
How can software metrics help novice programmers?

Rachel Cardell-Oliver

School of Computer Science and Software Engineering
The University of Western Australia,

M002, 35 Stirling Highway, Crawley, WA, 6009
Email: rachel.cardell-oliver@uwa.edu.au

Abstract

Many computing education studies have reported
poor learning outcomes in programming courses for
novices. Yet methods for measuring students’ abil-
ity to generate computer programs remains an open
research problem. In this paper we review some lim-
itations of existing approaches for assessing student
programs. We then propose a set of valid and reli-
able metrics for the direct measurement of novices’
program code. Distributions of each metric are given
for student populations. The metrics can be utilised
for both diagnostic and formative assessment. Ex-
amples of formative assessments are given and a new
diagnostic metric is presented for Perkins’ “stoppers”
and “movers” learning styles. This metric captures
the multi-dimensional distance of a student’s program
from a target solution. The metric can be used by in-
structors to triage a large set of submissions and to
tailor formative feedback to individuals.

1 Introduction

Programming courses for novices have two main
learning outcomes: the ability to comprehend (read)
program code and the ability to generate (write) pro-
gram code. Although many studies have reported
poor learning outcomes, the research problem of how
to measure those outcomes has received surprisingly
little attention. In particular, while criterion-based
analysis of learning outcomes related to program com-
prehension has been the subject of several major stud-
ies (Lister & Leaney 2003, Lister et al. 2004, Decker
2007), the problem of criterion-based measurement
of students’ code generation skills remains an open
problem.

How can learning outcomes related to novices’
ability to generate program code be measured ? The
first part of this paper (sections 2 and 3) reviews some
limitations of existing approaches for measuring stu-
dent programs and in particular highlights problems
with the use of students’ final grade as a metric to val-
idate claims in empirical studies. In the second part
of the paper (sections 4 to 6) we propose a suite of
software metrics to measure the quality of students’
programs, and so to inform strategies for improving
programming skills. The focus of this paper is on
software metrics that provide useful feedback to stu-
dents (formative assessment) and to their lecturers
(diagnostic assessment) (Crisp 2008). Our metrics

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 13th Australasian Computing Education
Conference (ACE 2011), Perth, Australia, January 2011. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 114, John Hamer and Michael de Raadt, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

can also be used for grading assignments (summative
assessment) but that is not our primary goal here.

This paper addresses two research questions:

1. which software metrics are appropriate (or not)
for measuring novices’ ability to generate pro-
gram code? and

2. how can measurement with software metrics con-
tribute to student learning?

In Sections 2 and 3 we answer the first question by
reviewing some representative studies that evaluate
novice students’ ability to write computer programs.
Several common pitfalls in the use of metrics in such
experiments are identified. For example, we show
that final grade is neither a valid nor reliable metric
for drawing conclusions about students’ code genera-
tion ability. In section 4 we propose a list of significant
attributes for novices’ programs together with metrics
for each attribute. These commonly used metrics are
both valid and reliable for the attributes they measure
(Fenton & Pfleeger 1998). Sample distributions of the
metrics are shown for large student populations for a
selection of different Java programming exercises.

Sections 5 and 6 address the second research ques-
tion by demonstrating two ways in which metrics can
be used in programming courses for formative and
diagnostic assessment. Section 4 presents examples
of the formative feedback generated by the measure-
ment tools used by students during their laboratory
sessions. Section 6 considers the role of metrics for
diagnostic assessment, that is feedback to lecturers
about problems encountered by a cohort of students.
We show how students can be classified according to
Perkins’ “stoppers”, “movers” and “tinkerers” learn-
ing styles (Perkins et al. 1989) using a distance mea-
sure between the metrics vectors of a canonical solu-
tion program and the code submitted by each student.

