
Flexible Exclusion Control for Composite Objects

Abdelsalam Shanneb John Potter

School of Computer Science and Engineering School of Computer Science and Engineering

The University of New South Wales The University of New South Wales
 Sydney – Australia Sydney – Australia

 shanneba@cse.unsw.edu.au potter@cse.unsw.edu.au

�Abstract
We present a simple approach for implementing flexible
locking strategies in a system of components, which may
themselves be composite objects. The approach is flexible
in that a developer can defer the distribution of locks in
the system until deployment: the choice of lock type and
granularity may therefore depend on the operating
environment. We only consider exclusion control; this
includes mutexes, read-write locks and read-write sets,
but does not cover state-dependent locking or transaction-
based approaches. In general we express exclusion
requirements as sets of conflict pairs on component
���������	
� ��	�
����� ������������������������������
��

have demonstrated the effectiveness of a general-purpose
exclusion lock that can provide any required exclusion.
We presume knowledge of the dependency between the
interface of a composite object and its internal
components.

This work extends and simplifies the work on exclusion
algebra for composite objects (Noble, Holmes and Potter
����������������� ������������� �	� ��� ��	��� ��	�� ���
����

the control required internally and that provided
externally. This clarifies the role of the so-called upward
and downward mappings of the earlier work. We also
offer a succinct mathematical basis for our model.

Keywords: Concurrency control, concurrent objects,
composite objects, component-based systems, locking
granularity

� Introduction

As programmers, we are imbued with a mind-set attuned
to a sequential model of program behaviour. On seeing a
sequence of code statements, we naturally think of the
effect of this code executing one step after another. Often
the correctness of code depends on this sequentiality.
When producing code that will operate in a multithreaded
environment in which there are concurrent threads
operating on a shared memory space, we need to prevent

Copyright �� ���!�� "�	�������� #��$����� ������%�� &���� '��	�
paper appeared at the ��th Australasian Computer Science
��������	�
���
�������
 The University of Newcastle,
Australia. Conferences in Research and Practice in Information
'������� %��(����)*��(��+	��,���-Castro, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

interference between concurrent threads potentially
operating on the same data, that is, we need to guarantee
thread-safety for our system.

In order to provide thread-safety for software
components, the simplest approach is to force mutually
exclusive access to the component interface. For
example, in Java, we can declare the methods of a class to
be synchronized, which has the effect of blocking calls on
an instance of that class, whenever another thread has an
active method call on the same object. The apartment
model of COM also provides this ability to force a whole
component to be singly threaded. However forcing single
threadedness at a high-level may unnecessarily limit
concurrent activity, which then restricts system
responsiveness or efficiency in a multiprocessor
environment.

To increase the potential for concurrent activity, we can
adopt two approaches. First we can move the controls
inside the components, so that they are closer to the
critical sections of code where the sharing violations may
occur. Second we can adopt a finer degree of control by
enforcing pair-wise exclusion on conflicting method
calls, such as with read-write controls. In this paper we
only consider exclusion control; this includes mutexes,
read-write locks and read-write sets, but does not cover
state-dependent locking or transaction-based approaches.
This second choice also presumes some knowledge of the
internal implementation of the component: we need to
know the conflicts between the different methods of the
interface. We can of course adopt both of these
approaches simultaneously, and provide finer grain
locking internally rather than at the external interface.

The contribution in this paper is to provide a simple
approach to reasoning about the degree of exclusion
control required by a particular component when placed
in a particular operating environment in which the
potential for concurrent calls on the component is known.
Components may provide their own locks at their
interface. This reduces the internal concurrency potential
for the component. We presume knowledge of the
dependency relation between a composite object and its
internal components. With this knowledge, and given a
particular locking strategy for all the components, we
show how to propagate internal exclusion requirements
outward, and the potential for concurrency inward,
thereby checking that all components have been provided
with their required exclusion control.

This work derives from earlier work by Noble, Holmes
���� ������� ������ on exclusion for composite objects.

