius and Tuzhilin 2005) is one of the best vector 
measures that represents weight best-matching. 

In the early data source, the significant information 
existed randomly. Content-based methods apply 
information retrieval on data sources (Baeza-Yates and
Ribeiro-Neto 1999) and information filtering on 
recommendations (Belkin and Croft 1992). The methods 
extract useful profiles that contain information about 
users’ preferences and search behaviour. The profiles can 
be elicited from users’ queries.

The limitation of this method is obvious. The users 
need to explicitly describe their objects, so the system 
must first learn the user’s purposes. However, the user’s 
purpose is much harder to indicate when they get a new job 
task. Moreover, content-based methods cannot suggest 
forthcoming queries.

2.2 Collaborative filtering methods
Collaborative filtering methods recommend the items 
which have similar interest between the user and the other 
users. They can be categorized into memory-based and 
model-based methods by algorithm (Breese, Heckerman
and Kadie 1998).

The memory-based algorithm exploits the weight of all 
previous items to compute the weight of the current 
session. The formula is below: 

��,� = � � ��	(
, 
�) × ���,�
��
��

� = 1
� |��	(
, 
�)|��
��

where r�,� denotes a weight of the user c and item s. r�,�
multiplier k serves as a normalizing factor, and sim(c,c’) is 
a distance measure between user c and user c’, which can 
be considered as a weight. Sim(c,c’) is introduced in order 
to be able to differentiate between levels of user similarity. 
This formula means that the high weight depends on the 
comparability of both c and c’. Different recommendation 
applications can use their own user similarity measure, as 

long as the calculations are normalized using the 
normalizing factor k. 

Model-based algorithms (Billsus and Pazzani 1998) use 
known weights to build a model, and then recommend a 
query by this model. Cluster models and Bayesian 
networks are techniques in this algorithm that rate 
probability expression on the purpose of interest. The 
model learns all features from the data. For example, in a 
car recommendation system, a user might prefer a kind of 
car with job purposes like ‘energy saving car’ and 
completely different type for sport like ‘four wheel drive’.

To improve the performance of the collaborative 
filtering method, several techniques that exclude noise, 
redundancy and exploit the sparsity of data should be 
integrated (Yu, Xu, Tao, Ester and Kriegel 2002). As in the 
case of the content-based method, the main improvement 
of the collaborative filtering method is that it uses other 
users’ information to make a recommendation even 
though the information never appeared before by current 
user.

Collaborative filtering methods also have their own 
limitations. They have the same problem as content-based 
methods. In order to make accurate recommendations, the 
user must offer abundant information to describe the job 
purposes. Another significant drawback is that other users’
information could include some irrelevant information that 
would affect the accuracy of recommendations.

2.3 Other methods
The graph model based similarity method describes the 
two consecutive queries (neighbouring queries) in the 
same query session. These have more similar weight than 
the queries which are not neighbours in the same session 
(Zhang and Nasraoui 2006). Instead, Fonseca et al. detects 
similar queries based on association rules. Each query in 
the query log is considered as a part of session where a 
single user inputs a sequence of related queries in a time 
interval (Fonseca, Golgher, Moura and Ziviani 2003). We 
will use a similar notion in this paper.

Many recommendation systems are applied in web 
searching, and some of those techniques can be adapted to 
the OLAP recommending system. Wen et al. (Wen, Nie
and Zhang 2001) present four notions about clustering 
methods for query recommendation to measure query 
distance: the first notion is based on keywords or phrases; 
the second is on a string matching of keywords; the third is 
on common clicked URLs; and the fourth on the distance 
of the clicked documents in some pre-defined hierarchies.
The first two notions will be adopted in our work.

