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Abstract

Graph drawing is an important area of information
visualization which concerns itself with the visualiza-
tion of relational data structures. Relational data
like networks, hierarchies, or database schemas can
be modelled by graphs and represented visually us-
ing graph drawing algorithms. Most existing graph
drawing algorithms do not consider the size of nodes
when creating a drawing. In most real world applica-
tions, however, nodes contain information which has
to be displayed and nodes thus need a specific area
to display this information. The required area can
vary significantly between different nodes in the same
graph. In this paper we present an algorithm for the
layering step of hierarchical graph drawing methods
that is able to take the sizes of the nodes into account.
It further allows the user to choose between compact
drawings with many temporary (dummy) nodes and
less compact drawings with fewer dummy nodes. A
large number of dummy nodes can significantly in-
crease the running time of the subsequent steps of
hierarchical graph drawing methods.

Keywords: Graph drawing, Graph visualization, Lay-
ering

1 Introduction

Most algorithms for drawing graphs do not consider
the size of nodes when creating a drawing and treat
them as points (for example in (Eades 1984) for force-
directed layouts, in (Sugiyama, Tagawa & Toda 1981)
for hierarchical layouts, and in (Tamassia 1987) for
orthogonal layouts). For real world graph drawing
applications, however, it is almost always essential to
be able to account for different node sizes when gener-
ating a drawing. Examples include the visualization
of UML class diagrams, where nodes can have differ-
ent sizes depending on the number of attributes and
methods, the drawing of program flow graphs with
blocks of different sizes, or the visualization of bio-
chemical reaction networks where the node sizes de-
pend on the underlying biochemical reaction (Fig. 1).

Standard hierarchical graph drawing algorithms
consist of three phases (Sugiyama et al. 1981):

1. The assignment of nodes to layers (layering),

2. The permutation of nodes within layers (crossing
reduction), and
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3. The assignment of coordinates to nodes and bend
points of edges (coordinate assignment).

If node sizes are not taken into account during
this process, the quality of the layout is usually sig-
nificantly reduced when the nodes and edges are ac-
tually drawn, as nodes and edges may suddenly over-
lap, although they did not from the algorithm’s point
of view. If the drawing is scaled to avoid this effect
the drawing usually loses compactness, thus violating
another important criteria for a good graph draw-
ing (see (Di Battista, Eades, Tamassia & Tollis 1999)
and Fig. 2 and 3. Note that Fig. 2(b), where the
chain of small nodes is placed beside the large nodes,
shows a more compact drawing of the same graph as
in Fig. 2(a)).

It is easy to consider the width of nodes in hier-
archical drawings and this is therefore implemented
in many algorithms (Gansner, Koutsofios, North &
Vo 1993, Koutsofios & North 1993, Messinger, Rowe
& Henry 1991, North & Woodhull 2002, Rowe, Davis,
Messinger, Meyer, Spirakis & Tuan 1987, Sander
1999). No simple and good methods for considering
the exact heights of nodes in hierarchical drawings
are known, however. Consequently, most methods
which consider node heights at all only apply very
näıve heuristics, for example assigning the maximum
node height to all nodes. These näıve heuristics of-
ten lead to unnecessarily large drawings, as can be
seen, for example, in Fig. 4(b). North and Woodhull
introduce a more sophisticated heuristic in (North &
Woodhull 2002). A discussion of their approach in
respect to the method presented in this paper can be
found in Sec. 3.

In this paper, we present an algorithm for the lay-
ering step of hierarchical graph drawing algorithms
which takes the height of nodes into account. The
algorithm has an inherent trade-off between the area
of the drawing and the number of additional dummy
nodes. A large number of dummy nodes can signif-
icantly increase the running time of the subsequent
steps of hierarchical graph drawing methods. There-
fore our algorithm allows the user to choose between
compact layouts with many dummy nodes during the
subsequent steps or less compact layouts with fewer
dummy nodes.

The paper is structured as follows: In Sec. 2 we
discuss possible approaches to considering different
node sizes in graph drawings. Some terminology and
the special case of handling node sizes in hierarchical
graph drawing algorithms are described in Sec. 3. Our
new method is presented in Sec. 4. Finally, in Sec. 5
we give some experimental results.
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Figure 1: Two application examples: Visualization of
(a) a small biochemical reaction network and (b) a
program flow diagram.
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Figure 2: Two hierarchical drawings of the same
graph: (a) using a standard hierarchical graph draw-
ing algorithm (Sugiyama et al. 1981), (b) a more com-
pact drawing.

