
Holistic assessment criteria – Applying SOLO to programming
projects

Errol Thompson
Department of Information Systems

Massey University
PO Box 756, Wellington 6140, New Zealand

E.L.Thompson@massey.ac.nz

Abstract1
How you define your assessment criteria should influence
the way the students approach the assignment. Does this
mean that if we use a holistic criterion-based assessment
strategy that students will look more holistically at the
topic rather than focussing on the pieces for which they
think they can gain satisfactory marks? A holistic set of
assessment criteria for programming assignment work
based on the SOLO taxonomy is presented, and
reflections on the use of this approach over three years are
discussed.

Keywords: Assessment, programming, criterion-based
assessment.

1 Introduction
The initial moves to a holistic approach to grading for
programming assignment work was reported in
Thompson (2004) where the holistic approach was
compared with a scoring / weighting rubric (Maki, 2004).
The institutions, in which this work was carried out, used
criterion-based strategies for essay and report writing
assignments that endeavoured to assign higher grades for
critical thinking. There was difficulty translating these to
programming assignment work where the emphasis
seemed to be on satisfying the required functionality
according to a set of predefined programming standards.

The SOLO taxonomy (Biggs and Collis, 1982) provided a
solution. In his book on improving learning in the
university context, Biggs (1999) provided an example of
how he applied the taxonomy to an essay style
assessment. This sparked a number of trials of different
SOLO based grading criteria for both essays and
programming exercises in the context of object-oriented
software development. These trials were completed with
second and third year papers.

Biggs (1999) focuses extensively on the use of the SOLO
taxonomy in university education. He contends that the
strategy led to essays that integrated knowledge rather

Copyright © 2007, Australian Computer Society, Inc.
This paper appeared at the Ninth Australasian Computing
Education Conference (ACE2007), Ballarat, Victoria,
Australia, January 2007. Conferences in Research in
Practice in Information Technology, Vol. 66. Samuel
Mann and Simon Eds. Reproduction for academic, not-
for profit purposes permitted provided this text is
included.

than simply focussing on a single aspect or providing a
shopping list of concepts relevant to the topic. Biggs’
criteria seemed to provide a better criteria than the
concepts of width, depth, and distance that had been used
for assessing learning journals (Thompson, 1998,
Thompson, 1997, November, 1996, November, 1997).
Using learning journals in a distance education course
revealed that some students were capable of integrating
knowledge while others simply rewrote material from
references or notes with limited reflection or integration.

In examining programming assignments, it was possible
to observe the shopping list style answer approach to
writing code. The criteria for these assignments didn’t
encourage code reuse or have any emphasis on the
structure of the code. The program needed to be
syntactically correct, implement a required set of
functionality, and utilise reasonable programming
practices. Although the marking criteria included the
ability to use modules (i.e. subroutines and functions),
this didn’t lead to the students integrating code or
reducing code duplication. Modules tended to be large
and perform multiple tasks. The use of documented
testing strategies was also given little importance by the
students with often buggy and incomplete code for all
functionality being handed in for marking. Students
appeared to see programming as an exercise in
completing as much of the required valid data path
functionality without concern for the overall integrity or
quality of the product.

The criteria described in this paper attempts to address
these issues by drawing on the concepts underlying the
SOLO taxonomy. Other experience with using the SOLO
taxonomy in evaluating responses to program reading
questions of novice programmers is documented in
Whalley et al. (2006), Lister et al (2006), and Thompson
et al. (2006). In these papers, the SOLO taxonomy was
selected to analyse the data gathered from a series of
programming related questions. These questions were not
written with the SOLO Taxonomy in mind.

This paper reports on the use of SOLO to define a set of
criteria that are given to the students to influence their
approach to the programming task and to assess the work
that the students present for marking. Biggs (1999) and
Hattie and Purdue (1998) describe this type of usage.

2 Methodology
The holistic marking criteria were originally introduced
to papers in 2002 taught. They have been used for essay,

design and programming assignments. These papers have
been at all levels within a degree program.