That paper contributed a simple algebraic notation for
describing exclusion requirements, that was termed the
algebra of exclusion, and provided schemes for mapping
these exclusion requirements downwards and upwards
through an object-based language that permitted the
expression of locks and composite object dependencies.
Unfortunately the formulation of the relationships
between layers in that paper appears somewhat confusing,
and our contribution here is to simplify the model so that
way the relations are, we hope, clearer. This is important
to our overall goal of a simple declarative approach for
exclusion control with composite objects. Furthermore
the downwards composition approach of that paper relied
on guessing the result of the mapping and then checking
that the guess was correct; by working with concurrency
potential rather than exclusion, we remove the guesswork
in this paper. For a given component interface, we
describe both exclusion and concurrency potential using
the same notation used in the earlier paper, but now
refrain from calling it the algebra of exclusion: in fact it is
just a kind of graph algebra which allows the expression
of undirected graphs, simultaneously describing both
node and edge sets. We use this graph algebra for
describing both exclusion requirements (the node set is
the set of method names in the interface, and the edge set,
the conflict pairs) and concurrency potential (pairs in the
edge set denote allowable concurrency between pairs of
methods in the interface).

&������������
����,��
���������
��-����������)����������	�

the way in which we talk about the exclusion
requirements for the internals of a component to function
correctly, any locking provided by that component, and
the consequent external exclusion requirement, that must
be provided by the component’s operating environment
(typically a composite object that it is part of). The
relationship between the exclusion requirement and
concurrency potential determines whether the component
��	� 	���������� �������� $��,������ �������� �� ���-	� ��� ��
�

the component dependency relation determines how
exclusion requirements are propagated outward, and how
concurrency potenti����	�$��$� �������
�������������!���-
presents the major example of (Noble, Holmes and Potter
������ to allow comparison of our new formulation with
�������������������������.�$��	���	���	��$����������������

formalisation underpinning the previous sections. Section
/� �����0��	� ���� �$$������� ��	��		�	� ����������	�� ����

outlines our ideas for further work.

� Related Work

Concurrency and synchronisation have always been
attached to the object paradigm since its birth. Early
languages and systems (Birtwistle, Dahl, Myhrhaug, and
1% �����23/3����4�����23/��������5�����-4��	���23/)��
had started adopting the object as the unit of
	%�������	������� 5������ 6��������� ���� 7���� �233*��

presented a comprehensive survey of systems that
integrate concurrency and object-oriented languages.

5�%�$����� ���� 8������ ����2�� ��	������ �� �%$�-system to
enforce locking conventions in Java, based on the

ownership type system of (Clarke, Potter and Noble
233*����#���-��������������1��������2��������#���-������

9��		�$������ ������� � � &�� �	� ��stinguished by enabling
classes to be generic in their protection mechanisms,
which are specified when instances are created.
Protection is based on object ownership: every object has
exactly one fixed owner that is specified through type
parameterization. Before accessing a field of an object or
invoking a method, the lock on the object at the root of
the ownership hierarchy of the object must be held. Their
use of ownership properties for restricting access and
containment purposes is indirectly related to our approach
in grouping of locks and in some cases restricting access
through a single lock.

6�������	�� �����������	� �������$��	��������������������

expressing design intent that may help programmers to
enable assured consistency between design intent and
code. Their “client policy’ notation for describing
safe/unsafe method interactions is analogous to our
method-level exclusion specification for components of a
composite.

�����$$	��� ������� �,�	� �� ���$�����	�,�� ���$���	���

survey of concurrent object-oriented languages in terms
of identifying the key areas of integration as well as
differences between the object-oriented and concurrent
programming paradigms. In terms of performance
comparisons between concurrent object-oriented systems
based on locking granularity, we have found little
evidence of published work, whereas much work
investigating locking granularity is evident in the area of
database systems as in (Rez 233!�� Suh-Yin and Ruey-
7�� � 233.��� +�	�
����� ��������� �������� ���� ���������

we have demonstrated the effectiveness of a general-
purpose exclusion lock that can provide any required
exclusion.