2 Assessment of Code Generation Skills

This section focuses on related work that proposes
specific methods for measuring the programs gener-
ated by novices. These approaches can be evaluated
in terms of the validity, reliability and cost of the
metrics they propose using the validation framework
of Kitchenham et al (Kitchenham et al. 1995). Va-
lidity is the extent to which a measurement reflects
the property of interest, in our case novices’ ability to
generate correct, efficient and readable computer pro-
grams. Establishing the validity of a metric requires
examination of detailed and explicit criteria and their
measurement instruments (Kitchenham et al. 1995).
Reliability is whether the measurement is repeatable
and is in agreement with other measures for the same
property. Poorly documented grading schemes may
be interpreted differently by different markers, and
so they have low reliability. Cost of a metric is the

effort required to make the measurement. Metrics
that can be evaluated automatically by a computer
have lower measurement cost than those that require
detailed inspection by a human marker.

In 2001 an international study was undertaken
to measure code generation skills (McCracken et al.
2001). 217 students from different institutions took
a laboratory examination in which they wrote pro-
grams for a set of mathematical problems about
reverse-polish and infix calculators. The students’
programs were evaluated against a set of well doc-
umented general evaluation criteria that included ex-
ecutable tests for correctness and expert inspection of
program style. For programs that did not work a “de-
gree of closeness” metric was also used as a subjective
evaluation of how close a student’s source code was
to a correct solution. The performance of students in
all the test groups against all these criteria was much
lower than their instructors expected with an aver-
age general evaluation score of 22.9 out of 110 and an
average degree of closeness score of 2.3 out of 5.

A number of flaws with the study were identified
by the authors and others (McCracken et al. 2001,
Decker 2007). The test had limited validity for its
purpose because results were affected by a number of
external factors. The mathematical focus of the prob-
lem set, the difficulty of the required data structures
and problems with presentation and instructions for
the test all created cognitive overload for the test that
many students were unable to overcome. Detailed
rubrics for assessing the exercise meant that grades
were reliable for the given exercise, but the reliabil-
ity of the measures have not been tested on any other
programming tasks. The results presented using aver-
ages and standard deviations are inappropriate sum-
mary measures for these skewed populations. Instead,
the median and quartile ranges should be presented.
Overall, the metrics used proved neither valid nor re-
liable for general use and the cost of collection was
high.

Autograder is a system for automatically grading
student programs (Morris 2003). Laboratory exer-
cises and automatic marking scripts are developed
using a 10 step process starting with a canonical
instructor-written solution and test suite, to detailed
specifications for the students and finally post-facto
feedback on the quality of the grading process. This
assessment has criterion-referenced validity in that
tests are provided for each of the requirements given
to students in the specification. However, the sys-
tem appears to mark only functional correctness, and
does not consider planning, style, efficiency or other
non-functional quality attributes of programs. Fur-
thermore, the problem of degree of closeness of non-
working solutions is addressed by providing work-
arounds for “minor” errors such as naming and out-
put format errors using regular expression matching,
Java reflection, and overriding of directly or indirectly
dependent methods. Although these work-arounds
meet the goal of satisfying students that the mark-
ing is “fair” in recognising their effort, they lower the
validity of the metric for the overall goal of measur-
ing program generation ability. In our view a better
approach is to set a target standard for assessment,
but then allow students to refactor their code and
resubmit it rather than for the instructor to create
artificial work arounds. For these reasons the system
has limited validity for the purpose of measuring stu-
dents’ overall program generation skills. Autograder
is fully automatic once the programming exercise and
its marking script have been developed, so it has low
measurement cost even for large cohorts of students.

Lister and Leany present a criterion-based frame-
work for assessing both code generation and code
comprehension skills (Lister & Leaney 2003). The fo-

cus of that paper is on how to specify criteria for out-
comes rather than how to measure outcomes as in this
paper. Explicit and clear criteria are communicated
to the students for the grades of fail, pass, credit, dis-
tinction and high distinction. For example, the crite-
ria to be satisfied by a credit or distinction student
include “to have demonstrated, within a small well-
defined program context, that you are able to: (a)
Apply the basic OO programming concepts of classes,
instances, events, and methods. (b) Apply the basic
program control constructs of sequence, selection and
iterations. (c) Take an informal problem description
and translate it into a readable, working program.
(d) Apply the basics of testing and debugging.” Pro-
gramming skills were assessed in an assignment with
several parts: 5 exercises adding small amounts of
code (10 to 15 lines) to an existing system, and the
final exercise to add an entire new class. Details of
the measurement protocol and marking criteria are
not given in the paper but the approach is certainly
amenable to the specification of detailed metrics and
measurement protocols for each criteria as introduced
in this paper, in which case the validity, reliability and
cost of the tests could be assessed.