The lecturer involved initially evaluated the marks
obtained against the previous marking strategies used for
these papers (Thompson, 2004). In that paper, it was
shown how the strategy had limited impact on the grade
of a good student (A+) but could cause a lower grade
student (C - C+) to fail unless they changed their
approach to the assessment. The lecturer concerned
argues that this is precisely the outcome that was wanted
from the holistic criteria.

This paper endeavours to use qualitative data drawn from
the lecturer’s journal to identify whether the students’
approach to the assignment was changed as a result of
using the assessment strategy? The lecturer recorded key
questions raised by students about the assignments and
marking strategies. These were recorded following the
lecture or laboratory sessions.

3 SOLO categories
The SOLO taxonomy (Biggs and Collis, 1982) provides a
series of categories based on the structural relationship of
the material being presented. The categories of the SOLO
taxonomy are defined as:

Category Description
Prestructural a) Misses the point of the exercise or

plagiarises from other material.
b) The presented information has

little or no relevance to the
requested requirements.

Unistructural a) Focus on one conceptual issue or
naming things.

b) Shows minimal understanding by
only giving serious consideration
to one feature or requirement.

Multistructural a) List of items but no relationship
between items.

b) The emphasis here is on
“knowledge-telling” (i.e. look at
how much I know).

Relational a) Shows understanding through
integrating concepts and ideas.

b) Understands how to apply the
concept to a familiar problem.

Extended
Abstract

a) Relates an existing concept or
principle in such a way that they
are able to handle unseen
problems.

b) Questioning and going beyond
existing principles

Table 1: SOLO categories

The prestructural category includes the criterion that the
essay or code has to meet a minimum standard of
presentation. This doesn’t mean the assessor is looking
for all the grammatical or spelling errors in an essay. An
essay has to be able to be read in reasonable time without

the reader being caught by obvious grammatical
problems. There are tools that the student should learn to
use to help them verify the grammar or spelling. The
issue is whether the information is presented in a way that
makes sense to the reader. If grammar or spelling gets in
the way then the student hasn’t applied the basic tools
that are available.

4 Programming SOLO categories
This section outlines the criteria based on those used in a
second year programming paper that emphasised test-
driven development and refactoring. The assignment was
provided as three iterations over the twelve week period
of the course. Each iteration added another feature that
reused some of the existing functionality either explicitly,
such as validation rules for input data, or implicitly
through the need to use closely related processing
structures or techniques such as access to a database. The
iterations also tried to introduce a requirement for
different programming constructs or techniques.

The objective of the paper was to introduce the students
to the techniques of test-driven development and
refactoring. They all had passed previous introductory
and intermediate level programming papers. Limited
emphasis was placed on learning new language or
framework features.

In the criteria for the assignment, some introductory notes
were included to emphasise the different focus used in the
assessment criteria. These notes were:

1) Exceeding the minimum requirement in one area for
a grade will not see a higher grade awarded. You
must show that you are applying all the principles
consistently to be awarded a higher grade.

2) Features in the following criteria relates to all
aspects of the assignment. That is, the programs
required functionality, the design of the user
interface, and the implementation of an automated
testing strategy.

3) Programming standards include the use of good code
layout, variable names, and the elimination of code
duplication. The code should be readable with the
minimum of internal comments. That is, it should be
self documenting.

4) Form design should endeavour to be consistent with
the conventions of windows based applications.

5) The tab sequence on the form should follow a logical
pattern.

The first of these notes was intended to discourage the
students focussing on implementing all the functional
requirements and ignoring the requirement to use test-
driven development and refactoring. Simply completing
more functionality would not gain a better mark if the
required practices where ignored. This was further
emphasised by the second note.

As well as the program code, the students were asked to
provide a document that described the reasoning for their
design. They were not encouraged to produce external
detailed design documentation but were encouraged to
use coding standards that promoted readability and self-
documentation of code. The emphasis on internal
documentation was placed on comments that would help
explain why a particular programming approach was used
rather than a simple description of what the code was
doing. Comments that simply stated the obvious (i.e. adds
the two values together) were discouraged.

