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Abstract 
Fractal image compression is a relatively recent image 
compression method which exploits similarities in 
different parts of the image. The basic idea is to represent 
an image by fractals and each of which is the fixed point of 
an Iterated Function System (IFS). Therefore, an input 
image can be represented by a series of IFS codes rather 
than pixels. In this way, an impressive compression ratio 
10000:1 can be achieved. The application of fractal image 
compression presented in this paper is based on a novel 
image structure, Spiral Architecture, which has hexagonal 
instead of square pixels as the basic element. In the paper 
evidence would suggest that introducing Spiral 
Architecture into fractal image compression will improve 
the compression performance in compression ratio with 
little suffering in image quality. There are also much 
research could be done in this area to further improve the 
results. 

Keywords:  fractals, image compression, image encoding, 
Spiral Architecture, hexagonal structure 

1 Introduction 
Needless to say, visual information is of vital importance if 
human beings are to perceive, recognize and understand 
the surrounding world. With the tremendous progress that 
has been made in computer power, the corresponding 
growth in the multimedia market and the advent of the 
World Wide Web, it is becoming more than ever possible 
for images to be widely utilized in our daily life. In general, 
an image file contains much more data than a text file. An 
image with a large amount of data requires much memory 
to store, takes longer to transfer, and is complex to process. 
For example, a grey scale image with 256 × 256 pixels 
requires about 65 Kilobytes of memory space and more 
than 18 seconds to transfer at 28.8kb/s. As a consequence, 
image compression becomes necessary due to the limited 
communication bandwidth, CPU speed and storage size. 
Image compression has been one of the most challenging 
fields in the image processing research.  

Fractal image compression is a relatively recent image 
compression method which exploits similarities in 

 

 

 

 

different parts of the image. For example, with a picture of 
a fern (Fig. 1) one can see where these similarities lie: each 
fern leaf resembles a smaller portion of the fern. This is 
known as the famous Barnsley fern (Barnsley & Demko 
1985). During more than two decades of  development, the 
IFS (Iterated Function System) based compression 
algorithm stands out as the most promising direction for 
further research and improvement (Barnsley & Hurd 
1993). The basic idea is to represent an image by fractals 
and each of which is the fixed point of an IFS. An IFS 
consists of a group of affine transformations (Fisher 1995). 
Therefore, an input image can essentially be represented 
by a series of IFS codes. In this way, a compression ratio 
10000:1 can be achieved (Barnsley & Sloan 1988). In 
short, for fractal image compression an image is 
represented by fractals rather than pixels. Each fractal is 
defined by a unique IFS that consists of a group of affine 
transformations. Therefore the key point for this algorithm 
is to find fractals which can best describe the original 
image and then to represent them as affine 
transformations.  

 
Fig.1  A fern leaf (Barnsley & Sloan 1988) 

The application of fractal image compression presented in 
this paper is based on a novel image structure, Spiral 
Architecture (Sheridan, Hintz & Moore 1991), which is 
inspired from anatomical considerations of the primate’s 
vision (Schwartz 1980). On The Spiral Architecture, an 
image is a collection of hexagonal elements (Sheridan, 
Hintz & Alexander 2000). In the case of the human eye, 
these elements (hexagons) would represent the relative 
position of the rods and cones on the retina. Each pixel on 
The Spiral Architecture is identified by a designated 
positive number, called Spiral Address as shown in Fig.2. 
The numbered hexagons form the cluster of size 7n. The 
hexagons tile the plane in a recursive modular manner 
along the spiral direction (He 1999). Any hexagonal pixel 
has only six neighbouring pixels which have the same 
distance to the centre hexagon of the seven-hexagon unit 
of vision. 

This paper is organized as follows. Beginning with a 
review of fractal image compression in Section 2, an 
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introduction of the Spiral Architecture is presented in 
Section 3. In Section 4, we describe the procedure of 
adapting the fractal image compression algorithm on The 
Spiral Architecture and the experimental results are 
supplied in Section 5 with some quantified analysis. We 
conclude in Section 6 by summarizing the opportunity of 
better performance for fractal image compression on the 
Spiral Architecture. 