There are many other published studies that use
software metrics for assessment. Their goals range
from detecting plagiarism to teaching software qual-
ity. In this paper we can only discuss a representa-
tive sample of such studies. More broadly, this pa-
per draws on prior research on how students learn to
program (Robins et al. 2003), on measuring learning
outcomes in CS1 programming courses (Lister et al.
2004, Decker 2007, Robins 2010), on the automatic as-
sessment of programming (Ala-Mutka 2005), and the
theory of software metrics (Fenton & Pfleeger 1998,
Kitchenham et al. 1995).

3 Evaluation of Final Score as a Metric

Many studies of student learning in CS1 draw conclu-
sions based on students’ final letter grades or percent-
age scores. In this section we identify some difficulties
with this approach and caution against using either fi-
nal grades or final scores as the measurement baseline
for empirical studies.

Final grades in University courses are assigned
as a weighted sum of assessed components. They
may be adjusted to meet institutional requirements
for pass rates and grade distribution. This is called
norm-referenced grading (Lister & Leaney 2003). In
CS1 courses assessed components include program-
ming exercises, programming projects, tests and ex-
aminations. Final score is most often not a valid met-
ric and studies based on final grades can be difficult
to interpret because “when using overall course grade
as the success marker, one should know if there was a
curve placed on the grades, or even the basic break-
down of what is considered A work”. (Decker 2007).

Furthermore, final score or grade is not a reliable
metric because it is highly sensitive to minor changes.
Figure 1 shows typical distributions of student scores
for different types of assessment taken from a partic-
ular cohort of 180 students, being those students who
sat the final exam out of 200 who enrolled initially.
The scores shown are for 4 of the 8 components used
for the final mark. Each component has been scaled
to a mark out of 20 for easier comparison. The top
figures (a) and (b) are practical work scores and the
bottom figures (c) and (d) are examination scores.
Three of the components (a, b and c) assessed code
generation skills while exercise (d) assessed code com-
prehension skills.

It is interesting to note that practical work compo-
nents (a) and (b) exhibit the typical bimodal distribu-

Laboratory exercise

(a)

Fr
eq
ue
nc
y

0 5 10 15 20

0
20

40
60

80

Programming project

(b)

Fr
eq
ue
nc
y

0 5 10 15 20

0
10

20
30

40
50

Code generation exam

(c)

Fr
eq
ue
nc
y

0 5 10 15 20

0
10

20
30

40
50

Code comprehension exam

(d)

Fr
eq
ue
nc
y

0 5 10 15 20

0
10

20
30

40
50

Figure 1: Distribution of Scores for Practical (a,b) and Written (c,d) Components assessing Code Generation
(a,b,c) and Code Comprehension (d)

tion cited in many studies (Robins 2010). However,
written components (c) and (d) are much closer to
a normal distribution. Low scores in practical work
occur when students either fail to submit, or sub-
mit almost nothing. At the other end of the marking
scale, students who submit a “mostly working” pro-
gram typically score well in the practical work, since
in most cases lab exercises are designed for forma-
tive (rather than summative) learning. To this end,
students are provided with test cases and style check-
ing software so that most should be able to complete
the exercise correctly. It is dangerous to make as-
sumptions about the students who do not to submit,
that is the lower group of the bimodal distribution.
For example, students’ behaviour in first year courses
is shaped by the way they cope with the new envi-
ronment of university study and the need for many
to adopt more independent learning strategies than
they used at school. On the other hand, we have
observed that bimodal distributions occur in course-
work components for courses at all levels of our degree
and in both programming and non-programming sub-
jects. The common factor seems to be that in courses
that have a high number of assessed components, and
where the work required to obtain a good mark for a
component is not reflected in the assessment weight,
that students make strategic decisions about whether
to submit that work or not. A typical student will
complete some but not all of the low-weighted lab
exercises.

