Fighting the Student Dropout Rate with an Incremental
Programming Assignment

Tuukka Ahoniemi

Essi Lahtinen

Teemu Erkkola

Institute of Software Systems
Tampere University of Technology,
PO Box 553, Tampere, Finland

{tuukka.ahoniemi, essi.lahtinen, teemu.erkkola}@tut.fi

Abstract

Large programming assignments can become huge ob-
stacles to novice programmers, especially as teach-
ers usually lack the resources to guide students suffi-
ciently in-depth for the whole time. Changing the as-
signment to an incremental one consisting of smaller
phases built on top of one another helps students to
start in time, stay in time, and avoid succumbing to
the huge workload.

We made the large assignment in a programming
course incremental and got positive results when mea-
suring the students’ submission behaviour and their
opinions on the phasing. The students felt that they
were aided instead of just given more deadlines. The
students willingly took advantage of our approach and
really appreciated it. This article explains how we
made our incremental assignment, how students used
the phases, and how they felt about them.

Keywords: Novice programmers, programming edu-
cation

1 Introduction

The bigger the programming assignments, the harder
it is for students to grasp them. This is partly because
novice programmers have difficulties in identifying the
big picture and they approach the program line by
line (Robins et al. 2003, Soloway & Spohrer 1989).
The students may know the required programming
concepts, but lack the skills to apply them (Lahtinen
et al. 2005, Winslow 1996).

Novice students often also lack experience on the
overall programming process, as they have only had
experience in writing code fragments. They do not
acknowledge the time required for proper testing and
debugging, nor possibly even how to test or debug at
all (Soloway & Spohrer 1989).

Teaching programming in general can be seen as
an incremental process (Robins et al. 2003) — in a
way it is natural to base new information on top of
old. Some industrial programming schemes imple-
ment this idea in a systematic incremental approach.

In response to the known problems we decided to
apply a similar incremental approach in a novice pro-
gramming course that has a rather large programming
assignment. We also wanted to study its effects on
the dropout rate, the students’ behaviour in applying
the somewhat optional phases, and their perception
of the incremental assignment and its workload. To

Copyright (©2008, Australian Computer Society, Inc. This pa-
per appeared at the Seventh Baltic Sea Conference on Com-
puting Education Research (Koli Calling 2007), Koli National
Park, Finland, November 15-18, 2007. Conferences in Research
and Practice in Information Technology, Vol. 88. Raymond
Lister and Simon, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

address these questions, we conducted surveys during
the course.

In this paper we describe the problems encoun-
tered in our introductory programming course related
to its relatively large programming assignment, and
our solution of an incremental assignment. Then we
introduce the ways we have measured the effectiveness
of our experiment and present both the quantitative
and qualitative results. The results are then discussed
and conclusions are drawn.

2 The Course Setting

Our target course is the second introductory-level
course in programming at Tampere University of
Technology held in the spring semester for first-year
students. After the course, which involves a few small
programming assignments and one large one, students
should know the very basics of object-oriented pro-
gramming using C++.

2.1 The problems of the large programming
assignment

The large programming assignment in our course tests
the skills learnt through the whole course. It is large
so that students can see the real benefit of using
classes, get a grasp of the whole software process,
and gain programming experience. The assignment
should require intensive work over at least a couple of
weeks, with careful design and testing also involved.
The assignment is evaluated with automatic assess-
ment, and when it is sufficiently correct, a teaching
assistant manually gives it a summative grade.

Despite our explanations and urging, students
have had a tendency to ignore the large size of the
assignment. We have identified the following prob-
lems caused by this:

e Starting way too late

e A very hastily done implementation which
merely works, but the student thinks it is per-
fect

e A very hastily done implementation which the
student knows not to be adequate, but says
he/she lacked the time to make it better

e A big dropout rate in the beginning (they don’t
know where to start) and in the last few days
(they cannot get it working)

e Multiple desperate student requests for help in
the last days before the deadline

e Many ‘extratimers’ (we have had a policy of giv-
ing few days’ extra time with a grading penalty)

e Much negative feedback on the assignment size

We offer constant assistance throughout the
course. As the students with most problems have
usually started working too late, they do not take ad-
vantage of this support early enough.

To ease the start and guide the students to im-
plement correctly designed solutions, the assignment
has always begun with a design phase. Before they
start programming the students have designed the
classes/modules thoroughly, receiving feedback from
a teaching assistant. After the design phase the stu-
dents have had at least six weeks to implement the
program. This has resulted in the problem that not
all students have understood the need to be working
bit by bit for the whole six weeks.

2.2 Incremental Spring

Semester 2007

Assignment in

To tackle the big problems we have faced with our
assignment, we decided to apply the idea of building
the program incrementally. The design phase was left
as is, but the actual implementation part was divided
into four incremental phases and a final submission
that corresponded to the only submission of previous
years.

The assignment description was released earlier, as
a whole, describing what was to be done during the
whole assignment. We also provided an additional
phase submission specification which described what
was to be implemented in each phase.

We designed the assignment to be easily divided
into phases so that the next phase would require a
working implementation of the earlier parts. The
phases were still separate enough to be tested and de-
bugged separately. As we wanted students to find the
phases helpful rather than just adding further dead-
lines, we ruled the phases compulsory to the extent
that skipping two phases in a row was not allowed
(meaning that at least two phases were obligatory).

To encourage the students and to monitor their
progress we gave them the opportunity to use auto-
matic assessment for the phases. The requirements
for these automated assessments were not as strict
as those of the final submission, but missing a phase
would give a student the extra responsibility of thor-
oughly validating the correctness of that phase. The
different phases are explained in more depth in the
following.

2.2.1 The phases

As in previous years, the task began with the design
phase.

The first and second implementation phases held
nothing actually new for the students. The first phase
was only the start of the program, that is, the parsing
and validating of the given program arguments. The
second phase was to implement a completely func-
tional command shell for the program so that it would
understand which of the commands (and their argu-
ments) are legal and which are not. We wanted the
students to have a working command shell at this
point to provide the means for testing the further
functionality of the program.

The third implementation phase had the first
tricky elements of the assignment. The main focus
of this phase was on configuration file parsing. A
completely correct file parser required precision and
labour, and was supposed to construct objects of the
used classes. The classes did not need to be fully
implemented in this phase but the initialization and
output functions were required to work correctly.

The fourth implementation phase was basically to
complete the program. Though it may seem that this

would be the largest phase, this was actually the most
convenient one. If the third phase worked (the classes
were instantiated correctly) all that remained to stu-
dents was the implementation of the rest of the meth-
ods — which they had already designed in the design
phase.

The final submission had no more functionality
than the fourth implementation phase. The auto-
matic assessment tool was now testing each part of
the complete program, which was also graded manu-
ally by a teaching assistant. The final submission also
included also a documentation of the program. Only
the design phase and the final submission contributed
to the grade for the assignment.

3 Measuring the Effectiveness

To measure the effectiveness of the approach we col-
lected data on all student submissions, presented a
short survey after each phase, and at final submission
time collected open feedback about the assignment as
a whole.

When a student had passed the automatic assess-
ment on a phase, the system asked the student the
following multiple-choice questions:

e How easily did you manage through this phase?

e How clear is the implementation of the next
phase for you right now?

4 Results

In this section we present results on the effects of
our approach: quantitative results from submission
statistics and student questionnaires and qualitative
data from student feedback.

4.1 Submission statistics

The data collected from submissions give the total
number of submissions, which is compared to the
data from the previous year. For this year we have
also derived ‘phase paths’ which show more precisely
how students completed the phases. The average
times of the submissions in each phase are also
presented.

The dropout statistics

For measuring the student dropout rate during
the large programming assignment (not during the
whole course) we compared the number of students
who attempted the design phase with the number
who made final submissions. We also calculated
the number of extratimers (students who submitted
late). The results are shown in Table 1.

Table 1: Dropout statistics from 2006 and 2007

2006 | 2007
Students in the design phase 240 196
Final submissions 183 143
of which extratimers 73 6
Percentage of dropouts 23.7% | 27.0%
Percentage of extratimers 39.9% | 4.2%

The results show that the plain dropout rate was
not reduced at all, but actually increased slightly.
However, the number of students who submitted late
not only decreased but fell almost to nothing.

The ‘phase paths’ taken by students were analyzed
in order to distinguish different student behaviours
and how successful those behaviours were. Over 75%

of the students completed the first phase, which is
already a great improvement, because it means that
most of the students began implementing their pro-
gram on time. Over 80% of these students passed the
final submission. Only 47% of those who did not pass
the first phase passed the final submission.

The second phase was seemingly as easy as the
first one, as an almost equal number of students com-
pleted it. However, 83% of students who completed
this phase, regardless of how they did in the first
phase, went on to complete the entire assignment.
This clearly supports our assumption that a phased
exercise generally makes students start their work ear-
lier, and that those who do so are much more likely
to finish the work they have already started.

The third phase was without a doubt the hardest
phase, as only 27% of all students submitted a work
that passed it. Of these 27%, 64% passed every phase
and the final submission.

The most popular paths through the phases were
to complete every phase but the third (25.9% of the
students) and to complete every phase (17.1% of the
students). Surprisingly, the path that seemed to be
of least work — completing only every other phase —
attracted only 7.3% of students.

The more the students completed phases, the
more likely they were to do the next phase. This is
best seen in the case of the third phase. Roughly
half the students who had completed both first and
second phases also completed the third phase. Of
those who had completed only the first phase, a
little over one third completed the third phase. Of
those students who had completed the second phase
but not the first, only about 11% completed the third.

Times of the submissions

In addition to the lower number of extratimers,
students generally submitted their work earlier than
usual. Table 2 shows that although the first phases
were easier, students still clearly began working on
them earlier than the last few days before deadline.
Even the hardest phase — the third — was on
average submitted more than 30 hours before the
deadline. In comparison, the non-phased assignment
of 2006 had a submission time average of 25 hours
before deadline.

Table 2: Students’ average submission times (hours
before deadline)
Phase 1 | Phase 2 | Phase 3 | Phase 4 | Final
78 55 32 46 67

4.2 Student feedback
Recognizing the hard part

As seen in Figure 1, after the first phase stu-
dents generally knew what they were supposed to do
next. Some of them still had not grasped the entire
exercise description at this point and thus were not
sure if they understood it correctly. After the second
phase they realized that they had not done anything
as big as the third phase before, and this is reflected
in the greater uncertainty in the figure. However,
after the third phase most of the students had a very
clear idea of how to continue. These results are along
the same lines as the results shown by the phase
paths in terms of the difficulty of the phases, and
reflect directly on the smaller number of submissions
in the third phase.

175 M can't say

150 O unclear

125 Ol clear

100

75

507 1

25 — —

0 T T T

Phase Phase Phase Phase
1 2 3 4

Figure 1: Students’ answers to the question ”"How
clear is the implementation of the next phase for you
right now?” after each phase

Effect on students’ workload

Only 7% of the students thought that phasing
increased the workload “a lot more” or “some more”.
In general the students didn’t feel that their workload
increased much — 21% thought that it increased a
little — whereas 40% of the students experienced the
phasing as guidance, hence lowering the amount of
work required.

Open feedback answers

We had 124 final surveys to analyze. Of these,
51 made no reference to the incremental assignment,
leaving 73 that made some mention of the phasing.
The results are shown in Table 3.

The open feedback results clearly show that the
experience was really positive for the students. They
felt that the phases were a huge aid for them in forcing
them to start early enough with a good schedule and
in helping to divide the assignment into reasonable
parts. Most of the student complaints were about
the uneven sizes of the phases — the third phase was
surprisingly large. None of these students concluded
that the incremental assignment was a bad thing.

5 Discussion
Increasing the odds to success

An early start to the work seems to be a strong
indicator for passing the assignment. Compared to
our old system, ‘starting early’ means to start with
phase 1 instead of waiting until phase 2. This seemed
to be more attractive than to ‘start working weeks
earlier on a huge amount of work’. The students also
started working early on the subsequent phases. One
reason for this might be that the students have a
clearer picture of what they are doing so it is easy to
start well before each phase deadline. Anyway, some
sort, of change in attitude appears to have happened,
since there were far fewer students who submitted in
extra time.

Missing the first (or any) phase worked as a con-
crete message to students that their work was not on
schedule. Because they had slacked off during the
first phase, they now had to double-time to catch the
others during the second phase. So although no ac-
tual penalty was given for missing a phase, the sheer
need to work harder and faster may have done the
job. We also emphasized in the lectures that these
phases provide a schedule that we find realistic — in
our opinion, missing a phase means you are late.

