
Feature-based recommendation framework on OLAP

Yang Yang, Jinli Cao
Department of Computer Science and Computer Engineering

La Trobe University, VIC, 3086
Australia

y14yang@students.latrobe.edu.au
J.Cao@latrobe.edu.au

Abstract
The queries in Online Analytical Processing (OLAP) are
user-guided. OLAP is based on a multidimensional data
model for complex analytical and ad-hoc queries with a
rapid execution time. Those queries are either routed or
on-demand revolved around the OLAP task. Most such
queries are reusable and optimized in the system.
Therefore, the queries recorded in the query logs for
completing various OLAP tasks may be reusable. The
query logs usually contain a sequence of SQL queries that
show the action flows of users for their preference, their
interests, and their behaviours during the action.

This research investigates the feature extraction to
identify query patterns and user behaviours from historical
query logs. The expected results will be used to
recommend forthcoming queries to help decision makers
with data analysis. The purpose of this work is to improve
the efficiency and effectiveness of OLAP in terms of
computation cost and response time. Furthermore, the
proposed OLAP system will be able to adjust some
parameters for finding common behaviours from different
users that make the recommendation system flexible and
user-adaptive. .

Keywords: OLAP, session feature, query recommendation.

1 Introduction
The OLAP analysis system, a major part of business
intelligence, is an effective approach to processing
complex queries in multi-dimensions so that the user
acquires a multi-dimensional view from a data warehouse
(Dinter, Sapia, Hofling and Blaschka 1998). The typical
applications of OLAP are in business reporting for sales,
marketing, budgeting and forecasting, and similar areas.
OLAP is interactive and is involved in a series of queries
for either driven-down or roll-up queries to support
specific tasks of decision making. During the analytical
processing, a large amount of multidimensional data is
required to be accessed and based on the online queries.
Since OLAP is driven by the user query that the user needs
a clear purpose and knowledge about areas of interest
before operating OLAP processing (Sapia 1999). This
approach is classified as query-driven centric as opposed
to user centric techniques. However, when exploring a

Copyright (c) 2012, Australian Computer Society, Inc. This
paper appeared at the 23rd Australasian Database Conference
(ADC 2012), Melbourne, Australia, January-February 2012.
Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 124. R. Zhang and Y. Zhang, Eds. Reproduction
for academic, not-for profit purposes permitted provided this text
is included.

series of tasks, the user may not have clear ideas of what a
next query should be made. This might cause analysis
latency or lead users into an irrelative area, and thus reduce
the benefits of using the OLAP system. To overcome this
problem, we present a framework for query
recommendation embedded in the OLAP system, which
helps users predict forthcoming queries.

In business processing, users always utilize a sequence
of queries to interact with the OLAP system to finish a
task. The operation is often monotonous and interrupted
since users could lose their orientation to the goal
(Sarawagi 2000). Most frequently-used queries are
recorded in the system as query logs. Those recorded
queries may be reusable for completing similar OLAP
tasks. The query logs usually contain a sequence of SQL
queries that show the action flows of users for their
preference, their interests, and their behaviours during the
action. We will propose a new framework to provide
navigation and forecast forthcoming queries which
maximizes efficiency of using OLAP systems. A sequence
of queries/requirements is called an analysis session
(Giacometti Marcel and Negre 2008). The new framework
is based on a collaborative filtering method (Herlocker,
Konstan, Terveen and Riedl 2004). This method assumes
if user A has the same interested area to user B, then they
may be interested in the same data. The queries of user B
may be reusable for user A. The proposed framework
utilizes all users’ query logs and summarises these query
records to capture different users’ query behaviour. The
featured information is used to forecast what the
forthcoming query could be.

It is important for query recommendations to identify
the current user’s purpose in order to make an accurate
recommendation. However, current users cannot supply
much information at the beginning so that previous
approaches could not match a session to current users. This
problem can be considered as unbalanced data. Previous
sessions may include too many features that could not
provide the central themes of the sessions, while the
current session has little information. To overcome this
drawback, our framework introduces a new approach that
balances the features between the previous session and the
current session. Our approach can satisfy the user’s
requirement and provides appropriate query
recommendations. The proposed framework is flexible
and user-adaptive for recommender systems.