Finally, we mention some unwanted side effects of
the standard practice of calculating a final score in
computer programming courses as a weighted sum of

assessed practical and written components. Two dif-
ferent types of distribution have been observed for as-
sessed tasks in CS1: normal and bimodal. The choice
of weights for the summed components leads to ei-
ther the bimodal distribution observed in some insti-
tutions, or the normal distribution observed in others.
That is, final score is not a valid nor a reliable met-
ric. For these reasons extreme caution must be used
about any conclusions drawn from correlations with
the distribution of final marks. This includes claims
about failure rates (high or low) since the failure rate
is highly sensitive to the weighting of assessment com-
ponents.

It is outside the scope of this paper to present a
detailed alternative to the norm-referenced schemes
used for summative assessment in most existing
courses. A better approach is to use criterion-
referenced (rather than norm-referenced) assessment
for final grades (Lister & Leaney 2003) and certainly
for empirical studies that aim to measure the effec-
tiveness of new pedagogies. The main problem with
the final grade metric is that it combines different
aspects of a multi-dimensional attribute (students’
ability to read and to generate code) into a single
measurement. This approach almost always leads to
problems with validity and reliability (Kitchenham
et al. 1995). From the measurement theory point of
view the correct approach is to use a vector of mea-
surements rather than a single value to capture multi-
dimensional properties such as the quality of program
code. Full details can be found in textbooks on soft-
ware metrics (Fenton & Pfleeger 1998). In the next
sections of this paper we demonstrate ways in which

such vectors of measurements can be used to help
novice programmers.

4 Software Metrics for Novice Programmers

Software metrics are used to measure the quality of
the software produced by professional software engi-
neers. The rationale for software measurement in in-
dustry is to improve the quality of the software pro-
duction process and the quality of the software end
product. Can software metrics offer the same benefits
for novices?

In software metrics practice, first the specific goals
of measurement are identified and then attributes
that contribute to each goal are chosen together with
measures for each attribute (Fenton & Pfleeger 1998).
This practice is essentially the same as defining a
criterion-referenced grading scheme (the goals) to-
gether with measures and measurement instrument
is provided for each criteria (the attributes and their
measures).

In education there are three main goals for
measurement: diagnostic, formative and summative
(Crisp 2008). Diagnostic assessment is measurement
of the performance of a cohort of students in order to
identify any individual learning difficulties, common
problems, and areas of strength. Formative assess-
ment provides feedback directly to students with the
goal of helping them to improve their understanding
of the subject. Summative assessment measures how
well students have achieved learning objectives. This
paper focuses on measurement for diagnostic assess-
ment and for formative feedback to students.

Five areas for measurement and a collection of es-
tablished metrics for each have been identified for our
overall goal of measuring students’ ability to generate
program code. Each metric is valid and reliable for
the attribute it measures and most of the metrics can
be collected automatically using open-source software
engineering tools. A measurement vector can thus be
produced automatically for each Java class submitted
by a student.

Program Size Non-comment lines of code, lines of
code, number of methods, number of fields, and
subsets of these based on Java modifiers. Mea-
sured using the Java Reflection library and a lines
of code counter application.

Functional correctness Vector of individual test
case results (pass, fail or error), number of test
cases run, number of tests passed, code cov-
erage of a test suite, input coverage of a test
suite, coverage of other properties such as algo-
rithmic complexity. Measured using JUnit with
instructor-written or student-written test cases
and the Emma code coverage tool.

Efficiency Execution time for a given test set. Mea-
sured using JUnit.

Program Style Number of code violations for nam-
ing conventions, hiding, complexity, coding con-
ventions, magic numbers. Measured using
Checkstyle and PMD.

Client Validation A client acceptance test of a se-
quence of user inputs and defined responses, as-
sessed against a checklist of items. This metric
is not fully automatic but requires some expert
inspection. It can be used for assessing graphical
programs.

Figure 2 shows the population distributions of
metrics for the attributes of program size, functional

0
10
0

20
0

30
0

40
0

BA1 BA2 FD1 FD2 TA1 TA2 FP1 TT2
 Lab Exercises

N
on

-c
om

m
en

t l
in

es
 o

f c
od

e
(u

p
to

 4
00

)

0
20

40
60

80
10
0

BA1 BA2 TA2 TT2
 Lab Exercises

P
er

ce
nt

ag
e

of
 T

es
ts

 P
as

se
d

0
5

10
15

20
25

30

Style rule violations for BA2 TA2 TT2 Labs

N
um

be
r o

f r
ul

e
vi

ol
at

io
ns

 (u
p

to
 3

0)

N N N C C C H H H X X X M M M

Figure 2: Metric Population Distributions for Pro-
gram Size (top), Functional Correctness (middle) and
Program Style (bottom) for categories N=naming,
C=coding, H=hiding, X=exceptions, M=magic num-
bers

correctness and program style. Programming exer-
cises are identified by three letter identifiers, each a
single Java class. The exercises are presented in the
order they appear during the course: that is, from eas-
iest to hardest. The number of submissions for each
of these exercises ranges from 132 to 200. The cen-
tral line of each box is the median, and the box shows
upper and lower quartiles of the population. Limits
of the main population (99% range) are shown by the
whisker dotted lines and outlier values are indicated
by dots.

In a typical laboratory exercise the signatures of
all public methods are given and the students provide
implementation code for each method. Given these
constraints on student classes we might expect the
distributions for each metric to have small variation.
However, Figure 2 shows that the range and variation
for each metric is large and that most populations
have a long tails. These examples of student popu-
lations for selected software metrics show how much
student programs differ from one another. Section 6
explores some possible reasons for this variation.

5 Formative Feedback

Our software metrics are simply a number or vector
for some attribute of a Java class. The metrics are
therefore not much use on their own to improve stu-
dent learning. Fortunately, the measurement tools we
use can be configured to generate informative mes-
sages that alert students to the defects in their code
and provide some advice about how to fix them.

During the laboratory session students use JUnit,
Checkstyle and PMD to check their code. JUnit tests
are written by the instructor. If the student’s code
fails a test case then an error message is provided to
explain the problem and help them to identify what
needs to be done. For example, the following mes-
sages are generated when a student mistakenly initi-
ates a character count variable to 1 instead of 0.

Initial character count should be 0
expected:<0> but was:<1>

There are no alpha chars in the string " *** 42 !!"
expected:<0> but was:<1>

Error code ? expected for mostFrequent in empty string
expected:<?> but was: <a>

PMD identifies style violations and returns feed-
back messages that refer to a line of code and the
problem identified. For example, the following error
messages are a sample of those generated for code
that passed all the functional tests, but was highly
complex and inefficient.

32 Avoid unnecessary comparisons in boolean expressions
180 Avoid really long methods.
180 Method names should not start with capital letters
293 The method ’isChar’ has Cyclomatic Complexity of 54.

After the student has completed a lab exercise they
submit their source code for assessment. The program
is assessed using the same tools as used in the lab and
a summary of the results is emailed to the student.
The following example shows the type of formative
feedback provided in these emails:

Highly inefficient code:
Your class executed in 10.207 seconds and the cohort
median execution time was 0.049 seconds.
If your execution time is much higher than the
median then you can improve efficiency.
Ask a lab demonstrator for help with this.

Your class has 00255 non-comment lines of code
(NCLOC). The expected NCLOC was around 70.
Warning (only, no marks): If your code is very long

(say, over 100 lines) then it may be using some
Java types such as arrays incorrectly.
Ask a lab demonstrator for help with this.

6 Metrics for Diagnostic Assessment

This section demonstrates how metrics vectors of at-
tributes of student code can provide diagnostic in-
formation about the difficulties students are having.
This in turn can be used to modify course delivery,
providing ways for students to catch up and focussing
help where it is needed to address problems in student
learning.

Many CS1 courses offer a sequence of laboratory
programming exercises for formative assessment. In
an ideal world, students should correct problems in
their code as soon as possible, rather than waiting
for a submit, mark and return assessment cycle. For
this reason, in our lab classes students are provided
with JUnit and instructor-written test cases, as well
as the style checkers PMD or Checkstyle with a selec-
tion of coding rules specifically configured for novice
programmers. That is, all the metrics discussed in the
last section are available to students from when they
first start working on their assignments. However, as
shown in Figure 2 this does not mean that when the
exercises are submitted that there are no defects.