By phasing the exercise we were able to isolate the

Table 3: Results from the open feedback (n=73)

Overall evaluation on the incremental assignment mentioned really good 51
Overall evaluation on the incremental assignment mentioned fine / ok 4
Overall evaluation on the incremental assignment mentioned bad 0
Thanked for forcing to begin early and/or providing a ready schedule 42
...and in addition thought that would not have survived without the forcing 8
Thanked for providing ready-made division of the assignment 11
Did not like the ready-made division 1
Thanked for the ability to automatically test program in each phase 7
Complained about the uneven sizes of the phases 16
Complained about the schedule of the phases 8

harder part and let the students handle it separately.
After the hard part the students knew how to finish
the assignment. On the other hand, before the dif-
ficult phase they had already completed half of the
assignment. Quitting at that point would be a pity.

One of the key aspects to a phased exercise is the
way a student views it. As students tend to pick the
path of least work, the success of phasing can be de-
termined by how students take advantage of the sys-
tem. In our case a very small percentage of students
did only the minimum required submissions. As stu-
dents themselves wrote in open feedback, phasing was
for their help and they were pleased to take advantage
of it.

Some of the students said that phasing actually
increased their workload. This might be because,
as many students confessed in the open feedback,
they completed some of the phase submissions in
such a rush that their result was not suitable as a
basis for building anything new. Thus they had to
refactor major parts of that phase for the next phase,
resulting in excess work just because of additional
deadlines. What these students did not state (and
probably did not know) was that even without the
additional deadlines they would probably have made
many of the same mistakes, and would thus still have
had to fix them before proceeding. Luckily, many
of these students still recognized that they had at
least learned valuable information when doing these
refactorings.

Guiding or restricting?

A single student pointed out that phasing spoiled
the independent design of the program, forcing it
into a single mould. However, the imposed structure
did not differ greatly between the phased exercise of
2006-2007 and the non-phased exercise of 2005-2006.
The actual assignment description was written in a
similar way in both years. The phase description
part of the 2007 assignment consisted mainly of a list
of functionalities required for each phase — exactly
the same things as in the assignment description
— and some phase-specific output strings. The
phases were also quite natural independent parts
of the main assignment description. Therefore the
only significant ‘forced’ parts of the phasing were
starting early and writing the program in a smart,
easily testable way. Students were given the option
of making their own schedule, so this part of the
assignment was in no way forced. The student
might also have meant the elaborate guidance of
the design phase. Good designs meant following the
course teachings in regard to programming style and
forbidden methods; to accept poor designs would
have resulted in bad programming style, greater
dropout rates because of bad design, and even more
whining and complaints. Because of this, students
with bad designs in the design phase were guided
toward the intended solution for their own good.

6 Conclusions

Despite putting in a lot of effort designing and imple-
menting an incremental programming assignment, we
did not manage to lower the actual dropout rate dur-
ing the assignment. However, we did see a dramatic
reduction in the number of students submitting their
work in extra time. The students started and finished
early, and thus with better outcomes. Most students
who dropped out did so during the first two phases.
Thus there were fewer frustrated students who had
worked for weeks without completing the assignment.

The students’ opinions on how the incremental as-
signment affected their workload were also encour-
aging. Only a minority perceived that the phases
increased the workload, and many students thought
that the guidance decreased their working hours.
Overall the feedback about the incremental assign-
ment was really positive and the students seemed to
latch on to the phase deadlines instead of seeing them
as obligatory extra work.

Building an incremental assignment requires addi-
tional work from the teacher. The phases should be
designed carefully to be logical parts in a reasonable
and logical schedule. An ‘easy start’ helps the stu-
dents to start working early but the following phases
should not be surprisingly larger then the prior ones,
as our third phase was. The students should feel the
phases are for their help — as indeed they are.

7 Acknowledgments

Nokia Foundation has funded part of this work.

References

Lahtinen, E., Ala-Mutka, K. & Jéarvinen, H.-M.
(2005), ‘A study of the difficulties of novice pro-
grammers’, ITiCSE 2005, Proceedings of the 10th
Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education pp. 14—
18.

Robins, A., Rountree, J. & Rountree, N. (2003),
‘Learning and teaching programming: A re-
view and discussion’, Computer Science Education
13(2), 137-172.

Soloway, E. & Spohrer, J. (1989), Studying the Nowvice
Programmer, Lawrence Erlbaum Associates, Hills-
dale, New Jersey.

Winslow, L. E. (1996), ‘Programming pedagogy — a
psychological overview’, SIGCSE Bulletin 28(3).