This paper is organized as follows. Section 2 reviews
some existing work about query recommendations.
Section 3 introduces our framework and its instantiation.
The experimental results are shown in section 4.
Conclusions are presented in section 5.

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

81

2 Related work
Query recommendation is an important technique for
business search engines. The majority of work on query
recommendation focuses on measuring the similarity
between the current query and the previous query (Fonseca,
Golgher, Moura and Ziviani 2003) in order to expand the
query or cluster of queries (Baeza-Yates, Hurtado and
Mendoza 2004, Wen, Nie and Zhang 2001). The basic
model of recommendation systems relies on two methods
which are content-based methods and collaborative
filtering methods (Adomavicius and Tuzhilin 2005).

2.1 Content-based methods
Content-based methods suggest items similar to the ones
that users have previously shown interest in. They mainly
extract information features, such as the different sales of
cars each year, and decide which recommendations are
appropriate. These methods compare various candidate
items, and then the best matching items are presented to
the user. Generally, they use a distance function to rate or
order each candidate item. The cosine similarity measure
(Adomavicius and Tuzhilin 2005) is one of the best vector
measures that represents weight best-matching.

In the early data source, the significant information
existed randomly. Content-based methods apply
information retrieval on data sources (Baeza-Yates and
Ribeiro-Neto 1999) and information filtering on
recommendations (Belkin and Croft 1992). The methods
extract useful profiles that contain information about
users’ preferences and search behaviour. The profiles can
be elicited from users’ queries.

The limitation of this method is obvious. The users
need to explicitly describe their objects, so the system
must first learn the user’s purposes. However, the user’s
purpose is much harder to indicate when they get a new job
task. Moreover, content-based methods cannot suggest
forthcoming queries.

2.2 Collaborative filtering methods
Collaborative filtering methods recommend the items
which have similar interest between the user and the other
users. They can be categorized into memory-based and
model-based methods by algorithm (Breese, Heckerman
and Kadie 1998).

The memory-based algorithm exploits the weight of all
previous items to compute the weight of the current
session. The formula is below:

��,� = � � ��	(
,
�) × ���,�
��
��

� = 1
� |��	(
,
�)|��
��

where r�,� denotes a weight of the user c and item s. r�,�
multiplier k serves as a normalizing factor, and sim(c,c’) is
a distance measure between user c and user c’, which can
be considered as a weight. Sim(c,c’) is introduced in order
to be able to differentiate between levels of user similarity.
This formula means that the high weight depends on the
comparability of both c and c’. Different recommendation
applications can use their own user similarity measure, as

long as the calculations are normalized using the
normalizing factor k.

Model-based algorithms (Billsus and Pazzani 1998) use
known weights to build a model, and then recommend a
query by this model. Cluster models and Bayesian
networks are techniques in this algorithm that rate
probability expression on the purpose of interest. The
model learns all features from the data. For example, in a
car recommendation system, a user might prefer a kind of
car with job purposes like ‘energy saving car’ and
completely different type for sport like ‘four wheel drive’.

To improve the performance of the collaborative
filtering method, several techniques that exclude noise,
redundancy and exploit the sparsity of data should be
integrated (Yu, Xu, Tao, Ester and Kriegel 2002). As in the
case of the content-based method, the main improvement
of the collaborative filtering method is that it uses other
users’ information to make a recommendation even
though the information never appeared before by current
user.

Collaborative filtering methods also have their own
limitations. They have the same problem as content-based
methods. In order to make accurate recommendations, the
user must offer abundant information to describe the job
purposes. Another significant drawback is that other users’
information could include some irrelevant information that
would affect the accuracy of recommendations.