One of our research goals is to provide a heuristic model
that puts some design decisions at the hands of
programmers. These design issues are commonly hidden
in the system, so we want to see these design decisions
explicitly declared in component interfaces. L��� �2333��
reveals the variety of approaches for designing and
implementing concurrent programs in Java; it offers
many techniques and patterns for letting threads work
together safely. JSR-2..� �������� �����
�� � ��� ���������

:�,�� #���������%� ���-� �� ��� :9;� 2�!�� �����	� ��� ����

work of Doug Lea and others, and promises solutions to
common special-purpose synchronisation problems. Our
work is along this line in terms of distinguishing between
the locking requirements of a design and the actual
locking strategy implemented.

�� Control Layers

In this section we introduce our concepts of required
exclusion and potential concurrency for a component, and
also internal and external control. A component’s
�����������	���	��������	�������	��<� ����2���'����=���	����

requirement for a component is specified as a set of
method pairs that may conflict. Typically they depend on
the internal dependencies of that component. The

Exclusion Requirement Potential Concurrency

component’s exclusion requirements must be met to
guarantee safe concurrent access to its interfaces. On the
other hand, the potential concurrency for a component
reflects its operating environment; it too is specified as a
set of method pairs on the component’s interface. So, our
approach makes a clear difference between required
exclusion and potential concurrency.

m2, m�� …. , mn

����	
�����

��	
�������
�����

Furthermore, we classify required exclusion and potential
concurrency as external or internal. External required
exclusion is that not provided by local locks and has to be
supplied externally by the environment where the
component is residing. Internal required exclusion, on the
other hand, is determined by the required exclusion of a
composite’s components.

�.� Exclusion Requirement

We depict the exclusion requirement as three distinct
��%��	��<� ������������=���������%���RE , an internal layer
RI and a provided local lock. The external requirement
depends on the other two layers, summarizing whatever
internal requirement is not provided by the local lock.

RExternal = RInternal – Lock

����	
�����

��	
�����������

�.� Potential Concurrency
The same idea applies to the composite’s potential
concurrency but in th���$$�	���������������<� ����)���"���
potential concurrency available internally (PI) can be
determined after extracting the local lock from the
external potential concurrency (PE) according to:

 PInternal = PExternal - Lock

����	
�������
�������oncurrency

���� An Example

An example may clarify the idea. We begin by presenting
a notation for describing exclusion requirements. The
expression (m� | m�) describes two methods m� and m�
that can execute in parallel. An interference between two
methods is described as (m� x m�), and an over bar on a
method name (m�

) indicates self-exclusion on that
method, that is, only one thread may access that method.
For example the expression (m� | m�
) permits parallel
invocations of m� and m� , but only one call m�� Any
exclusion expression may also be written as a conflict
matrix:

 (m� | m��)

 <� ���� �� ��$���	� ��� �=��$��� ��� �=���	���� ��0��������	�

for three components. In C�, the internal control is totally
dependent on the external control since no local lock is
provided. The set of layers in C� shows how the external
environment needs to complement the local lock for
providing the required internal control, and in C�, no
external control is needed as the local lock provides the
internal requirement.

����	
�������
	����������
	���

��

�2

m2�������m�

m2��

 m�

RE External

Local Lock

Internal

m2 m� mn

RI

External

Local Lock

Internal

m2 m� mn

PE

PI

m� | m�

m� | m�

m� | m�

m� x m�

 m� m�

m� x m�

m� x m�

C� C�

C�

n� x n� [I� / n�, I�/ n�] � I� x I�

��� Hierarchical Model

The interface of a composite is the designated set of its
������	��<� ����!� ��-�	����� ���$������ ���� 	��$� ��������

by introducing composite objects with internal
components. The figure also shows how we incorporate
the required and provided requirements into the control
layers.

����	
���� �
	�	�!�������"#����
�

R = Required Exclusion P = Potential Concurrency

The previous figure brings our classification to
completion as it shows how the internal exclusion
requirement of a composite are constructed from the
external exclusion requirements of the composite’s
internal components. Also, the figure shows how the
external potential concurrency (if needed) is used for
supplying the internal potential concurrency of the inner
components. These relations between the
required/potential and internal/external can be extended
to any depth of the composite object. Also, we need to
emphasize that a component is safe just when RE and PE
(equivalently RI and PI) have no pairs in common.