The QueRIE (Chatzopoulou, Eirinaki and Polyzotis
2009) framework developed by Chatzopoulou et al. 
generates a predicted summary ( ��

���� ) to capture the 
predicted degree between current user and the other users 
who have a similar query requirement. Where ��
represents the session summary of user i, when i= 0
denotes the current user. ��

���� is described as a weighted 
vector, which represents the number of given tuples �
appeared in database. This framework builds a predicted 
model which also returns recommendations to the current 
user. There are two different schemes for calculating ��
(Chatzopoulou, Eirinaki and Polyzotis 2009).
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��[�] = �1             �� ��!"#  � $!!#$��         
0   ��  ��!"#  � %&#� '&� $!!#$�  *

This is a binary weighting scheme referring to matching 
tuple � or not. 

��[�] = �1/|$'�(+)|       �� ��!"#  � $!!#$��           
0                     ��  ��!"#  � %&#� '&� $!!#$�*

This is the result of the weighting scheme, where 
ans(Q) is the result-set of query Q. It implies that S- could 
have a small outcome if many queries return results since 
this query is unfocused. In other words, if S- is large, then 
the query is very specific. The session summary is defined 
below:

�� = � ���
�.

This approach adopted the method of collaborative 
filtering. The predicted summary is defined as a function 
of the current user’s summary S� and the normalized
weighted sum of the existing summaries (Chatzopoulou,
Eirinaki and Polyzotis 2009):

��
���� = 2 × �� + (1 4 2) × � ��5(67,6.)×6.89.9:

� ��5(67,6.)89.9:

The value of the mixing factor ; 
 [0,1] specifies 
which users’ requirement will be considered. For example, 
if ; = 0 , the result trends to past users’ requirements. 
S�

<>?@ also tends into content-base filtering when ; = 1.
The value of 2 can decide which approach is more 
favorable. This approach could exclude other uses’ query 
requirement if the current session clearly declares the 
query’s orientation. Moreover, it is desirable that current
user can get some useful knowledge from past users to 
guide or adjust successor queries. Our approach is able to 
predict queries that combine the results already observed 
by the past users.

3 Query recommendation based on user 
behavior

By reviewing the existing methods above, we observed 
that query recommendation needs further improvement 
that a more feasible method is necessary to apply for 
OLAP systems. Therefore, we propose a new 
recommendation system to better the performance on 
query recommendation.

3.1 Improve existing query recommendation
system

The existing query recommendation systems extend from 
collaborative filtering and content-based methods. They 
depend on distance measure to generate related sessions or 
queries. However, each previous session may include
many queries, and thus it may involve much independent
information. This fact shows that some sessions may be
unfocused if the session contains many queries. The
current session only contains few queries in the beginning
so that the current session cannot clearly describe the main 
purpose of the user’s requirements yet. Furthermore, if 
several previous sessions cover current session, the 
different focuses may offer different suggestions to current 
session. 

This, therefore, motivates us to look for a novel method 
which can overcome the drawbacks of existing methods. 
Our proposed framework will satisfy the following 
requirements: 

� It should filter unuseful information in the 
previous sessions to identify session patterns 
from historical query logs.

� It should summarize the main purpose of 
previous sessions. The expected results will be 
used to recommend forthcoming queries to help 
decision makers on data analysis.

� It should improve the efficiency and 
effectiveness of OLAP in terms of computation 
cost and response time.

3.2 Framework of feature-based 
recommendation

The feature-based recommendation framework can be 
formulated as follows: when interacting with a data
warehouse, a user might have the same or similar 
requested task as a past user in the previous session. To 
extract the previous session, the system can use the log 
information to summarize the querying behavior from past 
users.

Our recommended framework (figure 1) works on the 
OLAP system using SQL queries. The user’s queries are 
sent to OLAP and the recommendation engine. The OLAP 
system processes every query with the data warehouse and 
returns the results to the user. Every user’s query is also 
recorded in the query log with the user ID to store its
queries. The recommendation engine relies on current 
inputting queries and past user’s queries which are stored 
in query log to generate a set of query recommendations
using our novel approach, and then the recommendation 
engine returns the recommendations to the user.

Figure 1: feature-based recommendation framework

3.3 Definition of notions and symbols
We now introduce some notions and symbols which will 
be used in the remainder of this paper. 

