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Abstract

We study the following on-line model for set-covering:
elements of a ground set of size n arrive one-by-one
and with any such element ci, arrives also the name
of some set Si0 containing ci and covering the most of
the uncovered ground set-elements (obviously, these
elements have not been yet revealed). For this model
we analyze a simple greedy algorithm consisting of
taking Si0 into the cover, only if ci is not already
covered. We prove that the competitive ratio of this
algorithm is

√
n and that it is asymptotically optimal

for the model dealt, since no on-line algorithm can do
better than

√

n/2. We next show that this model can
also be used for solving minimum dominating set with
competitive ratio bounded above by the square root
of the size of the input graph. We finally deal with
the maximum budget saving problem. Here, an initial
budget is allotted that is destined to cover the cost of
an algorithm for solving set-covering. The objective
is to maximize the savings on the initial budget. We
show that when this budget is at least equal to

√
n

times the size of the optimal (off-line) solution of the
instance under consideration, then the natural greedy
off-line algorithm is asymptotically optimal.

Keywords: Set-covering, On-line algorithm, Compet-
itive ratio, Dominating set, Budget saving

1 Introduction

Let C be a ground set of n elements and S a family
of m subsets of C such that ∪S∈SS = C. The set
covering problem consists of finding a family S ′ ⊆ S,
of minimum cardinality, such that ∪S∈S′S = C. In
what follows, for an element ci ∈ C, we set Fi =
{Sj ∈ S : ci ∈ Sj} and fi = |Fi|; also, we set f =
max{fi : i = 1, . . . , n}.

The set covering problem has been extensively
studied over the past decades. It has been shown to be
NP-hard in Karp (1972) and O(log n)-approximable
for both weighted and unweighted cases (see Chvá-
tal (1979), for the former, and Johnson (1974),
Lovász (1975) and Slavík (1996), for the latter; see
also Paschos (1997) for a comprehensive survey on
the subject). As it is shown by Feige (1998), this
approximation ratio is the best achievable, unless
NP ⊆ DTIME(nO(log log n)), i.e., unless problems
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in NP could be proved solvable by slightly super-
polynomial algorithms.

In on-line computation, one can assume that the
instance is not known in advance but it is revealed
step-by-step. Upon arrival of new data, one has to
decide irrevocably which of these data are to be taken
in the solution under construction. The fact that the
instance is not known in advance, gives rise to several
on-line models specified by the ways in which the final
instance is revealed, or by the amount of information
that is achieved by the on-line algorithm at each step.
In any of these models, one has to devise algorithms,
called on-line algorithms, constructing feasible solu-
tions whose values are as close as possible to optimal
off-line values, i.e., to values of optimal solutions as-
suming that the final instance is completely known in
advance. The closeness of an on-line solution to an
optimal off-line one is measured by the so-called com-
petitive ratio m(x, y)/ opt(x), where x is an instance
of the problem dealt, y the solution computed by the
on-line algorithm dealt, m(x, y) its value and opt(x)
the value of an optimal off-line solution. This mea-
sure for on-line computation has been introduced by
Sleator et al. (1985).

Informally, the basic on-line set-covering model
adopted here is the following: elements of a ground
set of size n arrive one-by-one and with any such el-
ement ci, arrives also the name of some set Si0 con-
taining ci and covering the most of the ground set-
elements that have not been yet covered. Clearly, any
uncovered element is yet unrevealed. For this model
we analyze a simple greedy algorithm consisting of
taking Si0 into the cover, only if ci is not already
covered. We prove that the competitive ratio of this
algorithm is

√
n and that it is asymptotically optimal

for the model dealt, since no on-line algorithm can do
better than

√

n/2. This model generalizes the one
proposed in Alon et al. (2003) and, furthermore, it
uses a very simple, fast and intuitive algorithm that
could be seen as the on-line counterpart of the natural
greedy (off-line) set-covering algorithm.

In Alon et al. (2003), the following on-line set cov-
ering model has been studied. We suppose that we
are given an instance (S, C) that it is known in ad-
vance, but it is possible that only a part of it, i.e., a
sub-instance (Sp, Cp) of (S, C) will finally arrive; this
sub-instance is not known in advance. A picturesque
way to apprehend the model is to think of the ele-
ments of C as lights initially switched off. Elements
switch on (get activated) one-by-one. Any time an
element c gets activated, the algorithm has to decide
which among the sets of S containing c has to be
included in the solution under construction (since we
assume that (S, C) is known in advance, all these sets
are also known). In other words, the algorithm has to
keep an online cover for the activated elements. The



algorithm proposed for this model achieves competi-
tive ratio O(log n log m) (even if less than n elements
of C will be finally switched on and less than m sub-
sets of S include these elements).

The on-line model dealt here and studied in Sec-
tion 2, is inspired, yet quite different, from the one of
Alon et al. (2003). Given C, S (not known in advance
as Alon et al. (2003) assumes) and an arrival sequence
Σ = (σ1, . . . , σn) of the elements of C (i.e., elements
of C are switched on following the order σ1, . . . , σn),
the objective is to find, for any i ∈ {1, . . . , n}, a family
S ′

i ⊆ S such that {σ1, . . . , σi} ⊆ ∪S∈S′

i
S. For any σi,

i = 1, . . ., we denote by Sj
i , j = 1, . . . , fi, the sets of S

containing σi, by S̄j
i the subset of the elements of Sj

i

still remaining uncovered and by δj
i the cardinality

of S̄j
i . By fi, we denote the frequency of σi, i.e., the

number of sets in S containing σi. When σi switches
on, the only information revealed is the name of some
set Sj0

i ∈ argmax{δj
i , j = 1, . . . , fi}. So, no a priori

knowledge of the topology of the instance (S, C) is
assumed by the model. In particular, we do not have
to know which are the yet uncovered elements of Sj0

i
but only the fact that their number is maximum with
respect to any other Sj

i .
The algorithm that we study for this model, called

LGREEDY in the sequel, informally works as follows:
once an element σi ∈ C switches on, if σi is not
already covered, then set Sj0

i ∈ argmax{δj
i , j =

1, . . . , fi} is added in the cover under construction.

Clearly, by the way LGREEDY works, the content of S̄j0
i

is still unrevealed. This algorithm follows the same
principle as the natural greedy algorithm for (off-line)
minimum set covering, called FGREEDY in the sequel,
modulo the fact that this principle applies not to the
whole instance (S, C) that is to be finally revealed,
but to the part of (S, C) induced by the elements
of C that, at a given moment, are switched off (even
if the topology of this part is not known). We prove
that the competitive ratio of this algorithm is

√
n

and also that there exist arbitrarily large instances
for which this ratio is at least

√

n/2. We then show
that the set-covering model dealt can be used to solve
also minimum dominating set, within competitive ra-
tio

√
n where n is the order of the input graph. Min-

imum dominating set is defined as follows: given a
graph G(V,E), we wish to determine the least subset
V ′ ⊆ V that dominates the rest of the vertices, i.e.,
a subset V ′ ⊆ V such that for all u ∈ V \ V ′ there
exists v ∈ V ′ for which (u, v) ∈ E.

In Section 3, we provide a lower bound, equal
to

√

n/2 for the competitiveness of a whole class of
on-line algorithms running on our model. These al-
gorithms are the ones that construct a cover by tak-
ing, at any activation step, at least one set containing
some not yet covered recently activated ground ele-
ment. Based upon this result, one can conclude that
LGRREDY is asymptotically optimal for this class and
for the model adopted.

There exist several reasons motivating, to our
opinion, the study of the model dealt in this paper.
The first one is that the algorithm used is as it has al-
ready been mentioned, a kind of on-line alternative of
the famous greedy algorithm for set-covering. Hence,
analysis of its competitiveness is interesting by itself.
The second reason is that a basic and very interesting
feature of the model dealt is its very small memory
requirement, since the only information needed is the
binary encoding of the name of Sj0

i . This is a ma-
jor difference between our approach and the one of
Alon et al. (2003). There, anytime an element gets

activated, the algorithm needs to compute the value
of a potential function using an updated weight pa-
rameter for each element and then chooses covering
sets in a suitable way so that this potential be non-
increasing; the greedy online algorithm in our model
needs only a constant number of memory places, mak-
ing it more appropriate for handling very large in-
stances with very few hardware ressources.

In many real-life problems, it is meaningful to re-
lax the main specification of the online setting, that is,
to keep a solution for any partially revealed instance,
in order to achieve a better solution quality. In this
sense, a possible relaxation is to consider that several
algorithms collaborate in order to return the final so-
lution. The costs of using these algorithms can be
different the ones from the others, depending upon
the sizes of the solutions computed, the time over-
heads they take in order to produce them, etc. More-
over, we can assume that an initial common budget
is allotted to all these algorithms and that this bud-
get is large enough to allow use of at least one of the
algorithms at hand to solve the problem without ex-
ceeding it. A nice objective could be in this case, to
use these algorithms in such a way that a maximum
of the initial budget is saved. For the case of set-
covering, the following budget-model, giving rise to
what we call maximum budget saving problem is con-
sidered in Section 4. We assume that two algorithms
collaborate to solve it: the LGREEDY and the FGREEDY.
The application cost of the former is just the cardinal-
ity of the solution it finally computes, while, for the
latter, its application cost is the cardinality of its so-
lutions augmented by an overhead due, for example,
to the fact that it is allowed to wait before making
its decisions. For an instance x of set-covering, the
initial budget considered is B(x) =

√
n opt(x) (this is

in order that at least LGREEDY is able to compute a
solution of x without exceeding the budget for any x).
Denote by c(x, y) the cost of using A in order to com-
pute a cover y for x. The objective is to maximize the
quantity B(x)− c(x, y) and, obviously, the maximum
possible economy on x is B(x) − opt(x). We show in
Section 4 that there exists a natural algorithm-cost
model such that FGREEDY is asymptotically optimal
for maximum budget saving.

Before closing this section, let us quote another
very interesting approach that could be considered
to be at midway between semi-on-line approaches
and solutions-stability ones, developed in Gambosi et
al. (1997). There, the problem tackled is the main-
tenance of approximation ratio achieved by an algo-
rithm while the set covering instance undergoes lim-
ited changes. More precisely, assume a set covering
instance (S, C) and a solution S ′ for it. How many
insertions of some of the ground elements in subsets
that did not previously contain these elements pro-
duce an instance for which the solution S ′ of the ini-
tial instance guarantees the same approximation ratio
in both of them? It is shown in Gambosi et al. (1997)
that if solution S ′ has been produced by application
of the natural greedy algorithm achieving approxi-
mation ratio O(log n) (see Chvátal (1979)), then af-
ter O(log n) such insertions initial solution S ′ still
guarantees the same approximation ratio.

2 A greedy on-line algorithm

As already mentioned, the model studied in this sec-
tion assumes an arrival sequence Σ = (σ1, . . . , σn)
of the elements of C, and the objective is to find,
for any i ∈ {1, . . . , n}, a family S ′

i ⊆ S such
that {σ1, . . . , σi} ⊆ ∪S∈S′

i
S. Once an element σi,

i = 1, . . . , switches on, the encoding for Sj0
i ∈



argmax{δj
i , j = 1, . . . , fi} is also revealed.

For this model, we propose the following algo-
rithm, LGREEDY, where, although it is not necessary,
we suppose for reasons of simplicity of algorithm’s
specification that n is known to it:

• set S ′
0 = ∅;

• for i = 1 to n do (σi switches on): if σi is not
already covered by S ′

i−1,

– then set S ′
i = S ′

i−1 ∪ {argmax{δj
i : j =

1, . . . , fi}};
– else set S ′

i = S ′
i−1;

• output S ′ = S ′
n.

Theorem 1. Consider an instance (S, C) of mini-
mum set covering with |C| = n. Consider also the
on-line model introduced above, and denote by S∗ =
{S∗

1 , . . . , S∗
k∗} an optimal off-line solution on (S, C).