2.3 Other methods
The graph model based similarity method describes the
two consecutive queries (neighbouring queries) in the
same query session. These have more similar weight than
the queries which are not neighbours in the same session
(Zhang and Nasraoui 2006). Instead, Fonseca et al. detects
similar queries based on association rules. Each query in
the query log is considered as a part of session where a
single user inputs a sequence of related queries in a time
interval (Fonseca, Golgher, Moura and Ziviani 2003). We
will use a similar notion in this paper.

Many recommendation systems are applied in web
searching, and some of those techniques can be adapted to
the OLAP recommending system. Wen et al. (Wen, Nie
and Zhang 2001) present four notions about clustering
methods for query recommendation to measure query
distance: the first notion is based on keywords or phrases;
the second is on a string matching of keywords; the third is
on common clicked URLs; and the fourth on the distance
of the clicked documents in some pre-defined hierarchies.
The first two notions will be adopted in our work.

The QueRIE (Chatzopoulou, Eirinaki and Polyzotis
2009) framework developed by Chatzopoulou et al.
generates a predicted summary (��

����) to capture the
predicted degree between current user and the other users
who have a similar query requirement. Where ��
represents the session summary of user i, when i= 0
denotes the current user. ��

���� is described as a weighted
vector, which represents the number of given tuples �
appeared in database. This framework builds a predicted
model which also returns recommendations to the current
user. There are two different schemes for calculating ��
(Chatzopoulou, Eirinaki and Polyzotis 2009).

CRPIT Volume 124 - Database Technologies 2012

82

��[�] = �1 �� ��!"# � $!!#$��
0 �� ��!"# � %&#� '&� $!!#$� *

This is a binary weighting scheme referring to matching
tuple � or not.

��[�] = �1/|$'�(+)| �� ��!"# � $!!#$��
0 �� ��!"# � %&#� '&� $!!#$�*

This is the result of the weighting scheme, where
ans(Q) is the result-set of query Q. It implies that S- could
have a small outcome if many queries return results since
this query is unfocused. In other words, if S- is large, then
the query is very specific. The session summary is defined
below:

�� = � ���
�.

This approach adopted the method of collaborative
filtering. The predicted summary is defined as a function
of the current user’s summary S� and the normalized
weighted sum of the existing summaries (Chatzopoulou,
Eirinaki and Polyzotis 2009):

��
���� = 2 × �� + (1 4 2) × � ��5(67,6.)×6.89.9:

� ��5(67,6.)89.9:

The value of the mixing factor ;
 [0,1] specifies
which users’ requirement will be considered. For example,
if ; = 0 , the result trends to past users’ requirements.
S�

<>?@ also tends into content-base filtering when ; = 1.
The value of 2 can decide which approach is more
favorable. This approach could exclude other uses’ query
requirement if the current session clearly declares the
query’s orientation. Moreover, it is desirable that current
user can get some useful knowledge from past users to
guide or adjust successor queries. Our approach is able to
predict queries that combine the results already observed
by the past users.

3 Query recommendation based on user
behavior

By reviewing the existing methods above, we observed
that query recommendation needs further improvement
that a more feasible method is necessary to apply for
OLAP systems. Therefore, we propose a new
recommendation system to better the performance on
query recommendation.

3.1 Improve existing query recommendation
system

The existing query recommendation systems extend from
collaborative filtering and content-based methods. They
depend on distance measure to generate related sessions or
queries. However, each previous session may include
many queries, and thus it may involve much independent
information. This fact shows that some sessions may be
unfocused if the session contains many queries. The
current session only contains few queries in the beginning
so that the current session cannot clearly describe the main
purpose of the user’s requirements yet. Furthermore, if
several previous sessions cover current session, the
different focuses may offer different suggestions to current
session.

This, therefore, motivates us to look for a novel method
which can overcome the drawbacks of existing methods.
Our proposed framework will satisfy the following
requirements:

� It should filter unuseful information in the
previous sessions to identify session patterns
from historical query logs.

� It should summarize the main purpose of
previous sessions. The expected results will be
used to recommend forthcoming queries to help
decision makers on data analysis.