4.1 Base Standard
It was also stated in the assignment brief that programs
that did not compile or run would be returned without
being marked. It was not the marker’s task to fix such
problems. As a programming paper, the students had
access to a compiler to validate syntax and were being
encouraged to focus on incremental development rather
than attempting all functionality and getting none of it
working. There should be no obvious faults in the
submitting code. The emphasis in the assignment
instructions is to have completed and tested features
rather than to have started all the features but have few of
them completed.

4.2 Inadequate work (Prestructural)
This category could also be defined as absolute fail (E
grade) in terms of the assigned grade. In line with the
SOLO taxonomy, a student graded into this category was
showing that they did not understand the task or what was
expected of them.

4.2.1 Issues
The primary focus of this category was that the student
either showed inadequate knowledge or had completed an
inadequate amount of work. In line with the concepts of
plagiarism in essay writing, this category included simply
copying example code. Such copying would normally
produce a program that failed to deliver the working
functionality unless the plagiarism involved copying
another student’s code. During the lectures, code
examples were given out that illustrated a range of
solutions to particular types of coding problems and had
been used to discuss good coding practice and possible
design options for different aspects of coding business
applications. At no point were the students given a full
system solution so any copying of solutions would
involve the selection of sample code that would not
adequately combine into a solution.

As well as ruling out copying, these criteria specified the
minimum standard required to be considered as making a
serious attempt at the programming exercise. The target
of 30% represented slightly less than one iteration for the
assignment. Inadequate progress was seen as being an
indicator of an inability to tackle the programming tasks.

A minimum standard was also presented for coding, user
interface design, and application structure. If they were

given minimum consideration by the student then the
assignment submission was dismissed as unacceptable.

4.2.2 Criteria
The inadequate work (prestructural) criteria were defined
as:

Copying code or no understanding of programming
issues.

! Application attempts to copy example code with
minimal changes

! Application is unrelated to requirements

! Application delivers less than 30% of the required
functionality.

! No attempt has been made to apply programming or
user interface design standards or good application
structures.

4.3 Single aspect (Unistructural)
This category was considered a marginal fail (D grade).
The student showed some understanding but was
operating an inadequate level to be able to participate in a
programming environment.

4.3.1 Issues
The reason for a student’s work to be graded in this
category was that they had focussed on one aspect of the
assessment. This might have been that one feature of the
system had been implemented or that one aspect of the
required implementation tasks was utilised. For example
a student may have concentrated on the design of the user
and ignored the implementation of processing logic or a
testing strategy. If a student completed all the
functionality according to the specifications but wrote no
automated tests or documented no testing strategy then
this was regarded as focusing on a single aspect of the
assignment task.

In attempting to define this category, two dimensions
were taken into account. These were the features or scope
of the system and the range of programming techniques
or constructs that should be used. Focussing on only one
iteration or feature set of the system was regarded as a
single aspect. Likewise, focussing on a single
programming technique or construct was regarded as a
single aspect.

Because of the way that the iterations where defined,
students who only completed one iteration or who were
only beginning the second iteration were unlikely to
demonstrate anything other than a single aspect approach
to the assignment.

4.3.2 Criteria
The single aspect (unistructural) criteria were defined as:

Shows a limited understanding of programming and
application development issues. Parts of features are
implemented without ensuring successful operation.
Some of the issues considered include:

! Application partially operates with significant
obvious problems.

! Application delivers 30-50% of required features as
specified in the requirements.

! Programming standards, application structures, and
user interface design standards are not applied
consistently.

4.4 Disjoint project (Multistructural)
The greatest grade range was assigned to the disjoint
project (multistructural) category. In defining this
category, the grade band was split into two categories.

The lower band of this category represented those
students who were only just making the standard in more
than one aspect of the project. They were assigned a
grade that would give them a marginal pass for the
assessment (C grade). These students might be able to
participate in projects where they can focus on a specific
aspect and not have to deal with all aspects of a project.

In contrast those in the higher band were endeavouring to
satisfy the standards in most aspects of the project.
However, they were not seeing these aspects as related or
integrated. Each was handled as though independent of
each other. Many of these students would make good
journeymen on programming projects where they could
follow the lead of others. These students were assigned a
adequate pass grade (B grade).