 
Fig.2  A collection of 72 = 49 Hexagons with labelled 

addresses 

2 Concepts of Fractal Image Compression 
In the following section, the basic concepts of fractal 
image compression on the traditional square structure 
would be introduced. Before delving into details, there are 
some highlights of fractal image compression. 
 It is a promising technology, though still relatively 

immature. 
 The fractals are represented by Iterated Function 

Systems (IFSs). 
 It is a block-based lossy compression method. 
 Compression has traditionally been slow but 

decompression is fast. 

2.1 Theory and Math Background 
The fundamental principle of fractal image compression 
consists of the representation of an image by an iterated 
function system (IFS) of which the fixed point is close to 
that image. This fixed point is so called ‘fractal’ (Fisher 
1995). Each IFS is then coded as a contractive 
transformation with coefficients. Banach’s fixed point 
theorem guarantees that, within a complete metric space, 
the fixed point of such a transformation may be recovered 
by iterated implementation thereof to an arbitrary initial 
element of that space (Kreyszlg 1978).  Therefore, the 
encoding process is to find an IFS whose fixed point is 
similar to the given image. The usual approach is based on 
the collage theorem, which provides a bound on the 
distance between the image to be encoded and the fixed 
point of an IFS (Fisher 1995). A suitable transformation 
may therefore be constructed as a ‘collage’ from the image 
to itself with a sufficiently small ‘collage error’ (the 
distance between the collage and the image) guaranteeing 
that the fixed point of that transformation is close to the 
original image (Wohlberg & Jager 1999). 

In the original approach, devised by Barnsley, this 
transformation was composed of the union of a number of 
affine mappings on the entire image (Barnsley & Hurd 
1993). While a few impressive examples of image 
modelling were generated by this method (Barnsley’s fern, 
for example (Barnsley 1988)), no automated encoding 
algorithm was found. Fractal image compression became a 

practical reality with the introduction by Jacquin of the 
partitioned IFS (PIFS) (Jacquin 1993), which differs from 
an IFS in that each of the individual transformation 
operates on a subset of the image, rather than the entire 
image. Since the image support is tiled by ‘range blocks’, 
each of which is mapped from one of the ‘domain blocks’ 
as depicted in Fig. 3, the combined mappings constitute a 
transformation on the image as a whole. The 
transformation minimizing the collage error within this 
framework is constructed by individually minimizing the 
collage error for each range block, which requires locating 
the domain block which may be made closest to it under an 
admissible block mapping. This transformation is then 
represented by specifying, for ach range block, the identity 
of the matching domain block together with the block 
mapping parameters minimizing the collage error for that 
range block. 

 
Fig. 3 Each range block is constructed by a 

transformed domain block 

2.2 Basic Fractal Image Encoder 
The encoder has to solve the following problem: for each 
range block R the best approximation 

                                      R ≈  sD + oI                                    2.1 

needs to be found, where D is a codebook block 
transformed from a domain block to the same size as R . 
The coefficients s and o  are called scaling  and offset. We 
work out this problem with the Euclidean norm.  That is, to 
minimize  

                                             
                   2.2 

we can use the well known method of least squares to find 
the optimal coefficients directly as follows.  

Given a pair of blocks R and D of n pixels with intensities 
r1,…, rn and d1,…, dn we have to minimized the quantity   

                                   .                             
                                 2.3 

The best coefficients s and o are 

                                    
                                   2.4 

and 

                                 .                       
                                     2.5 



With s and o given the square error is  

                 
2.6 

If the denominator in equation 2.4 is zero then 

 s = 0                                         2.7 

and 

                                 o =    .              .                                  2.8 

In summary the baseline fractal encoder with fixed block 
size operates in the following steps. 

1. Image segmentation.  Segment the given image 
using a fixed block size, for instance, 4× 4. The 
resulting blocks are called ranges Ri. 

2. Domain pool and codebook blocks definition. 
By stepping through the image with a step size of 
l pixel(s) horizontally and vertically create a set 
of domain blocks, which are four times as the size 
of range blocks. By averaging the intensities of 
four neighbouring pixels each domain blocks 
shrinks to match the size of the ranges. This 
produces the codebook blocks Di. 