� It should improve the efficiency and
effectiveness of OLAP in terms of computation
cost and response time.

3.2 Framework of feature-based
recommendation

The feature-based recommendation framework can be
formulated as follows: when interacting with a data
warehouse, a user might have the same or similar
requested task as a past user in the previous session. To
extract the previous session, the system can use the log
information to summarize the querying behavior from past
users.

Our recommended framework (figure 1) works on the
OLAP system using SQL queries. The user’s queries are
sent to OLAP and the recommendation engine. The OLAP
system processes every query with the data warehouse and
returns the results to the user. Every user’s query is also
recorded in the query log with the user ID to store its
queries. The recommendation engine relies on current
inputting queries and past user’s queries which are stored
in query log to generate a set of query recommendations
using our novel approach, and then the recommendation
engine returns the recommendations to the user.

Figure 1: feature-based recommendation framework

3.3 Definition of notions and symbols
We now introduce some notions and symbols which will
be used in the remainder of this paper.

3.3.1 Models of sessions and queries
The basic operations of OLAP include three methods that
referred as slice and dice, pivot and drill down, and roll up
to analyze a series of users’ requirements by SQL queries.

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

83

These requirements (queries) of the same user can be
considered as one task that may contain one purpose
during the search job. Semantically, a series of
requirements or queries will be reusable for other users
who have similar tasks on their search job. These SQL
queries are recorded into query logs in order to reuse them.
The query logs are denoted as L and one purpose of a task
is called a session as denoted as �� . Each session includes a
series of queries that are entered by the same user, and
each query denoted as A�

B for the ith query in the jth session.
This relationship is represented as follows:

A�
B C �B , where 1 D �, E D ' and �B
 F.

3.3.2 Session Feature
In each search task, the user usually inputs a sequence of
queries to accomplish one task. They may ask the sale
results of various products in different locations or income
of branch offices in different countries. It means that every
session has some kinds of characteristics shown as the
keywords in queries. Many keywords in one session may
produce the characteristics of the session. Our work
focuses on extracting the particular characters as the guide
to make recommendation. Each particular character is
called a session feature denoted as G�. Session features can
express the main purpose of the session. Different sessions
could have similar search tasks (session feature) that
means existing a probability of similarity between session
j and session i which is denoted as H�

B. The research of this
paper is to mine the query logs and extract the session
features from query logs that will be used to recommend
for current users. The symbols will be used in this paper
shown in table 1.

Table 1: Symbol summary

3.4 Feature-based recommendation approach
Query logs are important data sources for query
recommendations. There are two steps in our approach.
First, summarize session features by utilizing past users’
search behaviour. Second, locate similar sessions to match
the current session.

The Query log can be divided into sessions by many
ways such as user id, timestamp and performance in a
period. We combine user id and timeout threshold as a
splitting sessions rule. The timeout threshold is set less
than 12 hours. Thus, the query log is divided firstly into
several parts by user ids, and then compares the
timestamps of two consecutive queries. If timeout of these
two queries exceeds 12 hours, the smaller timestamp of the
query is a splitting point for a new session. Since each
session could include many queries, the theme of a session
is difficult to detect. Hence, we need extract keywords
from each session to represent the features of this session.

Intuitively, for a session �� and current session �� , the
more common keywords exist between �� and Sc the more
 �� is similar to �� . Therefore, the problem of measuring
similarity between �� and �� becomes the calculation of
common features of �� and �� .

Let us look at an example: suppose that G� and GB are
two feature sets of previous sessions �� and
 �B respectively, and �� and �B include the same number
of keywords with current session �� .

Figure 2 shows the graphical example of feature
sets G� , G� and GB . The shadow square box represents
current session G� . GB and G� contain G� , that is, G� =
|G�| I |GB|. Since |G�| > |GB|, the proportion of similarity
between G� and G� (G�/ G�) is smaller than G�/ GB . It is
easily observed that current session �� is more similar to
�B than ��.