4.4.1 Lower disjoint project band issues
The lower disjoint project band focussed on the use of a
limited range of concepts and techniques or on
implementing limited functionality. If a student attempted
two iterations in a manner where each iteration was
considered as single aspects then their mark would fall
into this lower category band. An attempt to complete
more than one iteration was needed for the student to be
graded above this band. One iteration if completed fully
utilising all the required programming techniques and
with automated test would be at the bottom end of this
grade band. The issues of integration of code between
iteration requirements would not be illustrated in the
student’s solution.

This lower category might also be represented in a project
where the student had completed the full scope of the
project but only partially addressed the testing
requirements or user interface design issues.

4.4.2 Lower band criteria
The lower disjoint project (multistructural) criteria were
defined as:

Is able to complete a working piece of code to a base
standard. The completed features are implemented but
without ensuring consistency in operation or
implementation. Some of the issues considered include:
! Application operates without obvious problems (i.e.

does not crash when executed).
! Application delivers 50 to 60% of required features

as specified in the requirements.

! Application inconsistently applies programming
standards and user interface design standards.

4.4.3 Upper band issues
In contrast to the lower disjoint project category band, the
higher disjoint project category recognised that a large
amount of the system functionality might be implemented
but that there was limited or no integration of that
functionality. At least two iterations of the assessment
project would need to be attempted to be considered for a
grade in this band. The project may have attempted all
iterations but each iteration appeared in the presented
work as if it was a totally independent programming
project or included a high level of code duplication
because the student had not seen the commonality that
was possible in developing the solution. The required
system specifications might have been fully met but the
user has what appeared to be three totally independent
projects.

4.4.4 Upper band criteria
The higher disjoint project (multistructural) category was
defined as:

Is able to complete a working piece of code to a base
standard. The completed features are implemented as if
they don’t belong together. Some of the issues considered
include:
! Application operates without obvious problems (i.e.

does not crash when executed).
! Application delivers 60 to 70% of required features

as specified in the requirements.
! Application consistently applies programming

standards and user interface design standards.

4.5 Unified project (Relational)
This is the level that we wanted most students to operate
at. These students were assigned a grade that indicated
their high level of competency as a programmer (A
grade). At this level, they were seeing the relationships in
what they were attempting to achieve although not
stretching beyond their current knowledge. It would be
expected that students operating at this level would be
able to deal with most programming tasks that utilised
familiar techniques or practices. They might struggle
where novel solutions were required.

4.5.1 Issues
In this category, the student has completed the assessment
work to a level that shows integration of the iterations and
utilisation in a coordinated manner of a wide range of
programming techniques and constructs for the intended
purpose. Two iterations of the project needed to be
completed and a portion of the third iteration attempted in
order for the student to be considered in this grade band.

At this level, the student has identified the commonality
in the functionality of the code and has refactored the
code to eliminate duplication. The student has also
recognised the need to apply all the programming
techniques consistently to achieve the projects objectives.

4.5.2 Criteria
The unified project (relational) criteria were defined as:

Is able to apply the programming concepts taught and
consistently uphold the standards and structures from
example code. The completed features are implemented
in a way that demonstrates the integration of ideas and of
the system being developed. As above plus:
! Application delivers over 70% of the required

functionality as specified in the requirements.
! Application structure is clean and matches standards.
! Application is documented externally to ease

understanding.
! Minimal duplication of code and good reuse between

different functional components.

4.6 Outstanding work (Extended Abstract)
This category was reserved for those students who had
exceeded the expectations for the assessment. These were
the possible innovators and ideas people of a project. As
such they were assigned a grade that reflects excellence
(A+ grade).

4.6.1 Issues
At the lowest end of this category would be the student
who has completed all the iterations with fully integrated
code and utilising the full range of programming
techniques and constructs. Ideally, they should have used
some constructs that were not explicitly taught in the
paper. The focus here was on going beyond just doing the
basics. The last iteration provided the students with the
opportunity to extend their learning if they wished and to
use some alternative techniques not explicitly covered in
the paper but which they should have been able to learn
based on the learning foundation given in the paper.