Our approach to diagnostic assessment is illus-
trated using Perkins’ classification of novice program-
mers’ learning styles as “stoppers” and “movers”.

“When novice programmers see fairly
quickly how to proceed, naturally they do
so. When, however, a clear course of action
does not present itself, the young program-
mer faces a crucial branch point: what to do
next? ... Some students quite consistently
adopt the simplest expedient and just stop.
They appear to abandon all hope of solving
the problem on their own.” (Perkins et al.
1989), page 265

Stoppers are students who tend to stop and give up
when they can not immediately see how to proceed
with a problem. Non-starters are stoppers who may
make some progress in lab classes but choose not to
submit their programs for assessment. Movers, on the
other hand, will try different approaches when faced
with a problem. Movers can be further divided into
two types. Extreme movers are called “tinkerers”.
When faced with a problem they make changes but
more or less at random:

“Students often program by means of an ap-
proach we call tinkering - they try to solve a
programming problem by writing some code
and then making small changes in the hopes
of getting it to work.” (Perkins et al. 1989),
page 272

The ability to diagnose a students’ learning style is
useful because different types of learners require dif-
ferent types of feedback. Movers are the most success-
ful learners. They are adept at solving problems on
their own and are likely to thrive whatever teaching
and learning environment they are in. Tinkerers and
stoppers both have learning strategies that interfere
with their progress in solving programming problems.
We have observed in our own classes that stoppers
can be discouraged by receiving a detailed list of de-
fects in their work, and this can easily turn stoppers
into non-starters. On the other hand, movers and
tinkerers can usually make good use of detailed feed-
back and will re-evaluate and improve their programs.
To gain maximum benefit from explicit feedback all

-1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative code size deltaS

Fu
nc

tio
na

l c
or

re
ct

ne
ss

 d
el

ta
F

TinkerersMovers

Stoppers

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Relative execution time deltaE

Fu
nc

tio
na

l c
or

re
ct

ne
ss

 d
el

ta
F

TinkerersMovers

-1 0 1 2 3

0
5

10
15

Relative code size deltaS

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

de
lta

E

Figure 3: Relative code size vs Functional correctness
vs Efficiency distances. Canonical solution shown by
dotted lines. Distance from 0,0 is stopper, mover or
tinkerer strength. Extreme outliers are not shown.

students should be given the opportunity to refactor
their programs and re-submit. In many cases we con-
jecture that incomplete submissions are the result of a
lack of organisation or lack of time to refactor rather
than serious difficulties with the material. However, if
these problems are not addressed, then this can lead
to learning edge momentum problems, that is, inabil-
ity to deal with new concepts when related ones have
not been mastered (Robins 2010).

We now show how to identify a students’ learning
approach using measurements of the programs they
generate and submit. In order to classify students
we considered different attributes of their programs:
size, functional correctness, efficiency and style. We
then set out to characterise learning style in terms
of distance from a target solution for each attribute.
These classifications were validated by hand inspec-
tion of students’ code noting whether the submission
was not completed, completed but by tinkering, or
completed to a good standard. Three of the attributes
(size, correctness and efficiency) provided meaningful
information about students progress. Each was nor-
malised by taking its ratio to the same metric for a
canonical solution. The attribute of number of style
violations was not used since code inspections sug-
gested that style violations were typically the result
of careless mistakes rather than a lack of understand-
ing of programming tasks.

The size distance ∆S of of a student submission S
from a canonical solution C is defined as

∆S = ((size(S)− size(C))/size(C))

where the unit of measurement for size is non-
comment lines of code which has a ratio scale. By
construction ∆S has a median of 0 (best) and ranges
from −1 (no code submitted) to a positive maximum
m > 1 where the size of m depends on the particular
exercise. For example, the maximum is 6.167 for the
TA2 exercise and 0.798 for TT2.