Figure 2: example of session feature

Measure session feature. Due to find suitable session
to match current session, we need measure session
features. Every session is composed of many SQL queries.
Each query has a select statement as beginning, which
includes several attributes from different tables in
database. We consider these attributes as the keywords of
the query. If a session S consists of a sequence of queries,
the features of session S is the most frequently appeared
keywords in those queries.

A tuple is one of the combinations from keywords in a
query. We assume that the probability K�(�) represents the
importance of a tuple with keywords, so we have:

K�(�) = 2 × 'L
ML

+ (1 4 2) × '�
M�

Where i denotes the number of keywords in tuple t; 'L
and '� stand for the number of tuple t appearing in the
query logs L and session S respectively; ML and M� denote
all tuples in L and S. The value of the moderator 2
 [0,1]
determines which approach is more favourable when
computing the session features. If 2 = 0, only user session
information will be taken into account when measuring
session features, That is, the content-based filtering
method is used. When 2 = 1, the collaborative filtering
approach is applied to measure probability of tuple t. Any
value of 2 in an acceptable range allows us to adjust more
importance to either side. This adjustment can be useful
for two reasons. First, NO

PO is able to find the important tuple
that most users are interested in, but it cannot represent if a
tuple has high frequency in the session instead of the query
log. We do not want to exclude from unimportance tuples
that seem to explain the purpose of session. Second, a
particular search task in each session usually requests
some typical tuples to expand on the following search task.

L Query logs
 �� A sequence of queries entered by user i
t A tuple of keywords

A�
B ith query of the jth session

H�
B similarity between session j and session i

G� Session feature

 G�
 GB G�

CRPIT Volume 124 - Database Technologies 2012

84

In other words, the tuple with high hits may have ability to
predict what kinds of purposes with search task in this
session. High hits have different means when they
appeared in the query log and sessions, which represent a
common view and an individual view respectively. The
action of 2 is used to balance these two views.

The number of tuples generated from a query is the all
combinations of keywords in the query. For example, a
query q contains three keywords q = {k1, k2, k3}, all
combinations of k1, k2, k3 make the set of tuples of q as
follows:

��!"#� = {(�Q), (�R), (�T), (�Q, �R), (�Q, �T),
(�R, �T), (�Q, �R, �T)}

Where each element in the above combination set is
called a tuple. K�(�) is a threshold used for determining the
important tuple in a session. If K�(�) exceeds the threshold,
the tuple is important in the session. It can be represented
as one of session features, such as G� = {(�Q), (�Q, �T)}.
From the result of our experiments, our approach can
extract session features effectively which match the
purpose of each session.

Weight of tuple. As a set of session features, each
feature can be modelled as a weight in the session.

Definition 1: Let the tuple frequency be the number of
occurrences of tuple in the session with the notation
��#A(���) . The weight of tuple frequency UG(G, �)
measures the relationship of a tuple t with regard to the
given session feature F.

There are many ways to measure the weight of each
tuple. For example, we can simply define that as the tuple
frequency against the total number of occurrences of all
the tuples in the session. In this paper, we utilize a formula
from the Cornell SMART system to normalize the tuple
frequency. The formula is described as follows:

UG(G, �) = 1 + "&V W1 + "&V W��#A(���)XX

Computing YZ
\ . The next step in framework is

computing the similarity and recommendation value.
Similarity of two sessions is computed by session feature.
In this work, we adopt the method of cosine similarity that
measures the similarity between two sessions and takes
values in [0,1].

Definition 2: Given two clustering session features
G� = {�Q,� �R � , … , ��,� } and GB = {�Q,

B �R
B , … , �5B } , the

overlapping tuples between G� and GB can be represented
as G� I GB = {�Q̂ , �R̂ , … , �_̂ } , where �_̂ denotes the
common tuple in G� and GB . If the session is the current
session, the session feature G� includes all tuples by
combinations from keywords. Here, we have:

H�
B = � UG(G�, �_̂)_ ` UGaGB, �_̂ b

c� UGaG�, ��,� bR
� ` c� UGaGB, �5B bR

5

If there is a highest score of H�� for current session ��, it
implies that �� has the similar search task with �� .