�� Composition via Mapping

In this section we show how we use mapping functions to
calculate exclusion requirements outwards from
components to their container as well as the inwards from
a container to its components.

�����

��	
"
������"#�������

In the previous section, we introduced the concept of
internal exclusion requirements being satisfied by a
combination of the exclusion requirements of the
component’s objects. We now explain the process of how
we compose these internal exclusion requirements. Figure
.�	����	� ����� ��� � �=��$�����$����� � �� ���$�	����
����

two interface methods I� and I�, and two internal

components C� and C� where each component has a
couple of internal methods as shown. Let’s also assume
that each component is supplied with its exclusion
requirements. We also assume that the usage pattern of
the composite interface is given as follows; where
users(m) is the set of interface methods that uses m.:

users(m�) = {I�}, users(m�) = {I�}, users(n�) = {I�} and

users(n�) = {I�}

����	
�$����"#��
���%
#
��
��&�

We start by mapping the exclusion requirements of the
internal components to the composite interface according
to the composite usage pattern. This mapping process is
simply achieved by substituting each method name in
each inner component with the name of the composite
interface that uses that method.

External requirement on inner component c �

Internal requirement on outer composite [users(m)/m]
for each m in c.

For C�:

For C�:

We then combine the new mapped expressions:

(I� | I�) | (I� x I�
) � I� x I�

As a conflict matrix:

 | =

So, the external exclusion requirements of the internal
components collectively form a composition of
requirements representing the internal exclusion
requirements of the composite; RI = (R�� | R��) = I� x I�.
Assuming that the local lock provides the needed internal
required exclusion (RI) (i.e L = I� x I�), and using the
relation RExternal = RInternal – Lock, we find that the external
exclusion requirement (RE���	�,����������	���	���<� ����/��

m� | m�
 [I� / m�, I�/ m�] � I� | I�

I�

 I�

I�

 I� ��

�2

I�

I�

�2

2�

I�

I�

�2

22

I�

I�

I�

 I�

 I� I�

m�

m�
 n�
 n�

m�
 | m� n� x n�

C� C�

RE PE

Local Lock

RI PI

R�� P��

R��

 P��

R�� P��

R�� P��

R�� P��

R��

 P��

����	
�': Requirements Composition

�.� Potential Concurrency Calculation

The internal exclusion requirement of the composite can
now be used to determine all potential concurrency
allowable on this composite. External potential
concurrency (PE) is simply the complement of the
�=��������=���	������0����������<� ����*��

Potential allowable concurrency � (I� | I�)
c = I�
x I�

����	
�(�����
	�������
�����������		
��&

Having determined the composite’s external potential
concurrency, we use our prev���	� �������� ������)���� ���
calculate the internal potential concurrency for the
���$�	������������$�������<� ����3�>�

PInternal = PExternal – Lock � (I�I�) – (I�xI�) = I� | I�

����	
�)�����
	�������
�����������		
��&

Now we come to the last step of our process. Here we use
the internal potential concurrency expression to obtain the
potential concurrency for the inner components of the
composite. We use a mapping function that makes use of
the composite’s interface usage patterns along with the
composite’s internal potential concurrency.

OuterAllowed[used_byc(I) / I] , for each I of the
composite interface, where used_by is the set of
methods used by each I.

For C� : I� | I� � m�
 | m�

For C� : I� | I� � n� | n� as show������� ����2��

����	
��*�����
	�������
�����������		
��&�+�	�

Components

I� | I� I�I�

L = I� x I�

I� x I�

m� | m�

n� x n�

RI

REI R��

PE RE

I� | I�

L = I� x I�

I� x I�

m� | m�

n� x n�

RI

REI R��

RE
I� | I� I� I�

L = I� x I�

I� x I� I� | I�

m� | m�

n� x n�

RI

REI R��

PE

PI

RE

 I�I�

L = I� x I�

I� x I� I� | I�

 m� | m�
 m� | m�

 n� x n�
 n�| n�

RI

R�� R��

PE

PI

RE

P�� P��

��������
-Grain Locking

In this section we present another example to demonstrate
our process. Here we apply our mapping techniques on a
composite structure with more than two levels. First, we
�� ��� ��� ��$��	�?�� ���� �����
�� >� 2��
�� ���@�� ��$�	��

any concurrency restrictions on the outer environment,
��� ����� ���������	� ��� ���� ���$�	���� ���� ����%� $����	�

(method names) of the composite, in this case a� and a�,
and)��
�� �		���� ����� �����-method uses relations are
given. In this example we consider how our technique
works when locks are only provided at the lowest level of
�����$�	�����<� ����22���'�����������������������$�	�����	�

provided by the method set a� and a�, and the reset of the
internal interfaces are given by the following uses
relations:

Method Uses

a� b�

, c�

a� b�

, c�

b� d�

, e�

b� d�

, e�

c� f�

, g�

c� f�

, g�

����	
�����,��-������!
�.����"��
/
�

<� ���� 22� 	��
	� ���� ��e end relations according to the
previous techniques. Remember that this example
represents a fine-grain locking, that is, the internal
components of this composite which represent the actual
data objects are provided with local locks that meet their
exclusion requirements. Our mapping technique starts by
obtaining the exclusion requirements RE of the external
level of the internal components D, E, F, and G. We use
the relation RExternal = RInternal – Lock ������)�2�� ���

determine the external exclusion requirements. We find

that no extra exclusion is needed at this level since the
local lock provides the required internal exclusion; the
external exclusion requirement for component D is
written as d� | d�.

A����
��	��������$$�� �$����		���������2���������rmine
the internal exclusion requirements for component B and
C. Using the mapping we combine the external exclusion
requirements of components D and E to calculate the
internal exclusion requirements for component B, and
combine the external exclusion requirements of F and G
to calculate the internal exclusion requirements for
���$������#��" �����	�� �������������������)�2��
�������

determine the external exclusion requirements for B and
C. Composition for the internal exclusion requirement of
component A is done in the same manner. After
determining the external exclusion requirements of the
top component which houses the composite interface to
the outer environment, we found that RE = a� | a�, that is,
no concurrency restriction is imposed on any access at
that level, this is represented by the external potential
concurrency PE = a�a�� ������������
�������������	��,��%�

pair-wise interaction between a� and a2�is allowed.

We invoke the relation PInternal = PExternal – Lock to
determine the internal potential concurrency of
���$������"������������	��������$$�� �$����		����������

to calculate the external potential concurrency for B and
C.

After finishing all of the calculation and plugging in all
the relations, we compare the internal exclusion
requirement for each component at the bottom of our
composite with its neighbor; the internal potential
concurrency. That is, RI’s with PI’s. As previously
mentioned, in order to guarantee component safety, all of
the requirements R’s and the potential concurrency P’s
either externally or internally should have no pairs in
common. Looking at our resultant relations of the
previous example, we find that this condition holds. At
the same time comparing these pairs, we see that each R
complements P in each box. We conclude that providing
fine-grain locks ensures no excess exclusion.

���������	�
-Grain Locking

The next example represents the other end of the
spectrum where only one lock is imposed on our
composite structure. Here, component A is provided with
a lock which meets its internal exclusion requirements.
Applying the same steps as in the previous example, we
�������������������	���$����������� ����2���#��$���� �����

neighboring relations in the shaded box at the bottom of
the figure, we find that we lose some concurrency
potential. The allowable concurrency is f�
 x f�
 (the
complement of the required exclusion), but the potential
concurrency is only f� | f�. In other words the outer level
control has unnecessarily excluded the concurrent
activation of f� and f�.

 a�
| a� a�
a�

 a�
| a� a�
a�

 g�
| g� g�
g�

g�
x g�

 g�
x g� g�
| g�

 f�
| f� f�
f�

f�

| f�

 f�
| f� f�
x f�

 e� | e� e�
 e�

e� x e�

 e�
x e� e� | e�

 d�
| d� d�
d�
d�
x d�

 d�
x d� d�
| d�

 c�
| c� c�

c�

 c�
| c� c�

c�

 b�
| b�
 b�
b�

 b�
| b� b�
b�

A

B C

D E F G

PE

L

PI

RE

L

RI

Outer Environment

����	
�����0����-�����!
���#

� A GUI Server Example

<� ���� 2)� 	��
	� �� ���$�	���� 	%	���� �=��$��� �����

�1������4����	�������������������'��	�	%	��������	�����	�

the main components implementing a GUI server: a
bitmap cache (also used to store font and icon
information) that in turn uses RAM and disk cache
subcomponents; an authentication component; an input
queue that receives events from input devices; and an
output queue that forwards rendering requests to graphics
hardware. The queue objects are taken from a library
�	���� �	� ���� 5����� ���$�����	� �233���� ���� ���� ���

parameterized with a strategy object to configure their
locking behaviour. This graphics server is an
encapsulated composition – the top GUI server object
acts as a façade (Gamma, Helm, Johnson and Vlissides
233��� 	�� ����� ��	� ��������� ���$������ ������	� ���@�� ���

accessed from outside, and each component either
implements functionality internally, or invokes methods
on their direct subcomponents.

����	
�����0�12����"#��ite

For this server to operate in a concurrent object-oriented

environment, we must ensure that multiple threads
accessing the server avoid interference, to protect the
integrity of the components’ data structures and
invariants. There are a number of different approaches we
can take:

- Ensure single threaded access by placing a single
lock into the GUI server component.

- Allow maximally concurrent access to all
components by placing locks on individual
objects as necessary.

- Design an exclusion scheme for the whole server
that uses individual locks to meet several
components’ requirements while maintaining a
large amount of concurrency.

Lets apply our mapping techniques to determine the
locking choices for this composite. We start by showing
the usage pattern for internal cache components; namely,
Disk and Ram:

The usage pattern for the GUI server main interface is
given as follows:

After assuming that the uses relations are known, we also
assume that exclusion requirments and some locks
��$����������� ����2��������	�� �,����

Method Uses

Cache.get (g) ram.get (g);

disk.get (g)

Cache.put (p) ram.put (p);

disk.put (p)

Server Methods Uses

Server.login (li) auth.open (o)

Server.logout (lo) auth.close (c);

inq.flush (f);

outq.flush (f)

Server.mouse (m) inq.enque (e)

Server.draw (d) outq.deque (d)

Server.cycle (c) inq.deque (d);

auth.verify (v);

cache.get (g);

cache.pu t(p);

outq.enque (e)

 a�|a� a�a�

a� x a�

 a�
x a� a� | a�

 g�
x g2�����g�
| g�

 g�
x g� g�
| g�

 f�
| f� f�
| f�

 f�
| f�
 f�
| f�

 e�
x e� e�
| e�

 e�
x e� e�
| e�

 d�
x d� d�
| d�

 d�
x d� d�
| d�

 c�
x c� c�
| c�

 c�
x c� c�
| c�

 b�
x b� b�
| b�

 b�
x b�
 b�
| b�

A

B C

D E F G

AE

 L

AI

RE

L

RI

Outer Environment

GUI Server

 Bitmap Cache Authentication Input Queue Output Queue

Locking
Strategy

RAM DISK Locking
Strategy

����	
�����1�/
���

��	
"
������,��-�

The figure shows that not all components are provided
with local locks or exclusion requirements. This layout
illustrates some of the options for providing exclusion in
this composition. For maximum concurrency, the leaf
objects have their actual requirements given. We could
apply precisely this amount of exclusion to them,
ensuring safety but imposing runtime locking activity. To
reduce this overhead, we can use information about the
objects being designed to optimize their exclusion. The
actual locks chosen for this example have been designed
to seek a balance between execution overhead and
granularity of exclusion.

After applying our outwards and inwards mappings as
well as our internal-�=���������������	���� ����2!�	��
	�����
derived exclusions and potentials. The fact that there no
exclusion requirement overlaps with any corresponding
potential, shows that all components are safe. For the
Server, the pairing of login with mouse and with draw is
not required as part of RI, but has been excluded by L,
and do not appear as part of AI. These are examples of
lost concurrency potential. We see another example of
lost potential between enqueue and dequeue for the Inq
component.