The target for the number of test cases passed by a
student submission S is T the number of test cases in
the instructor-provided test class. The proportion of
tests passed is not necessarily a ratio scale for any test
suite, but it can be made so where certain conditions
are satisfied construction of the test suite. The details
of such a construction will be discussed in another
paper. The functional correctness metric

∆F = (T − passes(S))/T

defines the distance of a submission from its func-
tional correctness target. ∆F ranges from 0 (best
where every test is passed) to 1 (no tests are passed).
Classes for which the tester could not be run are
recorded as 0 tests passed giving ∆F = 1.

The target for efficiency is the number of millisec-
onds taken to execute a canonical solution class C us-
ing an instructor provided JUnit test suite designed
for performance evaluation. The class with the low-
est execution time amongst the functionally correct
programs (hopefully the instructors’ class but not al-
ways) is chosen as canonical solution class for the ex-
ecution time target. Efficiency distance is defined by

∆E = (time(S)− time(C))/time(C)

where the unit for measuring execution time is mil-
liseconds and it has a ratio scale. Since some student
submissions do not terminate, we use an upper bound
timeout U for the efficiency test. ∆E is only mean-
ingful for programs that implement the full function-
ality, and so non-submissions or submissions that do
not pass most tests are not considered. ∆E ranges
from the target of 0 for the most efficient class to a
maximum threshold of (U − time(C))/time(C).

We can now describe Perkins’ learner types in
terms of a triple of ∆F , ∆E and ∆S measures. The
symbol ≈ means close to the target value while �
and � mean far from the target value.

Non-starter No submission or one that can not be
compiled or run: ∆S = −1 ∨∆F = 1

Stopper Incomplete submission that fails most tests
and is smaller than required: ∆S � 0 ∧∆F � 0

Tinkerer Writes verbose and inefficient code: ∆S �
0 ∧ ∆E � 0. Tinkerers, however, often have a
good functional correctness score, because they
will continue to add to their classes until the most
obvious measurable objectives (tests passed) are
met.

Mover Submits code that meets all the criteria of
functional correctness, efficiency and readability
and good design: ∆S ≈ 0 ∧∆F ≈ 0 ∧∆E ≈ 0

Figures 3 show the pair-wise relations between
each of the three metrics. Each dot on the graphs
represents an individual submission. The target for
each metric is indicated by a dotted line. The x,y
distance from the target gives an indication of the
students’ distance from the expected solution. Stu-
dents to the right of the vertical line in the top and
middle plots of Figure 3 are movers or tinkerers and
to the left are stoppers. The bottom plot of Figure 3
shows that the defects of large code size and large ex-
ecution times are largely independent of one another.
It can thus be seen that all three measures are nec-
essary for diagnostic assessment since each provides
new information for distinguishing between student
submissions.

The classification of submissions provided by this
metric triple can be used to create a triage ranking
of the submissions of a large cohort students. That
is, a list of possible tinkerers is generated automati-
cally. The instructor then examines the submissions
of each student by hand, and can offer one-to-one help
for students with specific difficulties. Stoppers may
need more tutorial time or simply the opportunity
to resubmit. Tinkerers may need further training on
particular programming techniques such as debugging
or planning. Movers are already making good use of
the tools that are available in the lab. The range of
performance across these three metrics suggests that
marking schemes used in many institutions (includ-
ing our own) that are based only on functional cor-
rectness can provide misleading feedback to students
about their progress.

7 Conclusion and Discussion

We have posed the question: how can software met-
rics help novice programers? This paper contributes
several answers to that question. Limitations in the
validity or reliability of metrics proposed in previous
studies of students’ code generation skills are identi-
fied. Problems with norm-referenced metrics such as
final score or final grade that have been widely used
in previous studies are detailed. We argue that exist-
ing grading schemes can be improved by introducing
measurable targets based on software metrics. Mean-
ingful targets can be set by studying distributions of
these metrics for populations of novice programmers
and metrics for sample solutions to lab exercises. Fi-
nally, we have shown that using software metrics for
assessment should not be seen simply as a boon to
busy academics by automating their marking duties,
but that software metrics have a valuable role to play
in formative and diagnostic assessment.