2 General approaches to considering node
sizes

There are three main approaches to considering node
sizes in graph drawing methods:

1. Enlarging all nodes to the size of the largest node.
Subsequently the modified graph is drawn using
standard algorithms for the layout of graphs with
uniform node sizes. Early graph drawing meth-
ods (Batini, Furlani & Nardelli 1985) followed
this idea.

2. Post-editing the drawing. First, the nodes are
considered as being points and placed by a stan-
dard graph drawing algorithm. In the second
step they are enlarged to their original size. Fi-
nally, the drawing is modified in such a way that
all node intersections are removed while preserv-
ing the relative node positions (Misue, Eades, Lai
& Sugiyama 1995) (Fig. 3(a)-(c)).
This approach often produces visualizations
which do not respect important aesthetic crite-
ria, such as minimizing edge-node crossings (see
Fig. 3(c)). A similar method where nodes are en-
larged to the size of the largest node; placed by
a graph drawing algorithm; scaled down to their
original size; and finally, rearranged in a more
compact way while preserving the mental map
has the same disadvantage.

3. Considering the real size of each node using
improved or new graph drawing algorithms.
There are specialized solutions for some classes
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Figure 3: Post-editing of a drawing. (a) Initial draw-
ing, (b) reduction of the node sizes to points and
placement by a hierarchical layout algorithm, (c) en-
largement of the nodes to their original sizes and men-
tal map preserving rearrangement. This drawing con-
tains node-edge-crossings and is taller than necessary.
(d) A better drawing of the same graph.

of layout algorithms, such as orthogonal lay-
outs (Biedl, Madden & Tollis 1997, Di Battista,
Didimo, Patrignani & Pizzonia 1999, Fößmeier
& Kaufmann 1997), drawings of trees (Bloesch
1993), and force directed methods (Gansner &
North 1998). Existing solutions for hierarchical
layouts are discussed in Sec. 3.

3 Considering node sizes in hierarchical lay-
outs

We consider directed, connected, acyclic graphs G =
(V,E). Let pred(v) be the set of predecessors and
ind(v) be the number of incoming edges of a node v ∈
V . A layering (L1, ..., Ll) of G is an ordered partition
of V into non-empty layers such that adjacent nodes
are in different layers. Li = (v1, . . . , vk) is the i-th
layer of G and L(v) = i if v ∈ Li. The span of an
edge (u, v) ∈ E is given by S((u, v)) = L(v) − L(u).
A layering is called simple if the span of all edges is
one.

In hierarchical graph drawings the nodes are
placed on parallel lines corresponding to the layer-
ing (L1, ..., Ll). Without loss of generality, the hi-
erarchy is drawn top-to-bottom and the layers are
horizontal lines. In a drawing of a graph, each
node v is represented by a rectangle with height
h(v) and width w(v). The center of the rectan-
gle is given by (x(v), y(v)). The upper bound-
ary of the rectangle y(v) − h(v)/2 is denoted by
yu. The lower boundary y(v) + h(v)/2 is de-
noted by yl. Each edge e is represented by a
polyline p(e) = (x1, y1), (x2, y2), ..., (xn, yn) where
(x1, y1), (x2, y2), ..., (xn, yn) are the bends of the poly-
line.

A layering is associated with the y-coordinates of
nodes such that usually all nodes of a layer have the
same yu-coordinate. There are different ways to com-
pute the y-coordinates of nodes in hierarchical graph
drawings in the presence of large nodes:

Definition 1 Given a graph G = (V,E) and the
minimum distance between nodes md, a layering of
G is called:
1. size-free,

if ∀(u, v) ∈ E : y(u) + md ≤ y(v) (Fig. 4(a))
2. maximal,

if ∀(u, v) ∈ E : yu(u) + hmax + md ≤ yu(v)
with hmax = max{h(w) |w ∈ V } (Fig. 4(b))

3. layer-maximal,
if ∀(u, v) ∈ E : yu(u) + hl + md ≤ yu(v)
with hl = max{h(w) |w ∈ V, yu(u) = yu(w)}1

(Fig. 4(c))
4. size-true,

if ∀(u, v) ∈ E : yu(u) + h(u) + md ≤ yu(v)
(Fig. 4(d))

A layering is called minimal if max{yl(v) | v ∈ V } is
minimal and ∀v ∈ V : yu(v) ≥ 0.

