
Graphics Hardware based Efficient and Scalable Fuzzy C-Means

Clustering

S.A. Arul Shalom
1
 Manoranjan Dash

2
 Minh Tue

3

1, 2
 School of Computer Engineering,

Nanyang Technological University,

Block N4, Nanyang Avenue, Singapore 639798

1
 sall0001@ntu.edu.sg

2
 asmdash@ntu.edu.sg

3
NUS High School of Mathematics and Science,

20 Clementi Avenue 1

Singapore 129957

3
 h0630082@nus.edu.sg

Abstract

The exceptional growth of graphics hardware in

programmability and data processing speed in the past few

years has fuelled extensive research in using it for general

purpose computations more than just image-processing

and gaming applications. We explore the use of graphics

processors (GPU) to speedup the computations involved in

Fuzzy c-means (FCM). FCM is an important iterative

clustering algorithm, and usually performs better than

k-means. But for large data sets it requires substantial

amount of time, which limits its applicability. FCM is an

iterative algorithm that involves linear computations and

repeated summations. Moreover, there is little reuse of the

same data over FCM iterations (i.e., the centre of the

clusters change in each iteration) and these characteristics

make it a good candidate to be mapped to the parallel

processors in the GPU to gain speed. We look at efficient

methods for processing input data, handling intermediate

results within the GPU with reusability of shader programs

and minimizing the use of GPU resources. Two previous

implementations of FCM on the graphics-processing unit

(GPU) are also analysed. Our implementation shows speed

gains in computational time over two orders of magnitude

when compared with a recent generation of CPU at certain

experimental conditions. This computational time includes

both the processing time in the GPU and the data transfer

time from the CPU to the GPU.

Keywords: Fuzzy c-means, GPGPU, Clustering, Parallel

Computation

1 Introduction

Clustering finds out hidden patterns in the data set by

grouping similar data objects together. It does not require

any prior knowledge of the data objects and about the

groups they belong to. Typically there are three types of

Copyright © 2008, Australian Computer Society, Inc. This paper

appeared at conference Seventh Australasian Data Mining

Conference (AusDM 2008), Glenelg, Australia. Conferences in

Research and Practice in Information Technology, Vol. 87. John

F. Roddick, Jiuyong Li, Peter Christen and Paul Kennedy, Eds.

Reproduction for academic, not-for-profit purposes permitted

provided this text is included.

clustering algorithms: partitioned, hierarchical and density

based. (Jain, Murty and Flynn 1999). In the partitioned

clustering algorithm (MacQueen 1967) the number of

clusters is specified and the clustering algorithm uses

similarity measure to determine the clusters. Hierarchical

clustering (Guha, Rastogi and Shim 1998) can be

divisional or agglomerative. In the agglomerative

hierarchical clustering algorithm, each data object is

considered as a cluster and the closest pair of clusters is

merged in iteration repeatedly until there remains only one

cluster, thus producing a dendrogram. The dendrogram can

be used to obtain the clusters as per the required number of

clusters. Density based clustering (Ester, Kriegel, Sander

and Xu 1996) is based on density parameters. Data objects

are considered connected to a cluster or disconnected

depending on the density parameters. In this paper we

focus on an important partitioned clustering algorithm

called fuzzy c-means (FCM) (Bezdek 1981).

The k-means clustering method or the hard c-means

algorithm groups n objects in a data set into c clusters. To

begin this iterative process, the initial c cluster centres are

predetermined. In hard clustering, data is divided into

distinct clusters, where each data element belongs to

exactly one cluster. In fuzzy clustering, such as FCM, data

elements can belong to more than one cluster. Each data

element is associated with a set of membership values.

These indicate the strength of the association between that

data element and a particular cluster.

As will be shown in later section, FCM is based on the

standard least squared errors model. FCM is very popular

due to several reasons. It can be generalized in many ways.

Arguably it is much easier to generalize FCM than the hard

c-means clustering. For example, the memberships are

generalized to include possibilities; the distance used has

been generalized to include Minkowski (non-inner product

induced) and hybrid distances; there are versions of FCM

for very large data sets that utilize both progressive

sampling and distributed clustering; there are many

techniques that use FCM clustering to build fuzzy rule

bases for fuzzy systems design; and there are numerous

applications of FCM in virtually every major application

area of clustering (Wiki 2008). The various high volume

data visualization applications of FCM include image

segmentation, multi-spectral image compression, remote

sensing, object recognition, biological sequence analysis,

clustering co-expressed genes, and to hybridise various

other data mining algorithms.