Therefore, �� can be recommended to �� for forthcoming
queries.

The users usually input a series of queries when they
finish one job task. The purpose of their task will be
clearer when more queries are performed. During the
processing current user’s queries, the system keeps the
update of suitable recommendations. However,
recalculating the recommendations takes much time
because the query log may have large number of sessions.
Therefore, our system generates top-k recommendations to
provide multiple choices for the current user. When the
user inputs successional queries, the system generates new
recommendation from multiple choices of top-k
recommendations rather than recalculation from query log.
This top-k recommendation set is computed by the H�

B, and
is defined as follows:

�$'�(H��) d �e�#�e&"%
The H�� has high rank if it is larger than the threshold.

The top ranked sessions are returned as the
recommendation set.

4 Experimental evaluation
In this section, we developed a virtual query interface
system which realizes our framework and analyse actual
data, as well as present experimental results of using our
system.

4.1 Experimental data and methodology
The experiment was carried on a Core 2 Duo 2.4GHz
computer with Window 7 Ultimate and 2 GB of main
memory. All system was implemented in Java.

The system adopted the data of query log from sky
server database. The query log recorded queries from year
2007 to 2010 and its size is 1.3 TB. We separated the query
log into 4000 sessions by different IP addresses. We chose
55 sessions to construct current sessions and the number of
queries in each session are no more than 6. For the rest of
sessions, firstly, they were divided into 10 equally sized
subsets as previous session logs. Secondly, we partitioned
the rest of sessions into 10 different sized subsets, and the
number of session in next subset is larger than the
preceding subset. In order to analyse the performance of
our framework, we use a smaller set of queries in each
current session. For example, for each current session with
n queries, we extracted n-1 queries in each current session
to build test set.

We evaluate the accuracy to analyse the effectiveness
of each recommended sessions, using the following
metrics:

$

��$
f = |�� I ��|
|��|

Where �� and �� represent all queries of keywords in a
session. In our test, we have analysed all subsets and
reported the best result in the experiments. Unless
otherwise noted, we set 2 = 0.6.

4.2 Result
Our first experiment evaluates the efficiency of the
proposed approach to make the recommendations. Figure

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

85

Figure 3: efficiency analysis

3 shows the performance of test sessions according to the
size of query log. The measure of this experiment includes
computation of similarity with current session and ranking
the candidates. The features of sessions are processed on
off-duty time so that the extraction time does not count in
efficiency analysis.

Figure 4: accuracy distribution

As can be seen from Figure 3, it is obvious that the
trend of execution time is upwards with the log size. The
execution time is acceptable with the size of 4000 sessions
in query log.

In the next experiment, we evaluate the effectiveness of
our approach. Figure 4 indicates the comparison of best
performance between our approach and the memory-based
approach (Breese, Heckerman and Kadie 1998). 55 current
sessions have been tested among 10 equally sized subsets,
which ranked by accuracy in decreasing order. It can be
seen from Figure 4, 70% current sessions achieved high
performance by our approach (around 40 current sessions
have above 0.6 accuracy among total 55 current sessions
tested). The system can provide valuable
recommendations for most current sessions. There are two
zero accuracy results among all tests, that is, the system
may have 3.6% failure rate to predicate intention under
some circumstances. We have also manually reviewed the

generated data for the validation. No recommendation
sessions have been obtained if low similarity H�

B has been
calculated between the current session and past sessions.
For memory-based approach, only 55% current sessions
can get valuable recommendations, and most of accuracy
is lower than our approach (refer to the dot line in Figure
4).

Figure 5 describes an average accuracy of our approach
and the memory-based approach from total 55 current
sessions tested. We can find that the accuracy of our
approach is always higher than the memory-based
approach. The figure shows that the accuracy slightly
increases with the log size. The Figures 4 and 5
demonstrate that most current sessions can obtain a
successful recommendation by our approach with
accuracy above 0.6 from the query log.