The outstanding student in this category would be using
additional programming techniques and constructs, and
have demonstrated an ability to argue for their inclusion
in the project. The student was not expected to add
functionality beyond what was requested but to show that
they had evaluated and explored new techniques and
constructs without formal instruction or guidance. They
may also have demonstrated an ability to identify
weaknesses in the requirements or design specification.

4.6.2 Criteria
The outstanding work (extended abstract) criteria were
defined as:

Shows initiative to experiment with new ideas and is able
to present a meaningful argument for a revised approach.
Achieves what is specified in an integrated way and
addresses issues beyond those clearly stated in the
assignment. As above plus …
! Application delivers over 80% of the required

functionality.
! Application design shows integration of task

components.
! Utilises programming techniques and constructs that

were not explicitly taught in the paper

! Documents reasoning for choice of approach to
application design and coding.

! Documents task integration issues.

4.7 General comment
The objective in writing the criteria presented here was to
give the students a clear indication of the intent for each
of the marking criteria and to provide some basis for them
to check whether they had achieved a specific standard.
Those operating at the outstanding work category level
didn’t need a checklist but those at the lower levels often
seemed to need explicit checklists of what was expected.

5 Cases
The previous section introduced the concepts of using the
SOLO taxonomy for defining the assessment criteria for
programming projects. The criteria described are those
used in a particular paper. They need to be adapted for
each paper. In this section, the application of the criteria
is discussed in relation to specific student cases. The
described cases are based on experience over the last two
years.

5.1 “How can I be sure that I have done
enough?”

This first case related to the difference between criteria
that defined as a checklist or scoring / weighting rubric
(Maki, 2004) and the holistic approach of the SOLO type
categories. The students had phrased this as “how many
marks will I get if I only do …?” or “how can I be sure
that I have done enough to get a .. grade?”

These questions still occurred with scoring / weighting
rubrics but seemed to be even more pronounced when the
SOLO taxonomy criteria are used. The scoring /
weighting rubric provided a form of checklist which the
students used to check off whether they thought they had
done enough work. When pushed they accept that the
SOLO categories had given them this information and
that it was simply that it was not in a form that they are
used to using.

This did lead to the protest that this was not how they
were assessed in other papers. In other papers, they felt
they could leave out practices required by the assessment.
They contended that the criteria didn’t give them
flexibility in how they approached the task. To some
extent this was true, but in reality they had considerable
flexibility in how they created the solution and in the type
of tests that they utilised. What they didn’t have
flexibility in was providing the required functionality and
the proof that the functionality was working as required.

Part of the reason for this difficulty was that the SOLO
taxonomy criteria were only being used in papers taught
by one lecturer. Students were not familiar with this style
of criteria or approach to assessment. Despite having
talked through the criteria, the style of assessment, and
the desire to help them understand professional practice,
the students had difficulty understanding or accepting the
expectations of the criteria.

The students were indoctrinated with the assessment
practices of the department and institutional culture. This
indoctrination wasn’t simply for the criteria but for the
nature of assessment and ability to negotiate changes to
due dates, and criteria.

This problem wasn’t directly related to the use of the
SOLO taxonomy. It applied to the use of any alternative
assessment strategy or assessment criteria. To use an
alternative assessment strategy or criteria requires making
the effort to assist students to understand the
expectations.

5.2 “Do I really need to do that?”
This case had some similarities to the previous case
except that this wasn’t based on issues of inflexibility but
more whether something was really needed. In the
assignment for which the above criteria where used, the
completion of a feature involved both the code and
automated tests. This included elements of data
validation. Under a conventional marking matrix,
students knew that they could ignore the automated tests
and still pass the assessment possibly with a very good
mark. They also knew that as long as they had the
primary processing path working (i.e. valid data) and
testing for that path that they would pass in other papers.
With the SOLO strategy, completion of functionality
meant they needed to be more thorough in their work
including dealing with invalid data in order to obtain the
same grade. It was necessary to complete the full
functionality of a feature and not simply what seemed to
deliver the core functionality.