Then, the competitive ratio of LGREEDY is bounded

above by min{
√

2n/k∗,
√

n}. Furthermore, there ex-
ist large enough instances for which this ratio is at

least
√

n/2.

Proof. Fix an arrival sequence Σ = (σ1, . . . , σn) and
denote by c1, . . . , ck, its critical elements, i.e., the el-
ements having entailed introduction of a set in S ′. In
other words, critical elements of Σ are all elements ci

such that ci was not yet covered by the cover under
construction upon its arrival. Assume also that the
final cover S ′ consists of k sets, namely, S1, . . . , Sk,
where S1 has been introduced in S ′ due to c1, S2 due
to c2, and so on.

Let δ(Si) be the increase of the number of covered
elements just after having taken Si in the greedy cover
(recall that if Si has been added in S ′ for critical

element ci = σj , δ(Si) = max{δ1
j , . . . , δ

fj

j }). We have:

δ (S1) = |S1| (1)

and, for 2 6 i 6 k,

δ (Si) =

∣

∣

∣

∣

∣

i
⋃

`=1

S`

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

i−1
⋃

`=1

S`

∣

∣

∣

∣

∣

(2)

Fix now an optimal off-line solution S∗ of cardinal-
ity k∗. Any of the critical elements c1, . . . , ck can be
associated to the set of smallest index in S∗ contain-
ing it. For any S∗

i ∈ S, we denote by Ŝ∗
i , the set

of the critical elements associated with S∗
i (obviously,

Ŝ∗
i ⊆ S∗

i ). The critical content h(S∗
i ) of any S∗

i ∈ S∗

is defined as the number of critical elements associ-
ated to it as described before, i.e., h(S∗

i ) = |Ŝ∗
i |.

Let S∗
1 , . . . , S∗

r be the sets in S∗ of positive critical
contents h(S∗

1 ), . . . , h(S∗
r ), respectively. Clearly,

r
∑

i=1

h (S∗
i ) = k (3)

r 6 k∗ (4)

For any S∗
i , let c1

i , . . . , c
h(S∗

i )
i be the elements of its

critical content ordered according to their position
in the arrival sequence Σ; in other words, following

our assumptions, Ŝ∗
i = {c1

i , . . . , c
h(S∗

i )
i } (recall that

Ŝ∗
i ⊆ S∗

i ).
Suppose, without loss of generality, that, for ` =

1, . . . , h(S∗
i ), the set Sj`

∈ S has been introduced in S ′

when the critical element c`
i has been activated. At

the moment of the arrival of c1
i , the set S∗

i is also a
candidate set for S ′. The fact that Sj1 has been cho-
sen instead of S∗

i means that δ(Sj1) > δ(S∗
i ); hence,

since as noticed just above, Ŝ∗
i ⊆ S∗

i , the following

holds immediately: δ(Sj1) > δ(S∗
i ) > |Ŝ∗

i | = h(S∗
i ).

When c2
i gets activated, the set S∗

i has lost some of its
elements that have been covered by some sets already
chosen by the algorithm. In any case, it has lost c1

i

(covered by Sj1). So, following the arguments devel-
oped just above for Sj1 , δ(Sj2) > h(S∗

i )−1, and so on
(quantities δ(·) are defined either by (1), or by (2)).
So, dealing with c`

i , the following holds:

h (S∗
i ) − ` + 1 6 δ (Sj`

) (5)

For example, consider the illustration of Figure 1.
Let S∗ be a set of the fixed optimal cover S∗ and de-
note by Ŝ the set of its critical elements, c1, c2 and c3

(ranged in the order they have been activated). Let
S be the set chosen by LGREEDY to cover c2. The
shadowed parts of S∗, Ŝ and S correspond to ele-
ments already covered by LGREEDY at the moment of
arrival of c2. At this moment, S must contain at least
as many uncovered elements as S∗ does and a fortiori
at least one uncovered element for any yet uncovered
critical element of S∗ (two uncovered elements for S
appear below the dashed line for c3 and c4).