Clustering large amounts of data takes a long time. To

cluster these large data sets, either sampling is required to

fit the data in memory or the time will be greatly affected

by disk accesses making iterative clustering (e.g.,

k-means, fuzzy c-means) an unattractive choice for data

analysis. In this paper we focus on how to ease the

computational bottleneck of FCM on large data sets using

graphics processors (GPU).

Many researchers are able to use GPU for data mining

algorithms over large data sets (Owens, Luebke,

Govindaraju, Harris, Krüger, Lefohn and Purcell 2005).

This area of research is known as GPGPU (General

Purpose Computations using GPU). Although GPUs are

quite powerful due to their internal architecture they

favour algorithms that can be structured as streaming

computations often realizing notable performance gains

(Fatahalian, Sugerman and Hanrahan 2004). Streaming

computations can be characterized as being highly parallel

and numerically intensive. One such suitable application is

FCM. It is streaming in nature but its data (the centroids)

change from iteration to iteration. Hard c-means (k-means)

which is the primate of the FCM is efficiently

implemented in the GPU (Arul, Dash and Tue 2008).

In Section 2 we briefly discuss the GPU hardware

features that enhance its application in GPGPU. Section 3

describes briefly the previous FCM implementations on

the GPU and their results. In Section 4 our proposed

implementation and its novelties are discussed addressing

scalability issues. Section 5 discusses experimental setup,

shows the analysis and results. Section 6 is the conclusion

with a brief discussion on future expansions on FCM and

other clustering methods using GPU.

2 Exploiting the Modern Graphics Hardware

for General-Purpose Computations

The GPU has tremendous image processing capabilities

such as vertex transformation, lighting computations,

clipping and culling of images using its highly parallel

hardware pipeline. For instance, the massively parallel

GPU, Nvidia’s GeForce 8800 GTX, consists of 128

individual stream processors each running at 1.35 GHz

clock frequency, with very high memory bandwidth of

86.4 Gigabytes per second. (NVIDA: GeForce 8800

Architecture Technical Brief 2008). The GeForce 8800

GPU’s shader architecture is designed for extreme 3D

graphical performances, producing near reality image

quality for delighted gaming performances, which is its

traditional forte. Figure 1 shows the block diagram of the

GeForce 8800 GPU, which shows the various stages of the

parallel programmable processors.

2.1 GPU as a Low Cost High Power

Computational Processor

In Figure 1 the host forms the interface block between the

CPU and the GPU. In graphics processing, the host

receives the commands from the CPU, geometric data and

other display data. The input data from the CPU is

assembled and formatted before the next stage of graphics

processing. Each of the GPU’s internal processors could

be assigned to a specific shader program. Shaders are short

lines of codes that run on the stream processors which

process incoming stream data and send the computed data

to output buffers or textures. The stream processors are

grouped in a manner so that computational resources can

be efficiently mapped to these processors. The processed

data can be sent as stream data to other stream processors

for further processing. Such computations are possible due

to data independency in graphics processing. This also

permits multiple shader programs to run on the processors,

each shader accessing data in parallel that is linked to the

stream processor.

The stream processing capabilities of the GPU makes it

highly applicable to implement general-purpose

computations. Computations to be implemented in the

GPU will need to be mapped appropriately using the

hardware resources such as textures and frame buffers.

The programmability of the stream processor is

achieved using shader programs. Various general-purpose

computations such as physical simulations, image

processing and data mining algorithms have been

implemented on GPU, harnessing its computational power

and programmability to improve computational efficiency

as compared to the CPU (Owens, Luebke, Govindaraju,

Harris, Krüger, Lefohn and Purcell 2005). The GPU thus

has become a low cost commodity processor with high

computational power, for which the growth is heavily

driven by the gaming industry. The cost of the speed

gained from using such a GPU is much lower than the

CPU based massive parallel processors. We intend to

efficiently implement the FCM computations using GPU.

Figure 1: GeForce 8800 GTX Block Diagram

3 FCM Algorithm and Existing GPU based

Implementations

The FCM algorithm can be summarized using the

following simple steps:

1. Initialise cluster memberships

2. Calculate cluster centres

3. Update cluster memberships

4. Check stopping condition, else go to Step 2.

The FCM algorithm partitions a set of feature vectors xi

into c clusters by minimizing the objective function given

by J(Uij, Cj) in equation 0, where m is a real integer greater

than 1, Uij denotes the degree of membership of the

d-dimensional vector xi in the cluster j and Cj is the centre

of that cluster. The norm ||*|| expresses the closeness of the

vector to its cluster centre.

2||||),(ji

m

ijjijij cxUCUJ   (0)

In this iterative fuzzy partitioning optimization process on

the data set of size n, the cluster memberships Uij of each

observation i, to the c clusters is computed by equation (1).