Common algorithms for hierarchical graph draw-
ings do not consider node sizes (size-free layer-
ing) (Sugiyama et al. 1981), or compute maximal
(Carpano 1980, Koutsofios & North 1993, Rowe
et al. 1987), or layer-maximal layerings (Gansner
et al. 1993, Messinger et al. 1991, Sander 1999). If
the node sizes are given, these three layerings can be
easily transformed into each other. We will call these
layering approaches global layering. Global layering of
graphs tends to produce large drawings. In contrast,
size-true layering leads to compact drawings, as can
be seen by comparing Fig. 4(b,c) with Fig. 4(d). In
the latter case, the assignment of nodes to layers de-
pends not only on the topological sorting of G, but
also on the individual height of each node. We call
this solution local layering. North and Woodhull pre-
sented an algorithm for computing size-true layerings
(North & Woodhull 2002) where a new layer is intro-
duced for each yu and yl. In a subsequent step nodes
and edges crossing one or more layers are split into
chains of nodes to obtain a simple layering.

Local layering can lead to new problems:

1. Crossings between nodes and edges can be un-
avoidable, as can be seen in Fig. 5. However,
even with such crossings, a compact visualization
may be easier to understand than a conventional
hierarchical drawing because the short edges in
the compact drawing are easier to follow than
long edges.

2. The minimum distance between nodes can no
longer be guaranteed by an additional distance
between layers. To avoid problems when placing
a node, it is therefore necessary to consider the

1The variable hl is the height of the largest node in the same
layer as node u.
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Figure 4: Different approaches to place nodes into
layers and to compute their y-coordinates. While the
number of layers is the same for (a)-(c), it is often
higher for size-true placement (d).

minimum distance md to all nodes of the previ-
ous layer. This can be done by adding md to the
height of each node. Nodes which could other-
wise violate the minimum distance are thus en-
larged into the next layer and consequently rep-
resented by a dummy node in that layer. The
dummy node prevents other nodes from occupy-
ing the space underneath the large node.

3. Local layering can result in many additional
layers and therefore many dummy nodes (see
Fig. 6). Even if nodes differ only slightly in their
yu/l-coordinates this introduces two new layers
for each node. Note that in Fig. 6 only new lay-
ers for yu-coordinates are shown. Many layers
have a negative effect on the running time of the
subsequent steps (crossing reduction, computa-
tion of x-coordinates). Therefore the number of
layers should be as small as possible.

The layering step in (North & Woodhull 2002) pro-
duces up to two layers for each node. A solution
where only yu values result in layers (as shown in

Figure 5: Three different drawings of the same graph.
They represent all essential permutations of nodes
(Note, that the drawing for the node order 1-2-3 has
the same unavoidable node-edge crossing as the draw-
ing for 3-2-1.). The arrows with white points refer
to unavoidable crossings between nodes and edges
in these compact drawings. Note, that hierarchical
graph drawing algorithms draw edges strictly down-
wards, therefore it is not possible to avoid the marked
node-edge crossings by routing the edges around the
nodes.

Fig. 4(d) and Fig. 6) reduces the number of layers,
but can introduce unnecessary crossings and there-
fore needs care during the edge routing or a special
edge routing step, e. g. (Dobkin, Gansner, Koutsofios
& North 1997). However, even this solution usually
results in many layers and a huge number of dummy
nodes. For sparse graphs with 200 nodes, 3000 edges,
and random height of nodes between 1 and 100 an av-
erage of more than 11000 dummy nodes are inserted
into the graph (Fig. 9). In contrast, there is an aver-
age of less than 2000 dummy nodes for these graphs
using layer-maximal layering.

Compact drawings are desirable. However, the ex-
isting solutions for local layering yield a huge number
of dummy nodes and therefore long running times in
the subsequent steps. This motivates the develop-
ment of an algorithm with local layering, where the
user can choose between compact layouts with many
dummy nodes and less compact layouts with fewer
dummy nodes.