PSfrag replacements

S

Ŝ

S∗

c1 c2
c3 c4

Figure 1: An example for (5)

Summing up inequalities (5), for ` = 1, . . . , h(S∗
i ),

and setting
∑h(S∗

i )
`=1 δ(Sj`

) = ni, we finally get for Si:

h (S∗
i ) (h (S∗

i ) + 1)

2
6

h(S∗

i )
∑

`=1

δ (Sj`
) = ni

=⇒ h (S∗
i ) 6

√
2ni (6)

Set, for 1 6 i 6 r, ni = αin, for some αi ∈ [0, 1].
Then,

∑r
i=1 αi = 1 and

r
∑

i=1

√
αi 6

√
r (7)



Using (3), (4), (6) and (7), we get:

k =

r
∑

i=1

h (S∗
i ) 6

√
2n

r
∑

i=1

√
αi 6

√
r
√

2n 6
√

k∗
√

2n

(8)
Dividing the first and the last members of (8) by k∗,
we get:

k

k∗
6

√

2n

k∗
(9)

On the other hand, remark that, if k∗ = 1, i.e., if there
exists S∗ ∈ S such that S∗ = {S∗}, then LGREEDY
would have chosen it from the beginning of its running
in order to cover σ1; next, no additional set would
have entered the S ′. Consequently, we can assume
that k∗ > 2 and, using (9),

k

k∗
6

√
n (10)

Combination of (9) and (10) concludes the competi-
tive ratio claimed.

Fix an integer N and consider the following in-
stance (S, C) of minimum set covering:

C =

{

1, . . . ,
N(N + 1)

2

}

S1 = {1, . . . , N}
S2 = {N + 1, . . . , 2N − 1}

...

SN =

{

N(N + 1)

2

}

SN+1 =

{

(i − 1)N − i(i − 3)

2
: i = 1, . . . , N

}

SN+2 = C \ SN+1

Consider the arrival sequence (1, . . . , N(N + 1)/2).
LGREEDY might compute the cover S ′ = {Si, 1 6 i 6

N}, while the optimal one is S∗ = {SN+1, SN+2}.
Hence, the competitive ratio in this case would
be N/2, with N = (−1 +

√
1 + 8n)/2 which is asymp-

totically equal to
√

n/2 as claimed.
For example, consider Figure 2. For Σ starting

with 1, 6, 10, 13, 15, LGREEDY may have chosen sets:

{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12}, {13, 14}, {15}

respectively, while the optimal cover would consist of
the two sets:

{1, 6, 10, 13, 15} (11)

{2, 3, 4, 5, 7, 8, 9, 11, 12, 14} (12)

The proof of the theorem is now complete.
Revisit (9), set ∆ = maxSi∈S{|Si|} and take into

account the obvious inequality: k∗ > n/∆. Then,
the following result is immediately derived from The-
orem 1.

Corollary 1. The competitive ratio of LGREEDY is

bounded above by
√

2∆.

The set-covering model dealt here is very economic
and thus suitable to solve very large instances. In-
deed, its memory requirements are extremely reduced
since the only information LGREEDY needs at any
step i is the encoding of the name of a set Sj0

i ∈
argmax{δj

i , j = 1, . . . , fi}. This is not the case for

PSfrag replacements
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Figure 2: The ratio
√

n/2 for LGREEDY is asymptoti-
cally attained

the intensive computations implied by the model of
Alon et al. (2003).

Let us note that the model dealt above can be
used to solve a natural on-line version of the mini-
mum dominating set problem. Given a graph G(V,E)
with |V | = n, assume that its vertices switch on one-
by-one. Any time a vertex σi does so, the name of its
neighbor with the most neighbors still switched off is
announced. Denote by vi0 such neighbor of σi. If σi

is not yet dominated by the partial dominating set V ′

already constructed, then vi0 enters V ′.
Consider the following classical reduction from

minimum dominating set to set covering: the vertex-
set V of the input-graph G becomes both the family
of subsets and the ground set of the set covering in-
stance (hence, both items have size n) and for any
vertex vi ∈ V , the corresponding set contains vi itself
together with its neighbors in G. It is easy to see that
any set cover of size k in the so-constructed set cov-
ering instance corresponds to a dominating set of the
same size in G and vice-versa. Remark also that the
dominating set model just assumed on G is exactly,
with respect to the transformation just sketched, the
set-covering model dealt before. Consequently, the
following result follows immediately.