Students in this category either obtained a lower grade
than they would have under a scoring / weighting rubric
(Thompson, 2004) or they adapted to the new criteria and
completed the additional tasks to obtain a similar grade.

5.3 “I need to implement this now”
When a new iteration was handed out there was in the
students thinking a need to add new functionality even if
the previous functionality was still incomplete and
untested. The result often was code that was full of
problems and faults. The more functionality they tried to
add the more problems and faults occurred often leading
to code that failed to run at all. The shift to ensuring the
current iteration is complete before moving on had to be
continually reinforced and in some cases demanded
before help or assistance was given to solving the more
difficult problems. This problem was also occurring with
conventional scoring / weighting rubrics but students
found it easier to ignore the problems and still pass.

This was less of a problem in an offering where
individual iterations where taken in and checked for a
satisfactory level of completion before the next iteration
was given out. The marking strategy handled this
situation with minimal adjustment since the student who
could not complete the first iteration would not gain a
pass grade. Not completing the current iteration put a
ceiling on the mark obtained for the project and
reinforced the objective of the marking strategy.

When iterations had to reach a certain standard before the
student was given the requirements for the next iteration,
this led to those students who are struggling to reach the
standard protesting that they were being disadvantaged
because they were not getting the opportunity to work on
the next iteration. These students sometimes obtain copies
of the next iteration from a student who had achieved the
standard in the belief that if they implemented more
functionality they would get a better mark. They failed to
recognise the importance of applying key practices or
reaching required levels of performance before moving
on. They also failed to recognise that failure is part of the
learning process. Steve McConnell (2004) says

“Great designers usually have experience on failed
projects and have made a point of learning from
their failures. They try out and discard more
alternatives. They are often wrong, but they
discover and correct their mistakes quickly. They
have the tenacity to continue trying alternatives
after others give up.”

Students who refused to accept that their work is not up
to standard were failing to learn the important lessons that
would enable them to become better programmers and to
gain the freedom that they desired in programming.

A marking strategy based on assigning a portion of marks
for each iteration still portrayed the idea that if they didn’t
meet the required minimum standard for this iteration,
they could always pick up marks for the next. The
message desired from the SOLO strategy is that each
iteration must be completed successfully. This is an
attitude that is portrayed in the velocity calculations of
agile methods such as extreme programming where a
story is not included in the velocity if it is not complete.
If the student was not allowed to move forward to the
next iteration until they have completed the current to the
required level, then they were learning that work needs to
be completed before it counts. The velocity count is all or
nothing for stories. It isn’t an estimate of “I have 50%
complete so I am making progress”.

5.4 “I have all the functionality there”
This case relates to the students who completed all the
iterations as though they were totally independent
applications. In this situation all the functionality was
there and was fully tested. The problem was that there
was no recognition of common features (i.e. repeated
validation) and duplication of coding occurred.

In the SOLO taxonomy grading system, this student only
received a B grade and some protested that they should be
receiving at least an A if not an A+. From a teaching
perspective, the B grade was what they should have
received because they were not integrating their work but
the students failed to see the importance of this
integration activity.

It is easy to blame the students for this style of thinking
but sometimes it reflects the way that the students have
been taught to program. The use of methods came after
they were taught all the logic structures. It wasn’t taught
as part of the process of dividing your code into

functional components or for implementing duplicate
logic. Rather it was simply a tool that you used when
directed.

A similar attitude exists to the use of objects. Because the
student has been taught procedural logic first, they see the
problem in procedural terms rather than as interacting
objects. When a student is asked why a form is
overloaded with logic and why they have not created
business objects that contain testable functionality, they
respond that it was the way they have learnt to program.

Felleisen et al (2001) and Proulx and Gray (2006)
propose teaching strategies that seem to reverse
conventional wisdom but lead to students thinking in
terms of class and method design ahead of logic design.
This approach to teaching may address the issues raised
by this case.