3.3.1 Models of sessions and queries
The basic operations of OLAP include three methods that 
referred as slice and dice, pivot and drill down, and roll up 
to analyze a series of users’ requirements by SQL queries. 
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These requirements (queries) of the same user can be 
considered as one task that may contain one purpose 
during the search job. Semantically, a series of 
requirements or queries will be reusable for other users 
who have similar tasks on their search job. These SQL 
queries are recorded into query logs in order to reuse them. 
The query logs are denoted as L and one purpose of a task 
is called a session as denoted as �� . Each session includes a 
series of queries that are entered by the same user, and 
each query denoted as A�

B for the ith query in the jth session. 
This relationship is represented as follows:

A�
B C �B , where 1 D �, E D ' and �B 
 F.

3.3.2 Session Feature
In each search task, the user usually inputs a sequence of 
queries to accomplish one task. They may ask the sale 
results of various products in different locations or income 
of branch offices in different countries. It means that every 
session has some kinds of characteristics shown as the 
keywords in queries. Many keywords in one session may 
produce the characteristics of the session. Our work 
focuses on extracting the particular characters as the guide 
to make recommendation. Each particular character is 
called a session feature denoted as G�. Session features can 
express the main purpose of the session. Different sessions
could have similar search tasks (session feature) that 
means existing a probability of similarity between session 
j and session i which is denoted as H�

B. The research of this 
paper is to mine the query logs and extract the session 
features from query logs that will be used to recommend 
for current users. The symbols will be used in this paper 
shown in table 1.

Table 1: Symbol summary

3.4 Feature-based recommendation approach
Query logs are important data sources for query 
recommendations. There are two steps in our approach.
First, summarize session features by utilizing past users’
search behaviour. Second, locate similar sessions to match
the current session.

The Query log can be divided into sessions by many 
ways such as user id, timestamp and performance in a 
period. We combine user id and timeout threshold as a 
splitting sessions rule. The timeout threshold is set less 
than 12 hours. Thus, the query log is divided firstly into 
several parts by user ids, and then compares the 
timestamps of two consecutive queries. If timeout of these 
two queries exceeds 12 hours, the smaller timestamp of the 
query is a splitting point for a new session. Since each 
session could include many queries, the theme of a session 
is difficult to detect. Hence, we need extract keywords 
from each session to represent the features of this session.

Intuitively, for a session �� and current session �� , the 
more common keywords exist between  �� and Sc the more 
 �� is similar to �� . Therefore, the problem of measuring
similarity between  �� and �� becomes the calculation of 
common features of  �� and �� .

Let us look at an example: suppose that G� and GB are 
two feature sets of previous sessions  ��  and 
 �B respectively, and  �� and  �B include the same number
of keywords with current session  �� .

Figure 2 shows the graphical example of feature 
sets  G� , G� and GB . The shadow square box represents 
current session  G� .  GB and  G� contain  G� , that is,  G� =
|G�| I |GB|. Since |G�| > |GB|, the proportion of similarity 
between  G� and G� ( G�/ G� ) is smaller than  G�/ GB . It is 
easily observed that current session �� is more similar to 
�B than  ��.

Figure 2: example of session feature

Measure session feature. Due to find suitable session 
to match current session, we need measure session 
features. Every session is composed of many SQL queries. 
Each query has a select statement as beginning, which 
includes several attributes from different tables in 
database. We consider these attributes as the keywords of 
the query. If a session S consists of a sequence of queries, 
the features of session S is the most frequently appeared 
keywords in those queries.