3. The search of best s and o. For each range block 
Ri an optimal approximation Ri ≈  sDi + oI in the 
following steps: 
a) For each codebook block Di compute an 
optimal approximation Ri ≈  sDi + oI in three 
steps: 

i. Perform the least squares optimization using 
formulas 2.13 and 2.14, yielding a real 
coefficient scalar s and an offset o. 

ii. Quantize the coefficients using a uniform 
quantizer. 

iii. Using the quantized coefficients s and o 
compute the error E(Ri, Di).  

b) Among all codebook blocks Di find the block 
Dk with minimal error  

             E(Ri, Dk)= mini E(Ri, Di). 

c) Output the code for the current range block 
consisting of indices for the quantized coefficient 
s and o and the index k  identifying the optimal 
codebook block Dk. 

3 Spiral Architecture and Image 
Representation 

A digital image contains thousands of pixels to represent 
the real world and when we touch the term ‘pixel’ so far, 
that means a rectangular box in an image. Almost all the 
previous image processing and image analysis research is 
based on this traditional image structure. However, we do 
have a relatively new image structure called Spiral 
Architecture (SA) (Sheridan 1996). Spiral Architecture is 
inspired from anatomical considerations of the primate’s 
vision (Schwartz 1980). From the research about the 
geometry of the cones on the primate’s retina (See Fig.4) 
we can conclude that the cones’ distribution has inherent 

organization and is featured by its potential powerful 
computation abilities. The cones with the shape of 
hexagons are arranged in a Spiral clusters. This cluster 
consists of the organizational units of vision. Each unit is a 
set of seven hexagons compared with the traditional 
rectangular image architecture using a set of 3× 3 vision 
unit as shown in Fig.5. 

 

 

 

 

 

 

 
Fig.4 Distribution of Cones on the Retina 

 
 

 

 

 

 

 

 

Fig.5 Unit of vision in the two image architectures 

3.1 Spiral Addressing 
The first step in SA formulation is initially labelling each 
of the individual hexagons with a unique address. The 
addresses of these hexagons will then be simply referred to 
as the hexagons. This is achieved by a process that is 
initially applied to a collection of seven hexagons. Each of 
these seven hexagons is labelled consecutively with 
addresses 0, 1, 2, 3, 4, 5 and 6 as displayed in Fig.6. 

 

 

 

 

 

 
Fig.6 A collection of seven hexagons with unique 

addresses 
Dilate the structure so that six additional collections of 
seven hexagons can be placed about the addressed 
hexagons, and multiply each address by 10. For each new 
collection of seven hexagons, label each of the hexagons 
consecutively from the centre address as we did for the 
first seven hexagons (see Fig.7). 

 

(a) Rectangular Architecture (b) Spiral Architecture 
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Fig.7 A collection of 72 = 49 hexagons with labelled 

addresses 
 

The repetition of the above steps permits the collection of 
hexagons to grow in powers of seven with uniquely 
assigned addresses. It is this pattern of growth of addresses 
that generates the Spiral. Furthermore, the addresses are 
consecutive in base seven.  

The important aspect of each hexagon is that it has six 
neighbouring hexagons. This establishes the property that 
for all hexagons, the centre of each hexagon has a constant 
distance from every one of its six neighbours. According 
to (Umbaugh 1996), the difference of light intensities 
between pixels is highly related to the distance between 
them: the closer they are, the less difference observed. 
Hence, the light intensity of a hexagonal pixel can be 
considered being equally affected by the light intensities of 
its six neighbouring pixels (He 1999). Moreover, each set 
of seven hexagons may enjoy very similar light intensities 
and the difference between the centre and others would be 
quite small. This idea is the foundation stone when 
considering image compression on SA. 