Proposition 1. The on-line set-covering algorithm
of Theorem 1 is

√
n-competitive for minimum domi-

nating set in graphs of order n.

Note also that the counter-example instance given
in the proof of Theorem 1 can be slightly modified
to fit the case where, at each step, whenever a yet
uncovered element arrives, the algorithm is allowed to
take in the cover a constant number of sets containing
it and such that the number of elements yet switched
off that belong to these sets is maximized. For some
ρ > 1 and for some integer N , consider the following
instance:

S =
{

X,Y, Sj
i : 1 6 i 6 N, 1 6 j 6 ρ

}



C =

N
⋃

i=1

ρ
⋃

j=1

Sj
i

(

|C| = ρ
N(N − 1)

2
+ N = n

)

X = {x1, . . . , xN}
∣

∣

∣
Sj

i

∣

∣

∣
= N − i + 1 for i = 1, . . . , N

Sj
i

⋂

Sk
l = ∅, if i 6= l

Sj
i

⋂

Sk
i = {xi} , if j 6= k

Y = C \ X

Consider the arrival sequence where x1, . . . , xN are
firstly revealed. LGREEDY might take in the cover all
the Sj

i ’s, while the optimal cover is {X,Y }. In this
case, the competitive ratio is ρN/2, with

N =
ρ − 2

2ρ
+

√

(

ρ − 2

2ρ

)2

+ 2
n

ρ

i.e., the value of the ratio is asymptotically
√

ρn/2.
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Figure 3: A counter-example for the case where the
algorithm is allowed to take a constant number of sets
containing a recently arrived element

For example, set ρ = 2 and N = 5 and consider
the instance of Figure 3. For Σ starting with x1,
x2, x3, x4, x5, the algorithm may insert to the cover
the sets depicted as “rows”, while the optimal cover
would consist of the “column”-set {x1, x2, x3, x4, x5}
together with the “big” set containing the rest of the
elements (drawn striped in Figure 3).

In the weighted version of set-covering, any set S
of S is assigned with a non-negative weight w(S), and
a cover S ′ of the least possible total weight W =
∑

S∈S′ w(S) has to be computed. A natural modifi-
cation of LGREEDY in order to deal with weighted set-
covering is to put in the cover, whenever a still uncov-
ered element arrives, a set Si containing it that min-
imizes the quantity w(Si)/δ(Si). Unfortunately, this
modification cannot perform satisfactorily. Consider,
for example, an instance of weighted set-covering con-
sisting of a ground set C = {x1, . . . , xn}, and three
sets, S = C with w(S) = n, X = {x1} with w(X) = 1
and Y = C \ {x1} with w(Y ) = 0. If x1 arrives first,
the algorithm could have chosen S to cover it, yielding
a cover for the overall instance of total weight n, while
the optimal cover would be {X,Y } of total weight 1.

3 A lower bound for a whole class of on-line
algorithms

We now prove that, in the general model, no on-line
algorithm can achieve, for the model dealt, competi-
tive ratio better than

√

n/2, even if it is allowed to
choose at any step more than one set to be introduced
in the solution.

Proposition 2. Let A be an on-line algorithm for set-
covering such that, at any step, it takes in the cover at
least one set containing some not yet covered arriving
element. Let kA be the size of the cover computed
by A and k∗ be the size of the optimal cover. Then,

kA/k
∗ >

√

n/2.

Proof. Consider the following set-covering instance
built, for any integer N , upon a ground set S = {xij :
1 6 j 6 i 6 N}; obviously, |C| = n = N(N +1)/2. A
path-set of order i is defined as a set containing N−i+
1 elements {xiji

, . . . , xNjN
}. The set-system S of the

instance contains all possible path-sets of each order i,
1 6 i 6 N . Clearly, there exist N !/0! path-sets of
order 1, N !/1! path-sets of order 2, and so on and,
finally, N !/(N − 1)! path-sets of order N , i.e., in all
N !(1+ . . .+1/(N − 1)!) ≈ eN ! path-sets. Finally, the
set-system S is completed with an additional set Y
containing all elements of C but those of some path-
set of order 1, that will be specified later (hence, |Y | =
n − N).