A tuple is one of the combinations from keywords in a 
query. We assume that the probability K�(�) represents the 
importance of a tuple with keywords, so we have:

K�(�) = 2 × 'L
ML

+ (1 4 2) × '�
M�

Where i denotes the number of keywords in tuple t; 'L
and '� stand for the number of tuple t appearing in the 
query logs L and session S respectively; ML and M� denote 
all tuples in L and S. The value of the moderator 2 
 [0,1]
determines which approach is more favourable when 
computing the session features. If 2 = 0, only user session 
information will be taken into account when measuring
session features, That is, the content-based filtering
method is used. When 2 = 1, the collaborative filtering 
approach is applied to measure probability of tuple t. Any 
value of 2 in an acceptable range allows us to adjust more 
importance to either side. This adjustment can be useful 
for two reasons. First, NO

PO is able to find the important tuple 
that most users are interested in, but it cannot represent if a 
tuple has high frequency in the session instead of the query 
log. We do not want to exclude from unimportance tuples 
that seem to explain the purpose of session. Second, a
particular search task in each session usually requests
some typical tuples to expand on the following search task. 

L Query logs
 �� A sequence of queries entered by user i
t A tuple of keywords

A�
B ith query of the jth session

H�
B similarity between session j and session i

G� Session feature

 G�
 GB  G�
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In other words, the tuple with high hits may have ability to 
predict what kinds of purposes with search task in this 
session. High hits have different means when they 
appeared in the query log and sessions, which represent a
common view and an individual view respectively. The 
action of 2 is used to balance these two views.

The number of tuples generated from a query is the all 
combinations of keywords in the query. For example, a
query q contains three keywords q = {k1, k2, k3}, all
combinations of k1, k2, k3 make the set of tuples of q as 
follows:

��!"#� = {(�Q), (�R), (�T), (�Q, �R), (�Q, �T),
(�R, �T), (�Q, �R, �T)}

Where each element in the above combination set is 
called a tuple. K�(�) is a threshold used for determining the 
important tuple in a session. If K�(�) exceeds the threshold, 
the tuple is important in the session. It can be represented 
as one of session features, such as G� = {(�Q), (�Q, �T)}.
From the result of our experiments, our approach can
extract session features effectively which match the 
purpose of each session.

Weight of tuple. As a set of session features, each 
feature can be modelled as a weight in the session.

Definition 1: Let the tuple frequency be the number of 
occurrences of tuple in the session with the notation
��#A(��� ) . The weight of tuple frequency UG(G, �)
measures the relationship of a tuple t with regard to the 
given session feature F.

There are many ways to measure the weight of each 
tuple. For example, we can simply define that as the tuple 
frequency against the total number of occurrences of all 
the tuples in the session. In this paper, we utilize a formula 
from the Cornell SMART system to normalize the tuple 
frequency. The formula is described as follows:

UG(G, �) = 1 + "&V W1 + "&V W��#A(��� )XX

Computing YZ
\ . The next step in framework is 

computing the similarity and recommendation value. 
Similarity of two sessions is computed by session feature. 
In this work, we adopt the method of cosine similarity that 
measures the similarity between two sessions and takes 
values in [0,1].

Definition 2: Given two clustering session features
G� = {�Q,� �R � , … , ��,� } and GB = {�Q,

B �R 
B , … , �5B } , the 

overlapping tuples between G� and GB can be represented 
as G� I GB = {�Q̂ , �R̂ , … , �_̂ } , where �_̂ denotes the 
common tuple in G� and GB . If the session is the current 
session, the session feature G� includes all tuples by 
combinations from keywords. Here, we have:

H�
B = � UG(G�, �_̂ )_ ` UGaGB, �_̂ b

c� UGaG�, ��,� bR
� ` c� UGaGB, �5B bR

5

If there is a highest score of H�� for current session ��, it
implies that �� has the similar search task with �� .

Therefore, �� can be recommended to �� for forthcoming
queries.

The users usually input a series of queries when they 
finish one job task. The purpose of their task will be
clearer when more queries are performed. During the 
processing current user’s queries, the system keeps the 
update of suitable recommendations. However, 
recalculating the recommendations takes much time 
because the query log may have large number of sessions.
Therefore, our system generates top-k recommendations to 
provide multiple choices for the current user. When the 
user inputs successional queries, the system generates new 
recommendation from multiple choices of top-k
recommendations rather than recalculation from query log. 
This top-k recommendation set is computed by the H�

B, and 
is defined as follows:

�$'�(H��) d �e�#�e&"%
The H�� has high rank if it is larger than the threshold. 