5.5 Testing isn’t a programmer’s responsibility
Test-driven development argues that the automated test
should be written before the code is written. This does
mean that the programmer needs to have an idea of how
the program is to be designed before they write the test.
Students took this a step further and argued that they
didn’t know what the test would be until they had written
the code or that it was not possible to write tests for the
code because the program could only be tested as a whole
or that the programmer wasn’t responsible for testing
their code.

The result of this attitude was that automated test code
was only submitted for a small segment of the code or the
provided tests were superficial. Some functionality was
implemented but not tested or there were failing tests in
the automated test suite.

This was a problem of attitude rather than reality. In order
to write the code, the programmer has to have some
expectation of what the program will do. If the
programmer doesn’t know how the code should respond
to certain inputs or what should be returned as a result of
some coding sequence then they don’t understand the
requirements. Writing an automated test is the ultimate
level of formalisation of the requirements.

Edsger W Dijkstra (2000) said “A programmer has
to be able to demonstrate that his program has the
required properties. If this comes as an
afterthought, it is all but certain that he won't be
able to meet this obligation: only if he allows this
obligation to influence his design, there is hope
that he can meet it. Pure a posteriori verification
denies you that wholesome influence and is
therefore putting the cart before the horse...”

Being able to develop a testing strategy based on the
requirements shows a clear understanding of what is
required. It is only at this point that the programmer has a
clear idea of what is required and has, as Dijkstra said,
allowed the obligation to “to demonstrate that his
program has these properties” to influence the design.
Simply gathering numerical proof as evidence of correct
operation denies this influence.

McBreen (2001) argues that “Software craftsmen
have a real interest in automated testing because of
their investment in their reputations.”

Should the grade assigned to the student reflect an
“investment in their reputation” or should it be an
indicator of a good attempt even if they failed to prove
the integrity of their code? Students who failed to accept
this message received a lower grade than they would have
using a scoring / weighting rubric (Thompson, 2004)

This complaint wasn’t a failure of the SOLO taxonomy
marking criteria but rather failure of our teaching
strategy.

6 Conclusion
This paper outlines criteria that have be used for
programming assignments. The cases described show
issues that arose and how these issues came from
perspectives that were challenged by the criteria.

Did the strategy cause the students to change to a more
holistic approach to their assignment work? Clearly there
was resistance to change and some students refused to
change (cases 5.2 and 5.3). Some of this resistance was
caused by lack of familiarity with the approach to
assessment reflected in the criteria (case 5.1). Other
resistance came from a feeling that they could not select
what they wanted to focus on (case 5.2). This reflected a
resistance to a holistic approach to the task. Further
resistance came from issues of understanding the process
of software development and what it meant to have
completed an iteration (case 5.3). This wasn’t necessarily
resistance to a holistic assessment approach to the task. In
two of the cases, the resistance came from perspectives of
what it means to complete functionality (case 5.4) or to
ensuring that code worked as required (case 5.5).
Although this might be seen as resistance to a holistic
approach to the task, the teacher considered the approach
to teaching as a possible influence on the student
attitudes. Were the students taught from the beginning to
think in terms of code reuse and with an obligation to
fully understand the requirements in the form of tests?
The lecturer records that test-driven development was
taught but wondered whether the students understand
how to translate requirements to tests and what was
involved in that process? In all of these cases, the
students were thinking about what was expected of them
and the criteria were influencing the judgement of the
students.

The lecturer in recording the instances tended to focus on
the difficulties and recorded less of the positives. This
was so that the lecturer could endeavour to address these
issues in the next offerings of the papers. The positives
that were recorded reflected comments of appreciation for
the lecturer’s teaching style or what had been learnt.
These notes showed that the students recognised that this
lecturer’s papers were difficult but that the students felt
that they learnt a significant amount.

7 Discussion
Like any marking criteria, there needs to be alignment
with the specification of the task. In the SOLO taxonomy
marking strategy and the cases, there is a consistent
strategy of rewarding valued programming practices and
placing of an emphasis on the quality of the solution. The
alternative may be to emphasise achieving a solution with
quality as an option. A further study on this is to be
completed as part of research currently being carried out
on improving learning in programming.