This study has suggested several ways in which
teaching code generation skills to novice programmers
could be improved.

1. Instructors should provide clear and measurable
criteria on what students are expected to be able
to do.

2. Assessment of programming tasks should be
based on several different attributes, not just
functional correctness.

3. Care should be taken to reduce the cognitive
overload in program generation tasks as much
as possible.

4. Students should be (strongly) encouraged to
refactor and improve their code, rather than sub-
mit and forget.

5. Refactoring and quality improvement should be
taught with reference to the professional context
of software quality and software metrics.

6. Programming courses should allow for students
who learn at different speeds, and allow for stu-
dents with different levels of programming skill.

Our recommendations echo those of other studies in-
cluding (Lister & Leaney 2003) and (Robins 2010).
The contribution of this paper is to provide further
evidence that these approaches are necessary and to
offer a framework in which the effectiveness of such
strategies can be scientifically evaluated based on the
theory and practice of software metrics.

Acknowledgements

The author would like to thank the students of
CITS1200 at The University of Western Australia and
research students and colleagues Lesley Zhang, Adam
Khalid, Terry Woodings, Nick Spaddacini and the
anonymous referees for their valuable feedback and
suggestions.

References

Ala-Mutka, K. (2005), ‘A survey of automated assess-
ment approaches for programming assignments’,
Journal of Computer Science Education 15(2), 83–
102.

Crisp, G. (2008), ‘Raising the profile of diagnostic,
formative and summative e-assessments. providing
e-assessment design principles and disciplinary
examples for higher education academic staff.’,
online. Retrieved February 2010.
URL: http://www.altc.edu.au/resource-raising-
profile-eassessments-crisp-adelaide-2008

Decker, A. (2007), ‘How students measure up: An
assessment instrument for introductory computer
science’. PhD thesis, The State University of New
York at Buffalo, USA.

Fenton, N. E. & Pfleeger, S. L. (1998), Software Met-
rics: A Rigorous and Practical Approach, PWS
Publishing Co., Boston, MA, USA.

Kitchenham, B., Pfleeger, S. & Fenton, N. (1995),
‘Towards a framework for software measurement
validation’, IEEE Transactions on Software Engi-
neering 21(12), 929 –944.

Lister, R., Adams, E. S., Fitzgerald, S., Fone,
W., Hamer, J., Lindholm, M., McCartney, R.,
Moström, J. E., Sanders, K., Seppälä, O., Simon,
B. & Thomas, L. (2004), ‘A multi-national study of
reading and tracing skills in novice programmers’,
SIGCSE Bull. 36(4), 119–150.

Lister, R. & Leaney, J. (2003), First year program-
ming: Let all the flowers bloom, in T. Greening &
R. Lister, eds, ‘Fifth Australasian Computing Edu-
cation Conference (ACE2003)’, Vol. 20 of CRPIT,
ACS, Adelaide, Australia, pp. 221–230.

McCracken, M., Almstrum, V., Diaz, D., Guzdial,
M., Hagan, D., Kolikant, Y. B.-D., Laxer, C.,
Thomas, L., Utting, I. & Wilusz, T. (2001), ‘A
multi-national, multi-institutional study of assess-
ment of programming skills of first-year cs stu-
dents’, SIGCSE Bull. 33(4), 125–180.

Morris, D. (2003), Automatic grading of student’s
programming assignments: an interactive process
and suite of programs, in ‘33rd Annual Frontiers in
Education’, Vol. 3, pp. S3F – 1–6 vol.3.

Perkins, D., Hancock, C., Hobbs, R., Martin, F.
& Simmons, R. (1989), Conditions of learning in
novice programming, in ‘Studying the Novice Pro-
grammer’, Lawrence Erlbaum Associates, New Jer-
sey, pp. 261–279.

Robins, A. (2010), ‘Learning edge momentum: a new
account of outcomes in CS1’, Computer Science
Education 20(1), 37–71.

Robins, A., Rountree, J. & Rountree, N. (2003),
‘Learning and teaching programming: A review
and discussion’, Journal of Computer Science Ed-
ucation 13(2), 137–172.