  




c

k

m

kijiij cxcxU
1

)1/(2

)()(1 (1)

This equation is also used for cluster centroid updates,

where m is the fuzzifier. The value m determines the

amount of fuzziness. The value of m can be chosen from

(1, ∞). A value of m=1 produces a hard clustering. As m

approaches ∞ the solution approaches its maximum degree

of fuzziness. It is often chosen on empirical grounds to be

equal to 2. In FCM, the fuzzy centroids depend on the

current membership values and all the individual

observations i. The fuzzy centroid Cj is computed using

the equation (2).

 


n

i

m

ij

n

i i

m

ijj UxUC
11

 (2)

This iteration will stop when the termination criterion

given in equation (3) is fulfilled,  is a termination

criterion between 0 and 1.

 |}{| 1 k

ij

k

ijij UUMax (3)

The steps of the FCM algorithm are further briefly

explained here. The first step involves the initialisation of

the initial cluster memberships and also includes the

initialisation of the clustering variables. The value for m is

chosen to be 2, the number of clusters c is set as predefined

for the n number of observations in the data set. The

distance between the c initial clusters and the individual

observations are computed, which is the inner product

norm between the vectors. To end step 1, the values of the

cluster memberships for each observation is computed

using equation (1).

In the second step the centre of the clusters is calculated

using equation (2). The fuzzy centroid Cj represents the

vector location of the centre of the i
th

 cluster. The cluster

centres are thus computed for the all the c clusters.

In the third step the memberships are updated with the

new values based on the distances of each observation to

each of the cluster centre. Equation (1) is again used for

this computation.

In the last step, the algorithm is checked for its stopping

condition using equation (3). The stopping condition

should be predefined. If the error between the current

cluster centres and the corresponding previous centres are

less than 0.00001, the computations of the algorithm ends.

In fuzzy c-means iterations, the utilization of

computational resources is high and is mainly contributed

by:

1. Distance computation between the objects and the

cluster centres.

2. Computing the degree of membership for all objects

in every cluster.

3. Computing new cluster centres as a function of the

degree of membership.

The implementation of FCM in the GPU will reduce the

computational time, utilizing the computational resources

of the Graphics hardware.

3.1 Previous GPU Implementations of FCM

There are two previous works where FCM has been

implemented in the GPU (Harris and Haines 2005),

(Anderson, Luke and Keller 2007). Reduction in

computational time in the order of 2x times has been

achieved from a non-iterative GPU implementation when

compared to the CPU FCM (Harris and Haines 2005). This

implementation is able to handle huge number of

observations, but not scalable in terms of dimensions and

the number of clusters. In the second work, the authors

present a FCM with non-Euclidean distance computation

metric and have demonstrated processing time gains of

over two orders of magnitude for certain configurations of

FCM, where different combinations of data size,

dimension size and clusters are used.

While implementing the FCM on the GPU the

following considerations are to be carefully made so as to

avoid the drawbacks of the previous FCM implementation

(Anderson, Luke and Keller 2007). (1) Limitation on the

number of textures that can be fetched by the fragment

programs: For instance, if the GPU has 16 fragment

processors, the maximum number of textures that can be

accessed at any one time is limited to 16. (2) Minimum use

of textures per cluster to avoid memory constraints: For

instance, while computing large number of clusters, if

enough care is not taken, the number of textures required

for handling cluster membership values will be large. (3)

Maximum reuse of shader programs to increase

portability.

4 Efficient and Scalable Implementation of

FCM on the GPU

In our GPU-based FCM implementation, the various

iterative components of the algorithm are executed in the

fragment processor using shaders. Textures are memory

locations in the GPU, which are used to store the distance

and the membership matrices. Multiple dimensions in the

incoming data are handled by using partial sum of squared

distance computations and stored in the distance textures.

All textures use ‘Luminance’ as internal data format. A

speed gain over two orders of magnitude has been

achieved for a 79 dimensional yeast gene expression

dataset which has about 64k observations. Figure 2 shows

the FCM scheme that is implemented on the GPU. The

CPU provides the control on the execution of the

algorithm; the required number of iterations, control loop

branching and the checking of stop condition. The inherent

parallelism of the GPU is exploited and used for the

iterative computations in the FCM algorithm such as

distance computations, membership computations, and

computation of cluster centres. The execution steps of

FCM in GPU are quite similar to the implementation in

CPU. In the next section we discuss the steps involved in

our GPU based FCM implementation briefly.

Figure 2: GPU Implementation Scheme of Fuzzy

c-means Clustering Algorithm

4.1 GPU based FCM Functions

Parts of the algorithm are computed in a way that the

parallelism of the GPU hardware can be exploited to make

it efficient. The major steps in our implementation of the

FCM algorithm on the GPU are stated below and further

discussed.

1. Create initial membership matrix for all n data

observations with respect to each cluster.

2. Initialize the c cluster centers from the n data vectors.

3. Compute sum partial deviations between the c cluster

centers and the n data vectors.

4. Compute the ratio between the sum partial deviations

of the cluster being compared to each other cluster.

5. Store ratio of sum partial deviations in textures, one

per cluster.

6. Compute exponentiation of all the deviation textures.

7. Compute partial memberships for all observations per

cluster.

8. Compute the membership values via summation of

partial memberships.

9. Transfer the summed membership values to CPU.

10. Compute new cluster centers in the CPU.

The initial membership matrix Uij is randomly

generated for all the n observations with respect to each

cluster. The initial Uij is made the same for both the GPU

and CPU implementations by using the same seed in the

random generation of membership values. Initial cluster

centres (Cj) are identified. The deviations between these

cluster centres and each of the data vectors are computed

and summed. The deviations between the cluster centre

and data vectors are computed partially. The partial

computation of deviations is repeated d times and

summed, where d is the number of dimensions in the data

vector. Texture reduction technique is employed for all

summations. The ratio of the deviations between each

cluster centre being compared with each individual data

point and the other deviations as in equation (1) is

computed. These ratios are stored in textures one per

cluster. After the computations are complete for d

dimensions, all these textures are simultaneously raised to

the power of 2/(m-1). The inverse of the resultant texture

will produce the iterated membership texture matrix Uij.

Using the membership values the new cluster centres are

computed. For this operation, the summation of the

product of membership texture and the input data objects

and the summations of the membership textures are

obtained in the GPU. These summations per cluster per

iteration are transferred to the CPU and repeated for d

dimensions. So the number of transfers is in the order of d

* c * number of iterations. In the CPU the new cluster

centres (Cj) are compared with the previous cluster centres

(Ck) and the decision is made whether to continue or stop

the iteration based on the stopping condition. The error

between the current cluster centres and the previous should

be less than 0.00001. Table 1 lists the shader programs

used to accomplish these computations and the major

purpose of each shader program.

4.2 Scalability in the GPU based FCM
In data mining scalability means to take advantage of the

existing parallelism and design solutions to solve a wide

range of problems without needing to change the

underlying implementation. We realize scalability via (1)

data representation in the GPU memory, (2) operational

flexibility on data dimensions and (3) ability to

accommodate data sets with higher dimensions. Data

representation is handled by accessing individual

dimensions across all data objects. So it is easier to

perform computations on huge data sets. Moreover, using

our GLSL implementation it is easier to perform various

operations on the dimensions. It is also simpler to

reconfigure the shaders for higher dimensions, since

partial computations are done across the data vectors and

large number of clusters, thus being more adaptable and

flexible, compared to previous implementations. Most

notably, scalability is achieved since there is no necessity

to define huge textures and redesign the fragment shader

codes, as was the case for the earlier algorithms.

No. FCM Functions Function call Fragment Shaders Purpose of the steps in GPU based FCM

I
Distance

Computations (GPU)
Computation0()

glslProgram0() Sets initial textures with zeros

glslProgram1() Computes the distances; summation of partial distances

II
Calculating the

exponential (GPU)
glslProgram4()

Computes the exponentials of the distance deviations in the

membership matrix

III
Partial Summations
(GPU)

Computation1()
glslProgram0() Sets initial textures with zeros

glslProgram2() Computes partial summation across all textures

IV
Partial membership

computations (GPU)
Computation2()

glslProgram3a()
Computes partial memberships based on distance and

partial sums

glslProgram3b()
Multiplies the memberships with coordinates to obtain the
membership * cluster member product

glslProgram3c() Computes the summation of the membership values

V

Update of new

cluster centroids
(CPU)

- -

Computes the new centroids by dividing the membership *

cluster member product by the summed membership
values to obtain fuzzy centroids

Table 1: Summary of the FCM Steps and the Fragment Shaders used for Computations

F e a tu re

ve c to rs

te x tu re 1

F e a tu re

ve c to rs

te x tu re 2

F e a tu re

ve c to rs

te x tu re i

D is ta n ce

m a trix

te x tu re

F e a tu re

ve c to r

m e m b e rsh ip

te x tu re

C lu s te r1

te xtu re

C lu s te r2

te xtu re

C lu s te r k

te x tu re

U p d a te d

C e n tro id

te x tu re

S to p p in g

C o n d itio n

F
ra

g
m

e
n
t

S
h
a
d
e
r

F
ra

g
m

e
n
t

S
h
a
d
e
r

F
ra

g
m

e
n
t

S
h
a
d
e
r

F
ra

g
m

e
n
t

S
h
a
d
e
r

Partial

Summation

Texture

Centroid

Update in

CPU

F e a tu re

ve c to rs

te x tu re 1

F e a tu re

ve c to rs

te x tu re 2

F e a tu re

ve c to rs

te x tu re i

D is ta n ce

m a trix

te x tu re

F e a tu re

ve c to r

m e m b e rsh ip

te x tu re

C lu s te r1

te xtu re

C lu s te r2

te xtu re

C lu s te r k

te x tu re

U p d a te d

C e n tro id

te x tu re

S to p p in g

C o n d itio n

F
ra

g
m

e
n
t

S
h
a
d
e
r

F
ra

g
m

e
n
t

S
h
a
d
e
r

F
ra

g
m

e
n
t

S
h
a
d
e
r

F
ra

g
m

e
n
t

S
h
a
d
e
r

Partial

Summation

Texture

Centroid

Update in

CPU

5 Experimentations on GPU based FCM

The objective of this experiment is to implement the

traditional FCM algorithm on a GPU to form fuzzy

clusters. Compare its performance with an equivalent

implementation of the same algorithm on a desktop CPU.

In both implementations initial membership values were

randomly generated and made the same using a common

random generated seed. The detailed experimental setup

and the evaluation of the results are discussed in the next

three sections below. The novelties of our implementation

and the challenges are discussed subsequently.

5.1 The Experimental Setup

The algorithm is executed on 2 Nvidia’s GPUs; viz.

GeForce 8500 GT, which is considered as a mid-range

graphics processor, and a GeForce 8800 GTX, which is

considered as a high-end graphics processor. The results

obtained are compared with that obtained from their

corresponding CPU counter parts, which are Pentium4

(D), 3.0 GHz CPU and a Pentium(R), 1.5 GHz CPU

respectively. The performance of the GPU on the

computations heavily depends on the hardware

characteristics and hence the GPU configurations are

described in this section. The 8500 GPU has 16 fragment

shaders processing texels to pixels at a memory clock rate

of 800 MHz and 512MB of video memory. The peak

memory bandwidth is 12.8 GB/sec. The 8800 GPU has

128 total stream processors with a memory clock rate of

900 MHz and 512MB of video memory. The peak memory

bandwidth is 86.4 GB/sec. The experiments will involve

the following:

1. Complete the GPU based FCM iterations until the

stopping criterion is satisfied and measure the

computational time (GPU processing time + data transfer

time) for various combinations of n, d and c. Repeat the

same on the corresponding CPU and measure the

computational time.

2. Use synthetic data to conduct efficiency studies. The

size of data, size of dimensions and the cluster numbers

will be varied in order to understand the computational

efficiency, and the GPU to CPU data processing time ratio.

3. Use the yeast gene expression data set, which has 79

dimensions with about 65k genes (Arul, Dash and Tue

2008), to compare the performance of both the GPUs over

their CPU counterparts.

4. Analyse the data transfer time (CPU to GPU) and

computational time (time/iteration).

5. Perform regression on the data summarized from the

8800 GPU studies to understand the effect of the cluster

parameters n, d and c on computational efficiency.

From the above experiments we intend to analyse the

following performance metrics to compare and understand

the benefits and challenges in using GPU for the FCM

computations, which can be then generalized to other

general-purpose computations.

1. Accuracy of the cluster centres formed by the GPU

as compared to the centres from the CPU.

2. Raw computational time (Ct) comparison between

the GPU and the CPU.

3. Comparison of the computational efficiency which is

obtained from the ratio of (CPU computational time per

iteration) / (GPU computational time per iteration).

4. Comparison of the processing speed gain, (Pt ratio)

which is the ratio of the (CPU computational time) / (GPU

computational time – Data transfer time, Tt)

5. The influence of the FCM factors such as c clusters,

input data size n and d dimensions on the GPU

computational time per iteration.

5.2 Experimental Results Evaluation

The accuracy of the GPU cluster centres as compared to

that from the CPU was determined using Mean Square

Error (MSE) between the cluster centres from both the

CPU and the GPU. With data sizes more than 65k,

dimensions up to 10 and for 4 clusters the MSE was in the

order of 10
-8

 to 10
-11

. This insignificant error is due to the

lower floating-point precision in GPU compared to that of

the CPU. This insignificant error shows that the clusters

formed by the GPUs are reliably accurate.

The results obtained from the GeForce 8800 GTX GPU

as compared with the Pentium(R), 1.5 GHz CPU are

substantial. In our implementation we show that the

computational efficiency (CPU computational time per

iteration) / (GPU computational time per iteration) ranging

from 20x to 94x times. Note that number of iterations

required satisfying the stopping criterion may vary

between CPU and GPU because of GPU’s limited

precision. So, if we consider the total time ignoring the

difference in number of iterations, then we get the

following equation: overall speed gain = (total time taken

by GPU/time taken by CPU) which is almost of the same

order: 20x to 95x times based on various combinations of

factors such as d, n and c.

The results obtained from the mid-range GeForce 8500

GT GPU as compared with the Pentium4 (D), 3 GHz CPU

are also promising. Results show that the computational

efficiency ranges from 14x to 43x times and overall speed

gain is almost of the same order: 14x to 53x times.

The results of the various experiments are graphically

summarized, shown and discussed in the next section.

Figure 3 shows the comparison of the computational time

(Ct) between the two GPUs and their corresponding CPU

counterparts.

5.3 Discussion on the Results
When the data size is small (say, 2048), the GPU seems

to be slower or just the CPU is as good as the GPU in

computing as seen in Figure 3. This comparison shows the

raw computational time taken by both the CPU and the

GPU ignoring the number of iterations. It can be seen that

as the data size increases, there is tremendous speed gain

in the GPU computation. When the data size is small,

many parallel processors and memory resources are left

unused, but when the data size is large, the utilization of

the GPU resources is maximized. The GeForce 8800 GPU

is able to complete the tasks of forming 4 fuzzy clusters

from 1 million 4 dimensional data objects within 0.91

seconds where as the corresponding CPU could take up to

87.8 seconds. The GeForce 8500 GPU is able to complete

the same task in 6 seconds when its CPU takes 313.8

seconds to complete the task. It can also be noted that

almost 77% of computational time (Ct) of GPU is taken up

by the data transfer time (Tt) from the GPU to the CPU.

Figure 4 shows the comparison of the computational

efficiency between the two GPUs. The processing time

ratio is also compared to show how fast it is to process data

within the GPU.

As the data size increases, the computational efficiency

of the GPUs in implementing the FCM algorithm increases

ranging from 20x to 94x times. The computational

efficiency takes the GPU to CPU data transfer time and the

actual processing time into account. To have a fair

comparison with the implementation in (Anderson, Luke

and Keller 2007) we also compare the processing time

ratio from the two GPUs. It can be noticed in Figure 4 that

depending on the GPU used, the processing time can be as

fast 924x times when the data size is over 1 million. Figure

5 compares the computational efficiency and the

processing time ratios of the GPUs in implementing the

FCM algorithm for various sizes of clusters and

dimensions. This comparison shows that as the size of the

dimensions increase, the performance of the GPUs drop

slightly, still being about 19x to 31x times faster than the

CPUs. This drop is attributed to the scheme of our

implementation, where we minimize the use of distance

textures for any size of dimensions. By doing so, the

implementation becomes more generic and scalable to any

number of dimensions. We also used the complete set of

yeast gene expression data, which had 79 dimensions and

65k observations, and the results are summarized in Table

2. The Pt ratio which compares the CPU to GPU

processing times shows that our implementation

outperforms the results from the previous implementation

(Anderson, Luke and Keller 2007), for both low and high

dimensional data.

Cluster

Size

GeForce 8800 GTX GeForce 8500 GT

Efficiency Pt Ratio Efficiency Pt Ratio

4 19.5 112.5 12.5 24.4

8 20.8 129.4 26.8 60.6

16 21.7 141.8 20.7 41.2

32 21.9 137.9 34.2 73.1

64 23.5 131.0 22.1 35.2

Table 2: Comparison of Computational Efficiency and

Processing Time between the Two GPUs

5.4 Novelties in our GPU-FCM Implementation

and Comparisons

The following are the novelties in our FCM

implementation:

1. For any size of d, we use only two input textures for

data transfer and distance computations. So the number of

texture sizes depends only on the data size and not on the

dimensions. Thus the implementation is scalable and there

is no need to expand the number of textures and change the

fragment shader codes due to increase in d.

In the previous implementation (Anderson, Luke and

Keller 2007), individual textures are used to pack the data

sets thus limiting the number of dimensions allowed in a

texture, while increasing the number of data objects. In

this scheme, computation on any data object would require

to access a number of textures. For instance, if there are 64

dimensions then in the previous implementation they

would divide the dimensions into groups of 4 each,

perform partial computations on each group followed by

the final computation on these partial computations. But in

our scheme, we store each data object in its entirety in a

single texture, thus avoiding the extra computation

required to perform the final computation from partial

computations. The fragment program for such a scheme is

complex.

2. During membership computation in FCM effectively

only one cluster centre is involved at a time, so there is no

need to maintain a huge membership texture of size c * n.

In our implementation we use an n * n texture per

cluster centre per membership computation and we repeat

this c times. It helps in better management of GPU

memory (textures).

3. In the membership computation step, the summations

of the ratio of deviations of each data point to the cluster

centre and the deviation of each data point to the previous

cluster centre are stored in an n * n texture per cluster

centre. The novelty is that all the c textures are

simultaneously raised to the power of 2/(m-1). This helps

in speeding up of the computations in the GPU.

5.5 Research Challenges

In our implementation of the FCM in GPU, we find the

following research challenges:

1. The fuzzy cluster partial sums are transferred from

the GPU to the CPU and the fuzzy centroids are updated in

the CPU. This GPU to CPU data transfer time is about 70

to 77% of the total computational time taken by the GPU,

which is a potential issue for further research and shader

optimization.

2. The computational efficiency varies with the data

size-n, number of dimensions-d and number of clusters-c.

We intend to determine which of these factors influence

the GPU efficiency the most, so that textures and shaders

could be rearranged to maximize efficiency. From the

studies conducted so far using GeForce 8800 GTX, we use

regression analysis to identify the significance and

contribution of each of these factors to the computational

efficiency of GPU. Regression analysis showed that all the

four factors including the intercept are significant with

95% confidence and the R
2
adjusted is 97.4%. The

coefficients of the factors are plotted in Figure 6 for

relative comparison.

From Figure 6 it can be noted that the dimension size d

and the cluster size c have more influence on the GPU

efficiency. The positive coefficients denote that as d and c

in a given data set increases, the GPU is expected to be

more efficient in performing the computation.

3. The use of very large sets of data may pose a

limitation on execution speed depending on the size of the

graphical memory. The speed also depends on the graphics

processor hardware being used. The Nvidia 8800 used in

our implementation supports textures of sizes up to 8192 x

8192; which means data sizes as big as 67 million could be

handled. More care should be taken while implementing

shaders to handle huge data sets which may exceed the size

of the textures, which can be further explored. It is also

vital to note the number of textures that could be

simultaneously used by the fragment shader depends on

the number of independent stream processors available in

the GPU used.

These issues will lead us into the next stage of research

to identify and generalise suitable implementation

architectures for FCM and other clustering problems. The

optimisation of FCM by selecting optimal number of

clusters using standard FCM performance indices is one

such application. Experiments will be conducted to

explore the limitations posed by the GPU fragment

processors and size of textures vs. the size of input data.

Figure 3: Comparison of Raw Computational Time between the GPU and CPU in Implementing FCM

Figure 4: Comparison of Computational Efficiency and Processing Time between the two GPUs used in

Implementing FCM

Figure 5: Comparison of Computational Efficiency and Processing Time between the two GPUs used in

implementing FCM with Various Dimension Sizes and Cluster Sizes.

0.91

87.8

6.0

313.8

0.01

0.1

1

10

100

1000

2048 4096 8192 16384 65536 262144 1048576

Data Size, n

L
og

 T
im

e
in

 s
ec

on
d

s

GeForce 8800 GTX Ct

GeForce 8800 GTX to CPU Tt

CPU P4(R) 1.5GHz Ct

GeForce 8500 GT Ct

GeForce 8500 GT to CPU Tt

CPU P4(D) 3.0GHz Ct

Synthetic data, d=4, c=4, m=2

94.4

924.4

43.3

669.2

0.1

1.0

10.0

100.0

1000.0

2048 4096 8192 16384 65536 262144 1048576

Data Size, n

L
og

 R
at

io
 o

f
T

im
e

GeForce 8800 GTX

Efficiency

GeForce 8800 GTX Pt ratio

GeForce 8500 GT Efficiency

GeForce 8500 GT Pt ratio

Synthetic data, d=4, c=4, m=2

19.0

61.7

31.1

52.7

1.0

10.0

100.0

1000.0

2 4 8 16 64

Dimensions, d

L
o
g
 R

a
ti

o
 o

f
T

im
e

GeForce 8800 GTX

Efficiency

GeForce 8800 GTX Pt ratio

GeForce 8500 GT Efficiency

GeForce 8500 GT Pt ratio

Yeast gene expression data, n=65536, c=4, m=2

33.5

188.1

30.0

47.4

1.0

10.0

100.0

1000.0

3 4 8 16 64

Cluster Size, c

L
o
g
 R

a
ti

o
 o

f
T

im
e

GeForce 8800 GTX

Efficiency

GeForce 8800 GTX Pt ratio

GeForce 8500 GT Efficiency

GeForce 8500 GT Pt ratio

Synthetic data, d=4, n=65536 , m=2

6 Conclusion and Future Extendibility

The scheme we have devised for implementing the FCM

algorithm in GPU is giving very significant gains over its

counterpart CPU. Speed gains up to 140x times on GPU

8800GTX and up to 73x times on GPU 8500GT is

realized. In our analysis with the earlier implementations

we found that for FCM in high dimensional large data sets,

many factors need to be considered very carefully to

improve GPU effectiveness. For instance, if the number of

dimensions is large then it benefits by keeping all the

dimensions in one texture rather than splitting it into many

textures. We are able to handle any number of dimensions

and clusters without the need for defining new textures and

change of fragment programs. Thus we make the

implementation scalable.

We effectively use the GPU resources for membership

computations by exponentiation all the textures per cluster

centre simultaneously by using a single execution of the

shader. This helped in performance boosting. Using our

implementation scheme any distance metrics such as

Manhattan and other non-Euclidean distances can be

implemented easily in our program, without the need to

change other fragment programs which do involve in

distance computations.

Figure 6: FCM Factors Influencing Computational

Efficiency of GPU

Transfer of cluster summation data in iterations to the

CPU for computing the new cluster centres takes about

77% of the total time while performing the computation in

the GPU. Instead, this computation can also be

implemented in the GPU so as to reduce this heavy

overhead due to data transfer, especially when handling

high dimensions and possibly large number of clusters.

The shader programs we have used for this

implementation of FCM are not optimised for the latest

GeForce 8800 GTX and beyond. The decoupling of

mathematical operations and the texture operations of the

latest GPU architectures will be utilized to further improve

the efficiency, leveraging on CUDA. Performance index

computations on GPU to identify optimal number of fuzzy

clusters will also be investigated.

7 References

Jain, A.K., Murty M.N., and Flynn P.J. (1999): Data

Clustering: A Review, ACM Computing Surveys, Vol

31, No. 3, 264-323.

MacQueen, J. B. (1967): Some Methods for classification

and Analysis of Multivariate Observations, In

Proceedings of 5-th Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley,

University of California Press, 1:281-297.

Guha, S., Rastogi, R., and Shim, K. (1998): CURE: An

efficient clustering algorithm for large databases. In

Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 73--84,

New York.

Ester, M., Kriegel, H., Sander, J., Xu, X., (1996): A

Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise, In Proceedings of

2nd International Conference on KDD. AAAI Press.

Bezdek, J. C. (1981): Pattern Recognition with Fuzzy

Objective Function Algorithms. Plenum Press, New

York.

Free Encyclopaedia: GNU Free Documentation, Wiki

Software, http://www.wikipedia.org/. Accessed 20 May

2008.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,

Krüger, J., Lefohn, A. E., Purcell, T. J. A (2005): Survey

of General-Purpose Computation on Graphics

Hardware. Eurographics.

Fatahalian, K., Sugerman, J., Hanrahan, P. (2004):

Understanding the efficiency of GPU algorithms for

matrix-matrix multiplication, In Proceedings of the

ACM SIGGRAPH/ Eurographics conference on

Graphics hardware.

Arul, S., Dash, M., and Tue, M. (2008): GPU-based fast

k-means clustering of gene expression profiles”, In

Proceedings of 12th Annual International Conference

on Research in Computational Molecular Biology

(RECOMB. Singapore.

Arul, S., Dash, M., and Tue, M. (2008): Efficient K-means

Clustering Using Accelerated Graphics Processors,

Accepted for International Conference on Data

Warehousing and Knowledge Discovery (DAWAK).

NVIDA: GeForce 8800 Architecture Technical Brief,

http://static.tigerdirect.com/pdf/NVIDIA_GeForce8800

_GPU_Architecture_Technical_Brief.pdf. Accessed 12

January 2008.

Harris, C. Haines, K. (2005): Iterative Solutions using

Programmable Graphics Processing Units, In

Proceedings of the 14th IEEE International Conference

on Fuzzy Systems, pages: 12- 18.

Anderson, D., Luke, R. H., Keller, J. M. (2007):

Incorporation of Non-Euclidean Distance Metrics into

Fuzzy Clustering on Graphics Processing Units,

Analysis and Design of Intelligent Systems using Soft

Computing Techniques.

-0.0049

0.0012

0.0013

0.0000

-0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002

Intercept

Data Size, n

Clusters, c

Dimensions, d

In
d

e
p

e
n

d
e

n
t

F
a

c
to

rs

Regression Coefficients

http://www.wikipedia.org/
http://static.tigerdirect.com/pdf/NVIDIA_GeForce8800_GPU_Architecture_Technical_Brief.pdf
http://static.tigerdirect.com/pdf/NVIDIA_GeForce8800_GPU_Architecture_Technical_Brief.pdf