3.2 Spiral Counting 
Spiral Counting (Sheridan 1996) is an algorithm that 
designates a sequence of hexagons in SA. It can be 
considered as a Spiral movement that given a commencing 
hexagon, counts for a pre-determined number and 
terminates at another certain hexagon. Any hexagon in an 
image can be reached by Spiral counting from any other 
given hexagon in the same image. When applying Spiral 
counting, it is strictly dependent on a pre-determined key 
define by Sheridan in (Sheridan, Hintz & Moore 1991).  A 
key is the first hexagon to be reached in an instance of a 
Spiral counting, which determines two important 
parameters: the distance and the orientation. For instance, 
given a Spiral address 15, the key of 15 can determine two 
values. One is the distance between the given hexagon 15 
to the hexagon 0; the other is the orientation of hexagon 15 
from hexagon 0. We could use the angle ? to represent the 
orientation (see Fig.8).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8 The key of hexagon 15 
Spiral counting is used to define two operations in the SA, 
which are Spiral Addition and Spiral Multiplication 
(Sheridan, Hintz & Moore 1991). Let a and b be Spiral 
addresses of two arbitrarily chosen hexagons in SA. Then, 

 Spiral addition of a and b, denoted by a + b, is the 
Spiral address of the hexagon found by Spiral 
counting b hexagons in the key of Spiral address 
1 from the hexagon with Spiral address a; 

 Spiral multiplication of a and b, denoted by a x b, 
is the Spiral address of the hexagon found by 
Spiral counting b hexagons in the key of Spiral 
address a from the hexagon with Spiral address 
0.  

Spiral Architecture together with the operations of Spiral 
Addition and Spiral Multiplication is a Euclidean Ring 
(Sheridan, Hintz & Moore 1991). These properties are 
necessary to locate and transform hexagonal pixels when 
further implementing SA for image compression. 

3.3 Pseudo Model 
Although SA has many advantages in image processing 
and machine vision, there is no available image capture or 
display device yet to support this structure. Hence, in order 
to implement our theoretical results, it is necessary to 
construct or mimic the SA from the existing image 
structure, on which the traditional image representation is 
based. There are several different methods available so far 
– Mimic model by He, Pseudo model by Sheridan and 
Visual model by Wu (He 1999; Sheridan, Hintz & 
Alexander 2000; Wu, He & Hintz 2004). Because of the 
less computational complexity and pixel-to-pixel 
representation, in our paper, we choose the Pseudo model. 
 Representation of hexagonal pixels  
In the Pseudo model, we are using only one rectangular 
pixel to represent a hexagonal pixel. The basic cluster of 
seven pixels with Spiral addresses 0~6 are represented in 
the following figure (see Fig.9). 
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Fig.9 Distribution of 7 pixels constructed from 

rectangular pixels 
Following the same labelling scheme, we could extend the 
previous cluster to get the first 49 Pseudo hexagons with 
Spiral addresses 0 to 66. (See Fig.10) 

                    
Fig.10 the first 49 Pseudo pixels with labelled spiral 

addresses 
If we repeat the same scheme we are able to cover any 
image on traditional structure and label each of the pixels 
with a unique Spiral address. In order to be consistent with 
the important property of hexagonal distribution that each 
such pixel has exactly six surrounding pixels, we only 
consider six of the eight neighbours for the centre pixels. 
The election of these six neighbours is as shown Fig.9 so 
that we can keep the properties of Spiral Architecture to 
the greatest extent.  
 Finding Pseudo Pixels  
Again, the central pixel is labelled with Spiral address 0 
and we correspondingly set the Cartesian coordinates of 
this pixel as (0, 0). Suppose that each square pixel has the 
length of 1 as edges. Then, the hexagon with Spiral 
addresses 1, 2, 3, 4, 5 and 6 have corresponding Cartesian 
coordinates (0, -1), (-1, -1), (-1, 0), (0,1), (1, 1) and (1, 0) 
respectively. 

The rules to find the Cartesian coordinates for given 
Pseudo pixel with a labelled Spiral address are exactly the 
same as on the Mimic model that we mentioned previously. 
Following the formulas 3.1~3.4, given any Spiral address 
we can easily find the physical location, i.e. the Cartesian 
coordinates, of the pixel on the image.   
 Image Representation 
To represent images on the Spiral Architecture by Pseudo 
model is not more than to select a certain set of pixels 
marked with a range of spiral addresses and to ignore the 
remaining pixels. The result is shown in Fig.11. 

 

 
Fig.11 Boat in Square and Spiral Architecture in 

Pseudo Model 

4 Fractal Image Compression on Spiral 
Architecture   

In this preliminary research on adopting fractal image 
compression into Spiral Architecture, we follow the same 
idea applied on square structure, i.e. PIFS as described 
earlier in section 2. Firstly we separate the image into 
range blocks of seven pixels and define the domain blocks 
of seven times more, i.e. 49 pixels (see Fig. 12). Each pixel 
in the image can be the centre of domain block. Then we 
include the first 48 pixels around it based on Spiral 
counting to form a domain block unless any pixel of this 
domain block is out of the given image. 

             

 

 

 

 

 

             range block                           domain block 

Fig.12 Range and domain blocks in Spiral 
Architecture 

A number of researchers have noticed a tendency for a 
range block to be spatially close to the matching domain 
block, (Barthel & Voye 1994; Beaumont 1990), based on 
the observed tendency for distributions of spatial distances 
between range and matching domain blocks to be highly 
peaked at zero (Jacquin 1993; Woolley & Monro 1995). 
Motivated by this observation, the domain pool for each 
range block may be restricted to a region about the range 
block (Jacquin 1990), or a spiral search path may be 
followed outwards from the range block position (Barthel 
& Voye 1994; Beaumont 1990). Therefore, in order to 
reduce the computational complexity, for each range block 
we only search for up to 343 domain blocks, which are 
around this range block. Each of those range blocks has at 
most 343 domain blocks in the domain pool and the 
centres of domain blocks in the pool are the first 343 pixels 
counting from the centre of range block through the Spiral 
direction. 

5 Experimental Results  
We use the same algorithm mentioned before on square 
and Spiral Architecture for four popular images: a building, 
a boat, a toy duck and a house. The following figures show 
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the experimental results and we summarize them in two 
tables.   

 
Fig.13 Original and compressed ‘building’ in square 

structure 

 
Fig.14 Original and compressed ‘boat’ in square 

structure 

 
Fig.15 Original and compressed ‘toy duck’ in square 

structure 

 
Fig.16 Original and compressed ‘house’ in square 

structure 

 
Fig.17 Original and compressed ‘building’ in Spiral 

Architecture 

 
Fig.18 Original and compressed ‘boat’ in Spiral 

Architecture 

 
Fig.19 Original and compressed ‘toy duck’ in Spiral 

Architecture 

 
Fig.20 Original and compressed ‘house’ in Spiral 

Architecture 

 

Image Compression ratio PSNR 

Building 3.37 23.40 

Boat 3.37 26.56 

Toy duck 3.37 37.20 

House 3.37 22.41 

     Table 1. Summary for images on square structure 

Image Compression ratio PSNR 

Building 16.01 22.73 

Boat 16.01 24.27 

Toy duck 16.01 29.80 

House 16.01 20.10 

    Table 2. Summary for images on Spiral Architecture 
From the above experimental results, it is obvious that 
adopting fractal image compression on Spiral Architecture 
would be able to achieve higher compression ratio with 
little trade-off in the image quality. 



6 Conclusions  
The fundamental principle of fractal image compression 
consists of the representation of an image by fractals that 
are ‘collaged’ together to approximate the original image. 
Each fractal is the fixed point of an Iterated Function 
System, which involves a number of contractive 
transformations. Then the coefficients of those 
transformations are saved as the compressed file. In this 
way, an image is able to b e represented by a series of codes 
rather than pixels. This feature distinguishes fractal image 
compression from any other method. However, at this 
stage the major problem is how to find a set of IFSs 
efficiently and effectively so that the fix points of which 
can collage together and best resemble a given image. 
Spiral Architecture is a novel image structure, which has 
hexagonal but not square pixels as elements. It has been 
proved that Spiral Architecture has two advantages in 
image compression: locality of pixel intensity and uniform 
partitioning. Therefore, adapting fractal image 
compression into Spiral Architecture should also see some 
better compression performance. Following the similar 
idea in square architecture we take a cluster of seven 
hexagons as a range block and 49 hexagons as a domain 
block. Then we define the domain pool as the 343 domain 
blocks around the given range block unless the domain 
block is out of the given image. According to the 
experimental results, we have found that Spiral 
Architecture has a great potential in improving fractal 
image compression. It will improve the compression ratio 
with little trade-off in image quality. Furthermore, 
considering the advantages offered by Spiral 
multiplication in searching the best match between range 
blocks and domain blocks, similar or even better image 
quality could be achieved and the encoding time is 
expected to be reduced as well.  
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