Figure 6: Local layering can result in many additional
layers and therefore many dummy nodes.

4 Algorithm

Our algorithm is based on the following idea. The
layers are computed from top to bottom. The yu-
coordinate of a node and its layer are computed to-
gether. Each node is placed only once. During the
placement of nodes in layer Li all possible subsequent
layers are joined into one layer, if they are situated
in a predefined horizontal area. The height of this
horizontal area is given by lheight.

The main loop of the algorithm works as follows
(Fig. 7 and Fig. 8): We assume that we have al-
ready placed the nodes of the layers L1 to Li−1 and
determined the y-coordinates of these layers. We
further assume that we have determined all nodes
which should be placed on layer Li, as well as the
y-coordinate of layer Li. Now we do four things:

1. compute the y-coordinate of the next layer Li+1,
2. place all nodes on layer Li,
3. split nodes which are too tall into two nodes on

layer Li and Li+1, and
4. determine the nodes which have to be placed on

layer Li+1.

Figure 7 illustrates these steps. Figure 7(a) shows
a part of a graph, the three top nodes have to be
placed on layer Li. Figure 7(b) displays the start sit-
uation; no node is placed. Unplaced nodes are drawn
with dashed lines. Nodes are displayed with their
original height and the additional minimum distance
md in grey.

We use a heap (priority queue) H to store all nodes
of the current layer Li in increasing height. The
smallest node, v, is used to compute the minimal y-
coordinate for the next layer: ymin = yu(v) + h(v).
The maximal y-coordinate for the next layer is given
by ymax = ymin + lheight. Figure 7(c) shows the area
between ymin and ymax in light grey. All nodes which
end in this area are placed completely on layer Li and
deleted from H (Fig. 7(d)). The y-coordinate of layer
Li+1, yi+1, depends on the maximum height of these
nodes, as shown in Fig. 7(e). Each of the remain-
ing nodes v ∈ H is too large and thus split into two
nodes v1, v2 and a connecting edge. Node v1 is placed
on layer Li, h(v1) = yi+1 − yi, h(v2) = h(v) − h(v1).
The node v2 replaces v in the heap H. Note that
the height of all nodes in H is reduced by the same
amount, therefore the order of nodes in the heap is
unchanged. Now all nodes of layer Li are placed.

To place the nodes of the next layer Li+1, we add
to the heap all those nodes which are not in H and
have not yet been placed but all of whose predeces-
sors have been placed. Then we run the loop again
for layer Li+1 (Fig. 7(f)). The complete algorithm is
shown in Fig. 8. The set Vplaced keeps track of which
nodes are already placed and L(v) stores the layer for

(a) (b)

(c)

(d)

(e) (f)

Figure 7: Placing of nodes of layer Li.

each node v. The minimum distance md is added to
the nodes before the algorithm.

Theorem 1 The algorithm computes a layering in
O(|V |2).

Proof The forall loop (lines 1-4) is bound by
O(|V |+ |E|) and the build of the heap in line 6 takes
O(|V | log |V |).

The while loop (lines 11-49) runs at most O(|V |)
times because up to |V | layers can be created (see Fig.
6 for an example).

There is a maximum of |V | nodes per layer, in-
cluding the nodes which might be created by splitting
larger nodes. The inner while loop (lines 24 to 31)
runs at most |V | times. The inner forall loop (lines
35 to 44) also runs at most |V | times as splitting a
node and updating the various data structures can
be done in constant time. Decreasing the counter in
the children of placed nodes does not add to the over-
all runtime, as each edge in the graph is visited only
once and the overall runtime of decreasing counter is
therefore bound by O(|V |2).