The top ranked sessions are returned as the 
recommendation set.

4 Experimental evaluation
In this section, we developed a virtual query interface 
system which realizes our framework and analyse actual 
data, as well as present experimental results of using our
system.

4.1 Experimental data and methodology
The experiment was carried on a Core 2 Duo 2.4GHz 
computer with Window 7 Ultimate and 2 GB of main 
memory. All system was implemented in Java.

The system adopted the data of query log from sky 
server database. The query log recorded queries from year 
2007 to 2010 and its size is 1.3 TB. We separated the query 
log into 4000 sessions by different IP addresses. We chose
55 sessions to construct current sessions and the number of 
queries in each session are no more than 6. For the rest of 
sessions, firstly, they were divided into 10 equally sized 
subsets as previous session logs. Secondly, we partitioned 
the rest of sessions into 10 different sized subsets, and the 
number of session in next subset is larger than the 
preceding subset. In order to analyse the performance of 
our framework, we use a smaller set of queries in each 
current session. For example, for each current session with 
n queries, we extracted n-1 queries in each current session 
to build test set.

We evaluate the accuracy to analyse the effectiveness 
of each recommended sessions, using the following 
metrics:

$

��$
f = |�� I ��|
|��|

Where �� and �� represent all queries of keywords in a 
session. In our test, we have analysed all subsets and 
reported the best result in the experiments. Unless 
otherwise noted, we set 2 = 0.6.

4.2 Result
Our first experiment evaluates the efficiency of the 
proposed approach to make the recommendations. Figure 
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Figure 3: efficiency analysis

3 shows the performance of test sessions according to the 
size of query log. The measure of this experiment includes
computation of similarity with current session and ranking 
the candidates. The features of sessions are processed on 
off-duty time so that the extraction time does not count in 
efficiency analysis. 

Figure 4: accuracy distribution

As can be seen from Figure 3, it is obvious that the 
trend of execution time is upwards with the log size. The 
execution time is acceptable with the size of 4000 sessions 
in query log. 

In the next experiment, we evaluate the effectiveness of 
our approach. Figure 4 indicates the comparison of best 
performance between our approach and the memory-based 
approach (Breese, Heckerman and Kadie 1998). 55 current 
sessions have been tested among 10 equally sized subsets,
which ranked by accuracy in decreasing order. It can be 
seen from Figure 4, 70% current sessions achieved high 
performance by our approach (around 40 current sessions
have above 0.6 accuracy among total 55 current sessions 
tested). The system can provide valuable 
recommendations for most current sessions. There are two 
zero accuracy results among all tests, that is, the system
may have 3.6% failure rate to predicate intention under 
some circumstances. We have also manually reviewed the

generated data for the validation. No recommendation
sessions have been obtained if low similarity H�

B has been 
calculated between the current session and past sessions.
For memory-based approach, only 55% current sessions 
can get valuable recommendations, and most of accuracy 
is lower than our approach (refer to the dot line in Figure 
4).

Figure 5 describes an average accuracy of our approach 
and the memory-based approach from total 55 current 
sessions tested. We can find that the accuracy of our 
approach is always higher than the memory-based 
approach. The figure shows that the accuracy slightly 
increases with the log size. The Figures 4 and 5
demonstrate that most current sessions can obtain a 
successful recommendation by our approach with 
accuracy above 0.6 from the query log.

Figure 5: average accuracy

5 Conclusion
To sum up, our feature-based recommendation framework 
highlights on personal intention. It can summarize the 
important information and filter out unuseful data to build 
session features from previous sessions. The experimental 
evaluation proves our framework is efficient and effective. 
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Our proposed approach is promising and has great 
potential to apply in real-life.
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