����	
�����12��3
	/
	

$ A Graph Algebra with Dependency
Composition

In this section we formalise the notation and mappings
presented in the previous sections. Exclusion
requirements and concurrency potential have been
expressed using a simple graph algebra in which the
underlying domain is a set of names, interpreted as the
names of methods. Here, for simplicity, we assume
method names uniquely identify both the interface of a
particular object, and the method in that interface. The
dependency relation between composite objects and their
components is presumed to be known.

The simple graph algebra used here is identical to the
algebra of exclusion of objects (Noble, Holmes and Potter
������ ����
�� �������� ����� �	�� � ����� ����� ������ A ��

repeat the key definitions here for ease of reference.

completion

product

ndisjunctio|

name

nothing�::

�2

�2

e

ee

ee

n

e

×

=

We interpret any such expression as a graph (N(e), E(e))
where N is a set of names, and E is a set of unordered
pairs of names. The following defines N and E for each
construct of the algebra:

)()(

)()()(

)()()|(

}{)(

{ })�(

�2�2

�2�2

eNeN

eNeNeeN

eNeNeeN

nnN

N

=
∪=×
∪=

=
=

and

)()()(

)()()()()(

)()()|(

{ })(

{ })�(

�2�2�2

�2�2

eNeNeE

eNeNeEeEeeE

eEeEeeE

nE

E

⊗=
⊗∪∪=×

∪=
=
=

where ⊗ denotes symmetric Cartesian product.

Consider now a (directed) relation u defined on the
underlying set of names. Given an undirected graph
expression e we define its outward closure with respect to
u as:

∗−∗=↑)(..ˆ 2ueueu

and the inward closure likewise:

∗∗−=↓ ueueu ..)(ˆ 2

Here the dot operator denotes forward composition of
relations, and the star denotes reflexive, transitive closure.

Outq

 (m|d|c) x li lo

 edf

 e|dxf

 oxvxc

g x p

Server

Ram

Cach Auth Inq

 gxp

Disk

 gxp

e d f

 e|d x f

Outer Environment

Outq

 mdclilo

mdc x li lo

(md|cxli) x lo mdc|lilo

 ed f

edf

 e|dx f edf

 vx oc v | oc

 vx oc v | oc

 g p

g x p

 g x p g | p

 gxp g|p

Server

Ram

Cach Auth Inq

AE

 L

AI

RE

L

RI

 gxp g|p

 gxp g|p

Disk

 gxp g|p

 ed f ed f

e d f

 e|dx f exd | f

We freely mix the notions of relation and the graph of a
relation. The closure of e clearly contains e, closure is
monotonic and idempotent.

We interpret u as the uses dependency relation between
components. When e represents an exclusion requirement
on a subset of the names, it is easy to see that its outward
closure with respect to u represents all required
exclusions induced on components outside the names of e
(where a name m is outside another n if m uses n directly
or indirectly). Because, if m2 uses n2, m� uses n� and n2 is
required to exclude n� then, in the absence of any
provided exclusion inside, we must require m2 to exclude
m�. Similarly when e represents concurrency potential,
the downward closure maps the potential inside the
names of e. Interestingly enough, these mappings apply
even if there are cycles in the dependency relation.

For the kinds of system considered in earlier examples,
the dependency relation is tree structured as far as
components go, although any method of composite object
may share any of its immediate components. Essentially
this structure permits a layer by layer (modular)
calculation of the closure operators. The dependency-
based substitutions are simply an alternative way of
presenting the calculation of the above closures, when the
system, is layered (encapsulated) as in our examples.

In fact we can factor any dependency relation into such a
structure by firstly identifying cycles, and factoring the
relation over the cycles. If cyclic dependencies are
present, all names that occur in a cycle need to be treated
as equivalent as far as exclusion control goes. Cycles can
therefore be factored out. We can then impose a
hierarchical structure on the factored components by
considering the dominator tree given the root names (the
API for the system).