1 forall (v ∈ V )
2 Initialize counter in v
3 with number of incoming edges.
4 end forall
5
6 Insert {v | v ∈ V, ind(v) = 0} into heap H;
7 ynext := 0;
8 curLayer := 0;
9 Vplaced = ∅;
10
11 while (H 6= ∅)
12 // Place all nodes which are completely on
13 the current layer
14 curLayer := curLayer + 1;
15 ycur := ynext;
16 v := delMin(H);
17 L(v) := curLayer;
18 yu(v) := ycur;
19 Vplaced := Vplaced ∪ {v};
20 ymin := ycur + h(v);
21 ymax := ymin + lheight;
22 ynext := ymin;
23
24 while (ycur + h(min(H)) ≤ ymax)
25 v := delMin(H);
26 L(v) := curLayer;
27 yu(v) := ycur;
28 forall (u ∈ children(v))
29 decrease counter in u
30 end forall
31 end while
32 ynext := ycur + h(v);
33
34 // Split large nodes (on this and next layer)
35 forall (v ∈ H)
36 In G = (V,E) replace v by v1, v2 and
37 the edge (v1, v2);
38 Vplaced := (Vplaced\{v}) ∪ {v1};
39 L(v1) := curLayer;
40 yu(v1) := ycur;
41 h(v1) := ynext − ycur;
42 h(v2) := h(v)− h(v1);
43 Replace in heap H node v by node v2;
44 end forall
45
46 // Compute other nodes of the next layer
47 Insert {v | v ∈ V, v /∈ H, v /∈ Vplaced,
48 counter(v) = 0} into heap H;
49 end while

Figure 8: Algorithm: Layering

We can determine which nodes we have to add to
the heap (lines 47/48) in O(|V |) by adding all those
nodes whose counter is 0 and which are not placed yet.
Adding a node to the heap takes O(log |V |). As each
node has to be added to the heap only once during
the execution of the algorithm (as nodes created by
splitting are already in the correct order in the heap)
the addition of nodes to the heap does not add to the
overall runtime of O(|V |2). �

The final part of the layering step of hierarchi-
cal graph drawing algorithms is the replacing of each
edge-layer crossings by a dummy node in order to
compute a so called simple layering (not shown in
the algorithm). Note that this step takes O(|V | ∗ |E|)
in both, the conventional layering approaches and our
method. O(|V | ∗ |E|) is also an upper bound for the
number of nodes in the graph G′ = (V ′, E′) after the
layering algorithm, therefore our new algorithm does
not change the overall complexity of the layering step
of the hierarchical graph drawing algorithms.

5 Discussion

Our algorithm can be used to compute a wide range
of different layerings (including the conventional solu-
tions) depending on the value of the parameter lheight.

1. lheight = 0 gives a minimal size-true layering
(Fig. 11(a)),

2. 0 ≤ lheight ≤ max{h(v) | v ∈ V } + md gives
less compact but dummy node reduced layerings
(Fig. 11(b)), and

3. lheight = max{h(v) | v ∈ V } + md gives a layer
maximal layering (Fig 11(c)).

4. A maximal layering can be achieved with
lheight = max{h(v) | v ∈ V } + md and a change
of line 32 to ynext := ycur + lheight.

The parameter lheight has a strong influence on the
height of the drawing and the computation time of the
subsequent steps of the graph drawing algorithm. A
small value of lheight results in many layers (that is,
many dummy nodes and thus long computation times
for the next steps) but a compact layout. A high
value of lheight yields few layers (that is, few dummy
nodes and thus short computation times for the next
steps) but also a less compact drawing. Figures 9
and 10 show some results for example graphs. We
notice a high number of dummy nodes for very small
values of lheight (Fig. 9). However, the height of the
drawing increases only slowly with increasing value of
lheight as shown in Fig. 10. Therefore a small value
for lheight seems to be a good compromise between
the compactness of the drawing and the number of
dummy nodes.

Note that using this layering algorithm requires
special care during the crossing reduction and the co-
ordinate assignment. The crossing reduction has to
guarantee that there are no crossings between parts
of large (split) nodes. Additionally, the coordinate
assignment must assign the same x-coordinate to all
parts of a large node.

This layering algorithm has been implemented
in the Graphlet system (Himsolt 2000) and is used
in BioPath (Forster, Pick, Raitner, Schreiber &
Brandenburg 2002), a system for interactive visual-
ization of biochemical pathways.
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Figure 9: Number of dummy nodes (y-axis) depend-
ing on the value of lheight. The original graphs have
10, 20,..., 200 nodes (x-axis), density 0.15, and ran-
dom height of nodes between 1 and 100. The dia-
grams show the average over 2000 graphs.
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