As long as there exist uncovered elements, the ad-
versary may choose to have an uncovered element xij

of the lowest possible i arriving, which will be con-
tained only in all path-sets of order less than or equal
to i. Notice that as long as algorithm A has r < N
sets inserted in the cover, there will be at least one
element xr+1j for some j, 1 6 j 6 k + 1, not yet
covered. Suppose that after the arrival of σt, the size
of the cover computed by A gets equal to, or greater
than, N . Clearly, 1 6 t 6 N . At time t + 1, a
new element arrives, contained in some path-sets and
in Y , which can be now specified as consisting of all
elements in C except of the elements of some path-
set S∗ of order 1 containing σ1, . . . , σt; the rest of the
arrival sequence is indifferent.

Clearly the optimum cover in this case would have
been path-set S∗ together with set Y ; hence, kA/k

∗ >

N/2, with N tending to
√

2n as n increases.
For example consider the instance of Figure 4,

with N = 5 (the elements of C are depicted as cy-
cles labelled by (i, j) for 1 6 j 6 i 6 3). The Si

sets can be thought of as paths terminating to a
sink on the directed graph of Figure 4(a). As-
sume that (1, 1) arrives, and algorithm A chooses sets
{(1, 1), (2, 1), (3, 1)}, {(1, 1), (2, 2), (3, 2)} for covering
it; the uncovered element (3, 3) arrives next, so A
has to cover it by, say, the set {(2, 1), (3, 3)} (Fig-
ure 4(b)). The optimal cover might consist of set
{(1, 1), (2, 2), (3, 3)} together with a big set consist-
ing of the rest of the elements, that could not have
been revealed to A upon arrival of (1, 1), or of (3, 3)
(Figure 4(c)).

It is easy to see that the above construction can
be directly generalized so that the same result holds
also in the case that the on-line algorithm is allowed
to take more than one sets at a time in the cover: if
σ1 = x11, then as long as the size of the online cover is
less than N , there exists always some i`−1 < i` 6 N
and some ji`

for which xi`ji`
is yet uncovered. Hence,

if σ` is this element, then the algorithm will have to
put some sets in the cover. Finally, the algorithm will
have put N sets in the cover, while the optimum will
always be of size 2.
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Figure 4: The counter-example of Proposition 2 for
N = 5

4 The maximum budget saving problem

In this section, we study a kind of dual version of
the minimum set-covering, the maximum budget sav-
ing problem. Here, we are allotted an initial bud-
get B(S, C) destined to cover the cost of an algo-
rithm that solves minimum set-covering on (S, C).
Any such algorithm has its own cost that is a func-
tion of the size of the solution produced, of the time
overheads it takes in order to compute it, etc. Our ob-
jective is to maximize our savings, i.e., the difference
between the initial budget and the cost of the algo-
rithm. For simplicity, we assume that the maximum
saving ever possible to be performed is B(S, C)− k∗,
where, as previously, k∗ is the size of an optimum
set-cover of (S, C).

We consider here that the set-covering instance ar-
rives on-line. If a purely on-line algorithm is used to
solve it, then its cost equals the size of the solution
computed; otherwise, if the algorithm allows itself to
wait in order to solve the instance (partly or totally)
off-line then, its cost is the sum of the size of the solu-
tion computed plus a fine that is equal to some root,
of order strictly smaller than 1, of the solution that
would be computed by a purely on-line algorithm. We
suppose that the budget allotted is equal to k∗

√
n,

where n = |C|. This assumption on B(S, C) is quite
natural. It corresponds to a kind of feasible cost for
an algorithm; this is algorithm LGREEDY presented in
Section 2.