Figure 5: average accuracy

5 Conclusion
To sum up, our feature-based recommendation framework
highlights on personal intention. It can summarize the
important information and filter out unuseful data to build
session features from previous sessions. The experimental
evaluation proves our framework is efficient and effective.

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

(m
s)

log size(%)

0

0.2

0.4

0.6

0.8

1

1 7 13 19 25 31 37 43 49 55

Our
approach

Memory-
based
approach

current session

ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

Our
approach

Memory-
based
approach

ac
cu

ra
cy

log size(%)

CRPIT Volume 124 - Database Technologies 2012

86

Our proposed approach is promising and has great
potential to apply in real-life.

6 References
Dinter, B., Sapia, C., Hofling, G. and Blaschka, M. (1998):

The OLAP market: state of the art and research issue.
Proc. DOLAP’98, ACM First International Workshop
on Data warehousing and OLAP, Bethesda, Maryland,
USA.

Sapia, C.(1999): On modelling and predicting query
behaviour in OLAP systems. Proc. Int’l workshop on
design and management of data warehouses
DMDW’99, Swiss life.

Giacometti, A., Marcel, P. and Negre, E. (2008): A
framework for recommending OLAP queries. Proc.
DOLAP’08, ACM 11th international workshop on data
warehousing and OLAP, New York, NY, USA.

Sarawagi, S. (2000): User-adaptive exploration of
multidimensional data. Proc. VLDB, 307-316.

Baeza-Yates, R., Hurtado, C. and Mendoza, M. (2004):
Query Recommendation Using Query Logs in Search
Engines. Proc. Springer international workshop on
clustering information over the web (clustweb, in
conjunction with EDBT): 588-596, Creete.

Giacometti, A., Marcel, P., Negre, E. and Soulet, A.
(2009): Query recommendations for OLAP discovery
driven analysis. Proc. ACM twelfth international
workshop on data warehousing and OLAP DOLAP’09,
New York, NY, USA.

Adomavicius, G. and Tuzhilin, A. (2005): Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. Proc. IEEE
Transactions on Knowledge and Data Engineering
17(6): 734-749.

Breese, J., Heckerman, D. and Kadie, C. (1998): Empirical
analysis of predictive algorithms for collaborative
filtering. Proc. Fourteenth Conference on Uncertainty
in Artificial Intelligence, San Francisco, CA, 461(8):
43-52.

Billsus, D. and Pazzani, M. (1998): Learning collaborative
information filters. Proc. International Conference on
Machine Learning, Morgan Kaufmann, 54:48.

Chatzopoulou, G., Eirinaki, M. and Polyzotis, N. (2009):
Query recommendations for interactive database
exploration. Proc. Springer-verlag: 3-18.

Herlocker, J., Konstan, J., Terveen, L. and Riedl, J. (2004):
Evaluating collaborative filtering recommender
systems. Proc. ACM Transactions on Information
Systems, ACM, 22(1): 5-53.

Fonseca, B., Golgher, P., Moura, E. and Ziviani, N. (2003):
Using Association Rules to discover Search Engines
Related Queries. Proc. First latin American web
congress, IEEE Computer Society: 66-71.

Zhang, Z. and Nasraoui, O. (2006): Mining Search Engine
Query Logs for Query Recommendation. Proc. 15th

international conference on World Wide Web, ACM:
1039-1040.

Wen, J., Nie, J. and Zhang, H. (2001): Clustering user
queries of a search engine. Proc. 10th international
conference on World Wide Web, ACM: 162-168.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999): Modern
Information Retrieval. Proc. Addison Wesley, 463(1):
513.

Belkin, N. and Croft, B. (1992): Information filtering and
information retrieval: two sides of the same coin. Proc.
Communications of ACM, 35(12): 29-38.

Yu, K., Xu, X., Tao, J., Ester, M. and Kriegel, H. (2002):
Instance selection techniques for memory-based
collaborative filtering. Proc. second SLAM
international conference on data mining.

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

87

CRPIT Volume 124 - Database Technologies 2012

88