The SOLO taxonomy based marking criteria have been
used with programming assignments that involved the
implementation of a reasonable sized program. Can it be
applied to smaller projects where there may not be so
much duplication or shared functionality in the code? The
research work suggests that we can use it to evaluate
student responses to reading and comparing code
segments (Whalley et al., 2006, Thompson et al., 2006)
and in evaluating the strategies used to solve code reading
problems (Lister et al., 2006). Work is continuing on
establishing the use of the SOLO taxonomy to assess the
writing of code segments for exam conditions.

What is clear is that there is a need to ensure the project
includes issues that enable solutions that are dependant on
more than a single or limited range of concepts. Larger
projects should provide for the possibility of
implementing a solution as independent pieces or as an
integrated whole. Biggs (1999) describes how the SOLO
taxonomy can be used to write assessment items.

8 References
Biggs, J. B. (1999) Teaching for quality learning at

University, Buckingham, Open University Press.
Biggs, J. B. & Collis, K. F. (1982) Evaluating the quality

of learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome), New York, Academic
Press.

Dijkstra, E. W. (2000) Answers to questions from
students of Software Engineering. From
http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1
305.PDF.

Felleisen, M., Flatt, M., Findler, R. B., Gray, K. E.,
Krishnamurthi, S. & Proulx, V. K. (2001) How to
design class hierarchies: Object-oriented programming
and computing.

Hattie, J. & Purdie, N. (1998) The Solo model:
Addressing fundamental measurement issues. In Dart,
B. & Boulton-Lewis, G. M. (Eds.) Teaching and
learning in higher education. Camberwell, Vic,
Australian Council of Educational Research.

Lister, R., Simon, B., Thompson, E., Whalley, J. &
Prasad, C. (2006) Not seeing the forest for the trees:
Novice programmers and the SOLO taxonomy.
Innovation and Technology in Computer Science
Education (ITiCSE 2006). Bolonga, Italy.

Maki, P. (2004) Assessing for learning: Building a
sustainable commitment across the institution, Sterling,
VZ, Stylis Publishing.

McBreen, P. (2001) Software craftsmanship: The new
imperative, Boston, Addison Wesley.

McConnell, S. (2004) Professional software
development: shorter schedules, higher quality
products, more successful projects, enhanced careers,
Boston, Addison Wesley.

November, P. (1996) Journals for the journey into deep
learning: a framework. Higher education research and
development, 15, 115-127.

November, P. (1997) Learning to teach experientially: a
pilgrim's progress. Studies in Higher Education, 22,
289-299.

Proulx, V. K. & Gray, K. E. (2006) Design of class
hierarchies: An introduction to OO program design.
Inroads - The SIGCSE Bulletin, 38, 288-292.

Thompson, E. (1997) 71253 Systems Design and
Development, Lower Hutt, The Open Polytechnic of
New Zealand.

Thompson, E. (1998) Delivering education that satisfies
industry. NACCQ National Conference. Auckland,
National Advisory Committee on Computing
Qualifications.

Thompson, E. (2004) Does the sum of the parts equal the
whole? In Mann, S. & Clear, T. (Eds.) Proceedings of
the seventeenth annual conference of the National
Advisory Committee on Computing Qualifications.
Christchurch, New Zealand, National Advisory
Committee on Computing Qualifications.

Thompson, E., Whalley, J., Lister, R. & Simon, B. (2006)
Code Classification as a Learning and Assessment
Exercise for Novice Programmers. In Mann, S. &
Bridgeman, N. (Eds.) The 19th Annual Conference of
the National Advisory Committee on Computing
Qualifications: Preparing for the Future —
Capitalising on IT. Wellington, National Advisory
Committee on Computing Qualifications.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, A. & Prasard, C. (2006) An Australasian
study of reading and comprehension skills in novice
programmers, using the Bloom and SOLO taxonomies.
In Tolhurst, D. & Mann, S. (Eds.) Eighth Australasian
Computing Education Conference (ACE2006). Hobart,
Tasmania, Australia, Australian Computer Society Inc.