The interpretation of this model is the following.
We are allotted a budget corresponding to the cost of
an algorithm always solving set-covering. In this way,
we are sure that we can always construct a feasible so-
lution for it. Furthermore, by the second part of The-

orem 1, it is very risky to be allotted less than k∗
√

n
since there exist instances where the bound

√
n is

attained. On the other hand, we can have at our
disposal a bunch of on-line or off-line set-covering al-
gorithms, any one having its proper cost as described
just above, from which we have to choose the one
whose use will allow us to perform the maximum pos-
sible economy with respect to our initial budget. The
fact that the measure of the optimum solution for
maximum budget saving is B(S, C) − k∗, has also a
natural interpretation: we can assume that there exist
an arrival sequence Σ for C such that, for any σi ∈ Σ,
an oracle can always choose to cover σi with the same
set with which σi is covered in an optimum off-line
solution for instance (S, C). Under this assumption
for the measure of the optimum budget saving solu-
tion, this problem is clearly NP-hard since it implies
computation of an optimum solution for minimum
set-covering. Finally, denoting by cA(S, C) the cost
of algorithm A when solving minimum set-covering
on (S, C), the approximation ratio of maximum set
saving is equal to:

B(S, C) − cA(S, C)

B(S, C) − k∗
(13)

Obviously this ratio is smaller than 1 and, further-
more, the closer the ratio to 1, the better the algo-
rithm achieving it.

Theorem 2. Under the model adopted, FGREEDY is
asymptotically optimum for maximum budget saving.

Proof. Consider an instance (S, C) of minimum set-
covering and denote by kF and kL, the sizes of the solu-
tions computed by algorithms FGREEDY and LGREEDY,
respectively. By what has been assumed just above,
denoting by cF the cost of using FGREEDY, there exist
some ε > 0 such that:

cF(S, C)) = kF + k1−ε
L

(14)

Moreover, the following inequalities hold, the first one
from Slavík (1996) and the second one from Theo-
rem 1:

kF 6 k∗ log n (15)

kL 6 k∗
√

n (16)

Using (14), (15) and (16), we get the following in-
equality for cF(S, C)):

cF(S, C)) 6 k∗1−εn
1−ε
2 +k∗ log n 6

(

n
1−ε
2 + log n

)

k∗

(17)
On the other hand, as assumed above:

B(S, C) = k∗
√

n (18)

Using (13), (17) and (18), we obtain:

B(S, C) − cF(S, C)

B(S, C) − k∗
>

k∗
√

n −
(

n
1−ε
2 + log n

)

k∗

k∗
√

n − k∗

=

√
n −

(

n
1−ε
2 + log n

)

√
n − 1

(19)

It is easy to see that, for n large enough, the last term
of (19) tends to 1, and the statement claimed by the
theorem is true.

Remark also that if we are allotted with a budget
equal to k∗ log n log m (i.e., the cost of the on-line
algorithm of Alon et al. (2003)) and we assume that



the fine paid by algorithm FGREEDY is also computed
with respect to the algorithm of Alon et al. (2003),
then a similar analysis as in the proof of Theorem 2
leads to the same result, i.e., that FGREEDY remains
asymptotically optimum.

Also, if the budget allotted is k∗
√

n and one calls
the on-line algorithm of Alon et al. (2003), this latter
algorithm is asymptotically optimum for maximum
budget saving.

5 Conclusions

We have introduced an on-line model associated with
a natural greedy on-line algorithm achieving non-
trivial competitive ratio

√
n. Moreover, we have

shown that this simple algorithm is strongly compet-
itive since no on-line algorithm for this model, even
if it introduces in the cover more than one sets at a
time, can guarantee better than

√

n/2. One of the
features of our model is that the algorithm can run
with an extremely small amount of memory and disk
requirements and hence it is suitable for solving very
large instances.

Next, we have introduced and studied the maxi-
mum budget saving problem. Here, we have relaxed
irrevocability in the solution construction by allow-
ing the algorithm to delay its decisions modulo some
fine to be paid. For such a model we have shown that
the natural greedy off-line algorithm is asymptotically
optimal.

A subject for further research is the extension
of our models to deal with minimum-weight set-
covering. For this version work is in progress.
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