' Critique and Conclusions

We have presented a simple approach for ensuring
thread-safety for composite object systems in a flexible
manner. Our model requires knowledge of the exclusion
requirements on the interfaces of base-level components,
the usage dependencies between the interface of each
composite object and its components, and finally some
expression of what the potential concurrent activation of
the system might be in its operating environment. Then,
given a particular distribution of locks throughout the
components of the system, we can calculate whether or
not each component is indeed thread-safe. This allows
developers to design locking strategies separately from
other implementation details, and allows flexibility in the
distribution of locks that might be chosen. The actual
choice of locks may be relative to the particular
environment where the system (or component) is
deployed. Furthermore, it is easy to determine where
locks are redundant and where high level or coarse grain
locks cause potential for concurrency to be lost.

To support our approach we have presented a simple
mathematical model that justifies how the calculations are
managed. This formalisation helps us to see how to deal
with cycles and sharing in the dependency relation.

We note two limitations of our approach. First, we have
not talked about state-dependent locks such as condition
variables. We hope to pursue this in the future, but the
key issue in dealing with such locks revolves around the
nested monitor problem; such locks are inherently less
flexible than exclusion-based locks. Second, we require
knowledge of a composite’s dependency on its
components. This implies that we are talking about
relatively static composite structures. However, with our
work on ownership and related type systems, we are
confident that we can use ownership type information to
help reason about more dynamically structured systems.
This too is a direction we intend to explore further.

One potential criticism of our approach is that it is based
on the methods in an interface. Given that our model is
phrased quite abstractly, we can choose to deal with any
controllable program entity at all (e.g. particular critical
sections of code, or even read or write access on
individual program variables). We have merely presented
our approach using methods and interfaces as a vehicle
for the ideas. The key issue is that we must be able to
reason about the uses dependency relationship for those
entities that we wish to control.

(References

Birtwistle, G., Dahl, O., Myhrhaug, B. and Nygaard, K.

�23/3�>�Simula Begin. Studentlitterature.

5������6���233��>�Software Components with Ada:

Structures,Tools,and
Subsystems.Benjamin/Cummings.

Brinch-4��	��������23/)�>��$������ ��%	���	�������$��	��

Prentice-Hall.

5������:���6����������8�������7�����;���233*�>

Concurrency and Distribution in Object-Oriented
Programming. ACM Computing Surveys��)��)�>�32-
)�3�

5�%�$�����#������8�������B������2�>

A parameterized type system for race-free Java
programs. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

#���-���9�����������:�������1������:���233*�>

Ownership types for flexible alias protection. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA).

#���-���9�����������:�������1������:������2�>

Simple ownership types for object containment, In
���	�������
��
���
����
������ �
��������	�
�n
Object-Oriented Programming (ECOOP). !)�–�/.�

#���-���9�������9��		�$����������������>

Ownership, encapsulation and the disjointness of type
and effect, In ��������� 	��������2/���"#B�
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications
(OOPSLA). �3��–�)2��

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

�233��>�Design Patterns. Addison-Wesley.

4������#��"��8��23/��>

Monitors: an operating system structuring concept.
#������������	��������"#B��2/�2��>!�3-!!/������

JSR-2..>�Concurrency Utilities, Java Concurrency

Process. www.jcp.org��"���		���2���$��������

7����9���2333�>�Concurrent Programming in Java:
Design Principles and Patterns����nd Edition)
Addison-Wesley.

Noble, J., 4����	��9��������������:��������>�

Exclusion for Composite Objects, Proceedings of
ACM Conference on Object-Oriented Programming,
Systems, and Languages. OOPSLA, Minneapolis,
USA.

�����$$	����B��������>

A Survey of Concurrent Object-Oriented Languages,
Concurrency: Practice and Experience��2��32/-�3*��

��������:������������"�����������+���������>

Exclusion Control for Java and C#: Experimenting
with Granularity of Locks�#�:�@����������"#B�
��9#������

R�?��'����4��������233!�>

Concurrency Control Issues in Nested Transactions
with Enhanced Lock Modes for KBMSs��9+C"D3!��
.

th International Conference and Workshop on
Database and Expert Systems Applications.

Suh-Yin, Lee. and Ruey-7�� ��7������233.�>

A Multi-Granularity Locking Model for Concurrency
Control in Object-Oriented Database Systems. IEEE
Tr��	��;��
���9����+� ��*�2�>�2��-2!.�

