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Abstract 

The exceptional growth of graphics hardware in 

programmability and data processing speed in the past few 

years has fuelled extensive research in using it for general 

purpose computations more than just image-processing 

and gaming applications. We explore the use of graphics 

processors (GPU) to speedup the computations involved in 

Fuzzy c-means (FCM). FCM is an important iterative 

clustering algorithm, and usually performs better than 

k-means. But for large data sets it requires substantial 

amount of time, which limits its applicability. FCM is an 

iterative algorithm that involves linear computations and 

repeated summations. Moreover, there is little reuse of the 

same data over FCM iterations (i.e., the centre of the 

clusters change in each iteration) and these characteristics 

make it a good candidate to be mapped to the parallel 

processors in the GPU to gain speed. We look at efficient 

methods for processing input data, handling intermediate 

results within the GPU with reusability of shader programs 

and minimizing the use of GPU resources. Two previous 

implementations of FCM on the graphics-processing unit 

(GPU) are also analysed. Our implementation shows speed 

gains in computational time over two orders of magnitude 

when compared with a recent generation of CPU at certain 

experimental conditions. This computational time includes 

both the processing time in the GPU and the data transfer 

time from the CPU to the GPU. 

Keywords:  Fuzzy c-means, GPGPU, Clustering, Parallel 

Computation 

1 Introduction 

Clustering finds out hidden patterns in the data set by 

grouping similar data objects together. It does not require 

any prior knowledge of the data objects and about the 

groups they belong to. Typically there are three types of  
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clustering algorithms: partitioned, hierarchical and density 

based. (Jain, Murty and Flynn 1999). In the partitioned 

clustering algorithm (MacQueen 1967) the number of 

clusters is specified and the clustering algorithm uses 

similarity measure to determine the clusters. Hierarchical 

clustering (Guha, Rastogi and Shim 1998) can be 

divisional or agglomerative. In the agglomerative 

hierarchical clustering algorithm, each data object is 

considered as a cluster and the closest pair of clusters is 

merged in iteration repeatedly until there remains only one 

cluster, thus producing a dendrogram. The dendrogram can 

be used to obtain the clusters as per the required number of 

clusters. Density based clustering (Ester, Kriegel, Sander 

and Xu 1996) is based on density parameters. Data objects 

are considered connected to a cluster or disconnected 

depending on the density parameters. In this paper we 

focus on an important partitioned clustering algorithm 

called fuzzy c-means (FCM) (Bezdek 1981). 

The k-means clustering method or the hard c-means 

algorithm groups n objects in a data set into c clusters. To 

begin this iterative process, the initial c cluster centres are 

predetermined. In hard clustering, data is divided into 

distinct clusters, where each data element belongs to 

exactly one cluster. In fuzzy clustering, such as FCM, data 

elements can belong to more than one cluster. Each data 

element is associated with a set of membership values. 

These indicate the strength of the association between that 

data element and a particular cluster.  

As will be shown in later section, FCM is based on the 

standard least squared errors model. FCM is very popular 

due to several reasons. It can be generalized in many ways. 

Arguably it is much easier to generalize FCM than the hard 

c-means clustering. For example, the memberships are 

generalized to include possibilities; the distance used has 

been generalized to include Minkowski (non-inner product 

induced) and hybrid distances; there are versions of FCM  

for very large data sets that utilize both progressive 

sampling and distributed clustering; there are many 

techniques that use FCM clustering to build fuzzy rule 

bases for fuzzy systems design; and there are numerous 

applications of FCM in virtually every major application 

area of clustering (Wiki 2008). The various high volume 

data visualization applications of FCM include image 



segmentation, multi-spectral image compression, remote 

sensing, object recognition, biological sequence analysis, 

clustering co-expressed genes, and to hybridise various 

other data mining algorithms. 

Clustering large amounts of data takes a long time. To 

cluster these large data sets, either sampling is required to 

fit the data in memory or the time will be greatly affected 

by disk accesses making iterative clustering (e.g., 

k-means, fuzzy c-means) an unattractive choice for data 

analysis. In this paper we focus on how to ease the 

computational bottleneck of FCM on large data sets using 

graphics processors (GPU).  

Many researchers are able to use GPU for data mining 

algorithms over large data sets (Owens, Luebke, 

Govindaraju, Harris, Krüger, Lefohn and Purcell 2005). 

This area of research is known as GPGPU (General 

Purpose Computations using GPU). Although GPUs are 

quite powerful due to their internal architecture they 

favour algorithms that can be structured as streaming 

computations often realizing notable performance gains 

(Fatahalian, Sugerman and Hanrahan 2004). Streaming 

computations can be characterized as being highly parallel 

and numerically intensive. One such suitable application is 

FCM. It is streaming in nature but its data (the centroids) 

change from iteration to iteration. Hard c-means (k-means) 

which is the primate of the FCM is efficiently 

implemented in the GPU (Arul, Dash and Tue 2008). 

In Section 2 we briefly discuss the GPU hardware 

features that enhance its application in GPGPU. Section 3 

describes briefly the previous FCM implementations on 

the GPU and their results. In Section 4 our proposed 

implementation and its novelties are discussed addressing 

scalability issues. Section 5 discusses experimental setup, 

shows the analysis and results. Section 6 is the conclusion 

with a brief discussion on future expansions on FCM and 

other clustering methods using GPU. 

2 Exploiting the Modern Graphics Hardware 

for General-Purpose Computations  

The GPU has tremendous image processing capabilities 

such as vertex transformation, lighting computations, 

clipping and culling of images using its highly parallel 

hardware pipeline. For instance, the massively parallel 

GPU, Nvidia’s GeForce 8800 GTX, consists of 128 

individual stream processors each running at 1.35 GHz 

clock frequency, with very high memory bandwidth of 

86.4 Gigabytes per second. (NVIDA: GeForce 8800 

Architecture Technical Brief 2008). The GeForce 8800 

GPU’s shader architecture is designed for extreme 3D 

graphical performances, producing near reality image 

quality for delighted gaming performances, which is its 

traditional forte. Figure 1 shows the block diagram of the 

GeForce 8800 GPU, which shows the various stages of the 

parallel programmable processors. 

2.1 GPU as a Low Cost High Power 

Computational Processor 

In Figure 1 the host forms the interface block between the 

CPU and the GPU. In graphics processing, the host 

receives the commands from the CPU, geometric data and 

other display data. The input data from the CPU is 

assembled and formatted before the next stage of graphics 

processing. Each of the GPU’s internal processors could 

be assigned to a specific shader program. Shaders are short 

lines of codes that run on the stream processors which 

process incoming stream data and send the computed data 

to output buffers or textures.  The stream processors are 

grouped in a manner so that computational resources can 

be efficiently mapped to these processors. The processed 

data can be sent as stream data to other stream processors 

for further processing. Such computations are possible due 

to data independency in graphics processing. This also 

permits multiple shader programs to run on the processors, 

each shader accessing data in parallel that is linked to the 

stream processor. 

The stream processing capabilities of the GPU makes it 

highly applicable to implement general-purpose 

computations. Computations to be implemented in the 

GPU will need to be mapped appropriately using the 

hardware resources such as textures and frame buffers. 

The programmability of the stream processor is 

achieved using shader programs. Various general-purpose 

computations such as physical simulations, image 

processing and data mining algorithms have been 

implemented on GPU, harnessing its computational power 

and programmability to improve computational efficiency 

as compared to the CPU (Owens, Luebke, Govindaraju, 

Harris, Krüger, Lefohn and Purcell 2005). The GPU thus 

has become a low cost commodity processor with high 

computational power, for which the growth is heavily 

driven by the gaming industry. The cost of the speed 

gained from using such a GPU is much lower than the 

CPU based massive parallel processors. We intend to 

efficiently implement the FCM computations using GPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: GeForce 8800 GTX Block Diagram 

3 FCM Algorithm and Existing GPU based 

Implementations 

The FCM algorithm can be summarized using the 

following simple steps: 

1. Initialise cluster memberships 

2. Calculate cluster centres 

3. Update cluster memberships 

4. Check stopping condition, else go to Step 2. 

The FCM algorithm partitions a set of feature vectors xi 

into c clusters by minimizing the objective function given 

by J(Uij, Cj) in equation 0, where m is a real integer greater 

than 1, Uij denotes the degree of membership of the 

d-dimensional vector xi in the cluster j and Cj is the centre 



of that cluster. The norm ||*|| expresses the closeness of the 

vector to its cluster centre. 
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In this iterative fuzzy partitioning optimization process on 

the data set of size n, the cluster memberships Uij of each 

observation i, to the c clusters is computed by equation (1).  
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This equation is also used for cluster centroid updates, 

where m is the fuzzifier. The value m determines the 

amount of fuzziness. The value of m can be chosen from 

(1, ∞). A value of m=1 produces a hard clustering. As m 

approaches ∞ the solution approaches its maximum degree 

of fuzziness. It is often chosen on empirical grounds to be 

equal to 2. In FCM, the fuzzy centroids depend on the 

current membership values and all the individual 

observations i. The fuzzy centroid Cj is computed using 

the equation (2). 
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This iteration will stop when the termination criterion 

given in equation (3) is fulfilled,  is a termination 

criterion between 0 and 1. 
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The steps of the FCM algorithm are further briefly 

explained here. The first step involves the initialisation of 

the initial cluster memberships and also includes the 

initialisation of the clustering variables. The value for m is 

chosen to be 2, the number of clusters c is set as predefined 

for the n number of observations in the data set. The 

distance between the c initial clusters and the individual 

observations are computed, which is the inner product 

norm between the vectors. To end step 1, the values of the 

cluster memberships for each observation is computed 

using equation (1).  

In the second step the centre of the clusters is calculated 

using equation (2).  The fuzzy centroid Cj represents the 

vector location of the centre of the i
th

 cluster. The cluster 

centres are thus computed for the all the c clusters. 

In the third step the memberships are updated with the 

new values based on the distances of each observation to 

each of the cluster centre. Equation (1) is again used for 

this computation.  

In the last step, the algorithm is checked for its stopping 

condition using equation (3). The stopping condition 

should be predefined. If the error between the current 

cluster centres and the corresponding previous centres are 

less than 0.00001, the computations of the algorithm ends. 

In fuzzy c-means iterations, the utilization of 

computational resources is high and is mainly contributed 

by: 

1. Distance computation between the objects and the 

cluster centres. 

2. Computing the degree of membership for all objects 

in every cluster. 

3. Computing new cluster centres as a function of the 

degree of membership. 

The implementation of FCM in the GPU will reduce the 

computational time, utilizing the computational resources 

of the Graphics hardware. 

3.1 Previous GPU Implementations of FCM 

There are two previous works where FCM has been 

implemented in the GPU (Harris and Haines 2005), 

(Anderson, Luke and Keller 2007). Reduction in 

computational time in the order of 2x times has been 

achieved from a non-iterative GPU implementation when 

compared to the CPU FCM (Harris and Haines 2005). This 

implementation is able to handle huge number of 

observations, but not scalable in terms of dimensions and 

the number of clusters. In the second work, the authors 

present a FCM with non-Euclidean distance computation 

metric and have demonstrated processing time gains of 

over two orders of magnitude for certain configurations of 

FCM, where different combinations of data size, 

dimension size and clusters are used. 

While implementing the FCM on the GPU the 

following considerations are to be carefully made so as to 

avoid the drawbacks of the previous FCM implementation 

(Anderson, Luke and Keller 2007). (1) Limitation on the 

number of textures that can be fetched by the fragment 

programs: For instance, if the GPU has 16 fragment 

processors, the maximum number of textures that can be 

accessed at any one time is limited to 16. (2) Minimum use 

of textures per cluster to avoid memory constraints: For 

instance, while computing large number of clusters, if 

enough care is not taken, the number of textures required 

for handling cluster membership values will be large. (3) 

Maximum reuse of shader programs to increase 

portability. 

4 Efficient and Scalable Implementation of 

FCM on the GPU 

In our GPU-based FCM implementation, the various 

iterative components of the algorithm are executed in the 

fragment processor using shaders. Textures are memory 

locations in the GPU, which are used to store the distance 

and the membership matrices. Multiple dimensions in the 

incoming data are handled by using partial sum of squared 

distance computations and stored in the distance textures. 

All textures use ‘Luminance’ as internal data format. A 

speed gain over two orders of magnitude has been 

achieved for a 79 dimensional yeast gene expression 

dataset which has about 64k observations. Figure 2 shows 

the FCM scheme that is implemented on the GPU. The 

CPU provides the control on the execution of the 

algorithm; the required number of iterations, control loop 

branching and the checking of stop condition. The inherent 

parallelism of the GPU is exploited and used for the 

iterative computations in the FCM algorithm such as 

distance computations, membership computations, and 

computation of cluster centres. The execution steps of 

FCM in GPU are quite similar to the implementation in 

CPU. In the next section we discuss the steps involved in 

our GPU based FCM implementation briefly. 



 

 

 

 

 

 

 

 

 

 

 

Figure 2: GPU Implementation Scheme of Fuzzy 

c-means Clustering Algorithm 

4.1 GPU based FCM Functions 

Parts of the algorithm are computed in a way that the 

parallelism of the GPU hardware can be exploited to make 

it efficient. The major steps in our implementation of the 

FCM algorithm on the GPU are stated below and further 

discussed. 

1. Create initial membership matrix for all n data 

observations with respect to each cluster. 

2. Initialize the c cluster centers from the n data vectors. 

3. Compute sum partial deviations between the c cluster 

centers and the n data vectors. 

4. Compute the ratio between the sum partial deviations 

of the cluster being compared to each other cluster. 

5. Store ratio of sum partial deviations in textures, one 

per cluster. 

6. Compute exponentiation of all the deviation textures. 

7. Compute partial memberships for all observations per 

cluster. 

8. Compute the membership values via summation of 

partial memberships. 

9. Transfer the summed membership values to CPU. 

10. Compute new cluster centers in the CPU. 

The initial membership matrix Uij is randomly 

generated for all the n observations with respect to each 

cluster. The initial Uij is made the same for both the GPU 

and CPU implementations by using the same seed in the 

random generation of membership values. Initial cluster 

centres (Cj) are identified. The deviations between these 

cluster centres and each of the data vectors are computed 

and summed. The deviations between the cluster centre 

and data vectors are computed partially. The partial 

computation of deviations is repeated d times and 

summed, where d is the number of dimensions in the data 

vector. Texture reduction technique is employed for all 

summations. The ratio of the deviations between each 

cluster centre being compared with each individual data 

point and the other deviations as in equation (1) is 

computed. These ratios are stored in textures one per 

cluster.  After the computations are complete for d 

dimensions, all these textures are simultaneously raised to 

the power of 2/(m-1). The inverse of the resultant texture 

will produce the iterated membership texture matrix Uij. 

Using the membership values the new cluster centres are 

computed. For this operation, the summation of the 

product of membership texture and the input data objects 

and the summations of the membership textures are 

obtained in the GPU. These summations per cluster per 

iteration are transferred to the CPU and repeated for d 

dimensions. So the number of transfers is in the order of d 

* c * number of iterations.  In the CPU the new cluster 

centres (Cj) are compared with the previous cluster centres 

(Ck) and the decision is made whether to continue or stop 

the iteration based on the stopping condition. The error 

between the current cluster centres and the previous should 

be less than 0.00001. Table 1 lists the shader programs 

used to accomplish these computations and the major 

purpose of each shader program. 

4.2 Scalability in the GPU based FCM 
In data mining scalability means to take advantage of the 

existing parallelism and design solutions to solve a wide 

range of problems without needing to change the 

underlying implementation. We realize scalability via (1) 

data representation in the GPU memory, (2) operational 

flexibility on data dimensions and (3) ability to 

accommodate data sets with higher dimensions. Data 

representation is handled by accessing individual 

dimensions across all data objects. So it is easier to 

perform computations on huge data sets. Moreover, using 

our GLSL implementation it is easier to perform various 

operations on the dimensions. It is also simpler to 

reconfigure the shaders for higher dimensions, since 

partial computations are done across the data vectors and 

large number of clusters, thus being more adaptable and 

flexible, compared to previous implementations. Most 

notably, scalability is achieved since there is no necessity 

to define huge textures and redesign the fragment shader 

codes, as was the case for the earlier algorithms.  

 

     

No. FCM Functions Function call Fragment Shaders Purpose of the steps in GPU based FCM 

I 
Distance 

Computations (GPU) 
Computation0( ) 

glslProgram0( ) Sets initial textures with zeros 

glslProgram1( ) Computes the distances; summation of partial distances 

II 
Calculating the 

exponential (GPU) 
glslProgram4( ) 

Computes the exponentials of the distance deviations in the 

membership matrix 

III 
Partial Summations 
(GPU) 

Computation1( ) 
glslProgram0( ) Sets initial textures with zeros 

glslProgram2( ) Computes partial summation across all textures 

IV 
Partial membership 

computations (GPU) 
Computation2( ) 

glslProgram3a( ) 
Computes partial memberships based on distance and 

partial sums 

glslProgram3b( ) 
Multiplies the memberships with coordinates to obtain the 
membership * cluster member product 

glslProgram3c( ) Computes the summation of the membership values 

V 

Update of new 

cluster centroids 
(CPU) 

- - 

Computes the new centroids by dividing the membership * 

cluster member product by the summed membership 
values to obtain fuzzy centroids 

Table 1: Summary of the FCM Steps and the Fragment Shaders used for Computations 
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5 Experimentations on GPU based FCM 

The objective of this experiment is to implement the 

traditional FCM algorithm on a GPU to form fuzzy 

clusters. Compare its performance with an equivalent 

implementation of the same algorithm on a desktop CPU. 

In both implementations initial membership values were 

randomly generated and made the same using a common 

random generated seed. The detailed experimental setup 

and the evaluation of the results are discussed in the next 

three sections below. The novelties of our implementation 

and the challenges are discussed subsequently. 

5.1 The Experimental Setup 

The algorithm is executed on 2 Nvidia’s GPUs; viz. 

GeForce 8500 GT, which is considered as a mid-range 

graphics processor, and a GeForce 8800 GTX, which is 

considered as a high-end graphics processor. The results 

obtained are compared with that obtained from their 

corresponding CPU counter parts, which are Pentium4 

(D), 3.0 GHz CPU and a Pentium(R), 1.5 GHz CPU 

respectively. The performance of the GPU on the 

computations heavily depends on the hardware 

characteristics and hence the GPU configurations are 

described in this section. The 8500 GPU has 16 fragment 

shaders processing texels to pixels at a memory clock rate 

of 800 MHz and 512MB of video memory. The peak 

memory bandwidth is 12.8 GB/sec. The 8800 GPU has 

128 total stream processors with a memory clock rate of 

900 MHz and 512MB of video memory. The peak memory 

bandwidth is 86.4 GB/sec. The experiments will involve 

the following:  

1. Complete the GPU based FCM iterations until the 

stopping criterion is satisfied and measure the 

computational time (GPU processing time + data transfer 

time) for various combinations of n, d and c. Repeat the 

same on the corresponding CPU and measure the 

computational time. 

2. Use synthetic data to conduct efficiency studies. The 

size of data, size of dimensions and the cluster numbers 

will be varied in order to understand the computational 

efficiency, and the GPU to CPU data processing time ratio. 

3. Use the yeast gene expression data set, which has 79 

dimensions with about 65k genes (Arul, Dash and Tue 

2008), to compare the performance of both the GPUs over 

their CPU counterparts. 

4. Analyse the data transfer time (CPU to GPU) and 

computational time (time/iteration). 

5. Perform regression on the data summarized from the 

8800 GPU studies to understand the effect of the cluster 

parameters n, d and c on computational efficiency. 

From the above experiments we intend to analyse the 

following performance metrics to compare and understand 

the benefits and challenges in using GPU for the FCM 

computations, which can be then generalized to other 

general-purpose computations. 

1. Accuracy of the cluster centres formed by the GPU 

as compared to the centres from the CPU. 

2. Raw computational time (Ct) comparison between 

the GPU and the CPU. 

3. Comparison of the computational efficiency which is 

obtained from the ratio of (CPU computational time per 

iteration) / (GPU computational time per iteration). 

4. Comparison of the processing speed gain, (Pt ratio) 

which is the ratio of the (CPU computational time) / (GPU 

computational time – Data transfer time, Tt) 

5. The influence of the FCM factors such as c clusters, 

input data size n and d dimensions on the GPU 

computational time per iteration. 

5.2 Experimental Results Evaluation 

The accuracy of the GPU cluster centres as compared to 

that from the CPU was determined using Mean Square 

Error (MSE) between the cluster centres from both the 

CPU and the GPU. With data sizes more than 65k, 

dimensions up to 10 and for 4 clusters the MSE was in the 

order of 10
-8

 to 10
-11

. This insignificant error is due to the 

lower floating-point precision in GPU compared to that of 

the CPU. This insignificant error shows that the clusters 

formed by the GPUs are reliably accurate. 

The results obtained from the GeForce 8800 GTX GPU 

as compared with the Pentium(R), 1.5 GHz CPU are 

substantial. In our implementation we show that the 

computational efficiency (CPU computational time per 

iteration) / (GPU computational time per iteration) ranging 

from 20x to 94x times. Note that number of iterations 

required satisfying the stopping criterion may vary 

between CPU and GPU because of GPU’s limited 

precision. So, if we consider the total time ignoring the 

difference in number of iterations, then we get the 

following equation: overall speed gain = (total time taken 

by GPU/time taken by CPU) which is almost of the same 

order: 20x to 95x times based on various combinations of 

factors such as d, n and c.  

The results obtained from the mid-range GeForce 8500 

GT GPU as compared with the Pentium4 (D), 3 GHz CPU 

are also promising. Results show that the computational 

efficiency ranges from 14x to 43x times and overall speed 

gain is almost of the same order: 14x to 53x times. 

The results of the various experiments are graphically 

summarized, shown and discussed in the next section. 

Figure 3 shows the comparison of the computational time 

(Ct) between the two GPUs and their corresponding CPU 

counterparts. 

5.3 Discussion on the Results 
When the data size is small (say, 2048), the GPU seems 

to be slower or just the CPU is as good as the GPU in 

computing as seen in Figure 3. This comparison shows the 

raw computational time taken by both the CPU and the 

GPU ignoring the number of iterations. It can be seen that 

as the data size increases, there is tremendous speed gain 

in the GPU computation. When the data size is small, 

many parallel processors and memory resources are left 

unused, but when the data size is large, the utilization of 

the GPU resources is maximized.  The GeForce 8800 GPU 

is able to complete the tasks of forming 4 fuzzy clusters 

from 1 million 4 dimensional data objects within 0.91 

seconds where as the corresponding CPU could take up to 

87.8 seconds. The GeForce 8500 GPU is able to complete 

the same task in 6 seconds when its CPU takes 313.8 



seconds to complete the task. It can also be noted that 

almost 77% of computational time (Ct) of GPU is taken up 

by the data transfer time (Tt) from the GPU to the CPU. 

Figure 4 shows the comparison of the computational 

efficiency between the two GPUs. The processing time 

ratio is also compared to show how fast it is to process data 

within the GPU. 

As the data size increases, the computational efficiency 

of the GPUs in implementing the FCM algorithm increases 

ranging from 20x to 94x times. The computational 

efficiency takes the GPU to CPU data transfer time and the 

actual processing time into account. To have a fair 

comparison with the implementation in (Anderson, Luke 

and Keller 2007) we also compare the processing time 

ratio from the two GPUs. It can be noticed in Figure 4 that 

depending on the GPU used, the processing time can be as 

fast 924x times when the data size is over 1 million. Figure 

5 compares the computational efficiency and the 

processing time ratios of the GPUs in implementing the 

FCM algorithm for various sizes of clusters and 

dimensions. This comparison shows that as the size of the 

dimensions increase, the performance of the GPUs drop 

slightly, still being about 19x to 31x times faster than the 

CPUs. This drop is attributed to the scheme of our 

implementation, where we minimize the use of distance 

textures for any size of dimensions. By doing so, the 

implementation becomes more generic and scalable to any 

number of dimensions. We also used the complete set of 

yeast gene expression data, which had 79 dimensions and 

65k observations, and the results are summarized in Table 

2. The Pt ratio which compares the CPU to GPU 

processing times shows that our implementation 

outperforms the  results from the previous implementation 

(Anderson, Luke and Keller 2007), for both low and high 

dimensional data. 

 

Cluster 

Size 

GeForce 8800 GTX GeForce 8500 GT 

Efficiency Pt Ratio Efficiency Pt Ratio 

4 19.5 112.5 12.5 24.4 

8 20.8 129.4 26.8 60.6 

16 21.7 141.8 20.7 41.2 

32 21.9 137.9 34.2 73.1 

64 23.5 131.0 22.1 35.2 

Table 2: Comparison of Computational Efficiency and 

Processing Time between the Two GPUs 

5.4 Novelties in our GPU-FCM Implementation 

and Comparisons 

The following are the novelties in our FCM 

implementation: 

1. For any size of d, we use only two input textures for 

data transfer and distance computations. So the number of 

texture sizes depends only on the data size and not on the 

dimensions. Thus the implementation is scalable and there 

is no need to expand the number of textures and change the 

fragment shader codes due to increase in d. 

In the previous implementation (Anderson, Luke and 

Keller 2007), individual textures are used to pack the data 

sets thus limiting the number of dimensions allowed in a 

texture, while increasing the number of data objects. In 

this scheme, computation on any data object would require 

to access a number of textures. For instance, if there are 64 

dimensions then in the previous implementation they 

would divide the dimensions into groups of 4 each, 

perform partial computations on each group followed by 

the final computation on these partial computations. But in 

our scheme, we store each data object in its entirety in a 

single texture, thus avoiding the extra computation 

required to perform the final computation from partial 

computations. The fragment program for such a scheme is 

complex.  

2. During membership computation in FCM effectively 

only one cluster centre is involved at a time, so there is no 

need to maintain a huge membership texture of size c * n. 

In our implementation we use an n * n texture per 

cluster centre per membership computation and we repeat 

this c times. It helps in better management of GPU 

memory (textures). 

3. In the membership computation step, the summations 

of the ratio of deviations of each data point to the cluster 

centre and the deviation of each data point to the previous 

cluster centre are stored in an n * n texture per cluster 

centre. The novelty is that all the c textures are 

simultaneously raised to the power of 2/(m-1). This helps 

in speeding up of the computations in the GPU. 

5.5 Research Challenges 

In our implementation of the FCM in GPU, we find the 

following research challenges: 

1. The fuzzy cluster partial sums are transferred from 

the GPU to the CPU and the fuzzy centroids are updated in 

the CPU. This GPU to CPU data transfer time is about 70 

to 77% of the total computational time taken by the GPU, 

which is a potential issue for further research and shader 

optimization. 

2. The computational efficiency varies with the data 

size-n, number of dimensions-d and number of clusters-c. 

We intend to determine which of these factors influence 

the GPU efficiency the most, so that textures and shaders 

could be rearranged to maximize efficiency. From the 

studies conducted so far using GeForce 8800 GTX, we use 

regression analysis to identify the significance and 

contribution of each of these factors to the computational 

efficiency of GPU. Regression analysis showed that all the 

four factors including the intercept are significant with 

95% confidence and the R
2
adjusted is 97.4%. The 

coefficients of the factors are plotted in Figure 6 for 

relative comparison. 

From Figure 6 it can be noted that the dimension size d 

and the cluster size c have more influence on the GPU 

efficiency. The positive coefficients denote that as d and c 

in a given data set increases, the GPU is expected to be 

more efficient in performing the computation. 

3. The use of very large sets of data may pose a 

limitation on execution speed depending on the size of the 

graphical memory. The speed also depends on the graphics 

processor hardware being used. The Nvidia 8800 used in 

our implementation supports textures of sizes up to 8192 x 

8192; which means data sizes as big as 67 million could be 

handled. More care should be taken while implementing 

shaders to handle huge data sets which may exceed the size 

of the textures, which can be further explored. It is also 

vital to note the number of textures that could be 

simultaneously used by the fragment shader depends on 



the number of independent stream processors available in 

the GPU used.  

These issues will lead us into the next stage of research 

to identify and generalise suitable implementation 

architectures for FCM and other clustering problems. The 

optimisation of FCM by selecting optimal number of 

clusters using standard FCM performance indices is one 

such application. Experiments will be conducted to 

explore the limitations posed by the GPU fragment 

processors and size of textures vs. the size of input data.

 

Figure 3: Comparison of Raw Computational Time between the GPU and CPU in Implementing FCM 

 

 

Figure 4: Comparison of Computational Efficiency and Processing Time between the two GPUs used in 

Implementing FCM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of Computational Efficiency and Processing Time between the two GPUs used in 

implementing FCM with Various Dimension Sizes and Cluster Sizes. 
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6 Conclusion and Future Extendibility 

The scheme we have devised for implementing the FCM 

algorithm in GPU is giving very significant gains over its 

counterpart CPU. Speed gains up to 140x times on GPU 

8800GTX and up to 73x times on GPU 8500GT is 

realized. In our analysis with the earlier implementations 

we found that for FCM in high dimensional large data sets, 

many factors need to be considered very carefully to 

improve GPU effectiveness. For instance, if the number of 

dimensions is large then it benefits by keeping all the 

dimensions in one texture rather than splitting it into many 

textures. We are able to handle any number of dimensions 

and clusters without the need for defining new textures and 

change of fragment programs. Thus we make the 

implementation scalable.  

We effectively use the GPU resources for membership 

computations by exponentiation all the textures per cluster 

centre simultaneously by using a single execution of the 

shader. This helped in performance boosting. Using our 

implementation scheme any distance metrics such as 

Manhattan and other non-Euclidean distances can be 

implemented easily in our program, without the need to 

change other fragment programs which do involve in 

distance computations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: FCM Factors Influencing Computational 

Efficiency of GPU 

Transfer of cluster summation data in iterations to the 

CPU for computing the new cluster centres takes about 

77% of the total time while performing the computation in 

the GPU. Instead, this computation can also be 

implemented in the GPU so as to reduce this heavy 

overhead due to data transfer, especially when handling 

high dimensions and possibly large number of clusters.  

The shader programs we have used for this 

implementation of FCM are not optimised for the latest 

GeForce 8800 GTX and beyond. The decoupling of 

mathematical operations and the texture operations of the 

latest GPU architectures will be utilized to further improve 

the efficiency, leveraging on CUDA. Performance index 

computations on GPU to identify optimal number of fuzzy 

clusters will also be investigated.  
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