
How difficult are novice code writing tasks? A software metrics approach

Jacqueline Whalley and Nadia Kasto
School of Computing and Mathematic Sciences

AUT University
Auckland, New Zealand

{jwhalley,nkasto}@aut.ac.nz

Abstract
In this paper we report on an empirical study into the use
of software metrics as a way of estimating the difficulty
of code writing tasks. Our results indicate that software
metrics can provide useful information about the
difficulties inherent in code writing in first year
programming assessment. We conclude that software
metrics may be a useful tool to assist in the design and
selection of questions when setting an examination..
Keywords: software metrics, code writing, novice
programmers, assessment.

1 Introduction
There is a plethora of literature in computing education
pointing to the fact that novice programmers find
programming particularly difficult and that assessing the
knowledge and skills the students have gained is
problematic (for example see: Robins, Rountree &
Rountree 2003). Historically the pass rates for students
undertaking first year courses have been relatively low.
This in part might be due to some difficulties related to
the assessment of these courses. Whalley et al. (2006)
noted that “assessing programming fairly and consistently
is a complex and challenging task, for which
programming educators lack clear frameworks and tools”
(p. 251). More recently, Elliott Tew (2010) suggested that
“the field of computing lacks valid and reliable
assessment instruments for pedagogical or research
purposes” (p.xiii) and Whalley et al. (2011) noted that
there is a need for “more consistent and equitable designs,
an improved learning experience for the novice and an
overall increase in the quality of teaching and assessment
of novice programmers” (p. 45).

2 Background
In order to design better novice programming
assessments computer science educators have attempted
to apply various educational taxonomies. The most
commonly adopted taxonomies to date are Bloom’s
(Bloom, 1956), the revised Bloom’s (Anderson et al.,
2001) and the SOLO Taxonomy (Biggs & Collis, 1982).
One of the strengths of the use of educational taxonomies
such as Bloom’s and SOLO for guiding the design of
assessment is that they are designed to consider the level

Copyright © 2014, Australian Computer Society, Inc. This
paper appeared at the Sixteenth Australasian Computing
Education Conference (ACE2014), Auckland, New Zealand.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 148. Jacqueline Whalley and Daryl
D’Souza, Eds. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

of thinking and in the case of the revised Bloom’s
taxonomy also the knowledge required in order to
successfully solve a problem. However, the use and
interpretation of Bloom and the revised Bloom’s
taxonomy has proved to be problematic (for example see:
Fuller et al. 2007, Thompson et al. 2008, and Shuhidan et
al. 2009). In a recent, study Gluga et al. (2012) suggested
that many of the ambiguities in the application of
Bloom’s taxonomy to the assessment of computer
programming are due to the necessity to have a deep
understanding of the learning context in order to achieve
an accurate classification. They also noted that the
classifiers often had preconceived misunderstandings of
the categories and differing views on the complexity of
tasks and the sophistication of the cognitive processes
required to solve them.

Researchers have reported that SOLO can be reliably
used to classify code reading questions and the student
responses to those questions as long as the classifiers
have a shared understanding of the application of the
taxonomy to code comprehension tasks (Clear et al. 2008,
Sheard et al. 2008). An initial set of guidelines and
descriptors for using SOLO to classify student code
writing solutions were proposed by Lister et al. (2009).
However, classifying student answers to code writing
tasks using this interpretation of the SOLO levels proved
difficult even with these guidelines (Lister et al. 2009,
Shuhidan et al. 2009). A novel combination of SOLO
and Bloom’s revised taxonomy was used by Meerbaum-
Salant, Armoni and Ben-Ari (2010) to guide the design of
assessments.

In a more recent study, Whalley et al. (2011) found
that by combining a framework of salient elements and
code quality factors they were able to more clearly define
the SOLO categories. Using this approach they were able
to reliably apply the principles of SOLO to determine the
level of a code writing task or problem. However the
programming tasks that they analysed were from various
programming examinations and written using pen and
paper rather than a computer.

The body of research into using SOLO for classifying
questions and student responses to both comprehension
and writing questions has consistently reported that the
higher the SOLO level of a question the more difficult, as
measured by student performance, the question was
(Clear et al. 2008, Sheard et al. 2008, Whalley et al.
(2011)).

Although some progress has been made towards being
able to classify and estimate the difficulty of code-
comprehension questions “we have no reliable measure
of the difficulty of code-writing questions even at the
macro level” (Simon et al. 2009). While SOLO and

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

105

Bloom maybe useful, given the nature of novice code
writing questions we really need reliable measures at a
higher level of detail than taxonomies such as SOLO can
provide in order to be able to research the nature of these
questions and their role in assessment.

2.1 On metrics and instructional design
Starsinic (1998) used an interpretation of the English
language Flesch-Kincaid readability measure (Kincaid et
al. 1975) to produce a script (in Perl) called Fathom that
was designed to automatically measure the readability of
code generated by junior programmers during time
critical projects.

 In a later study Börstler, Caspersen and Nordström
(2007) proposed that some cognitive aspects of code
reading can be expressed using common software
measures and explored this idea in the context of two
novice code reading tasks. Their aim was to develop a
reliable means of selecting appropriate code examples to
help guide novice programmers’ learning and to
determine between good and bad examples. They
surmised that a good example must be readable and
comprehendible and designed a framework based on
these principles. Their framework consisted of cylcomatic
complexity (McCabe 1976), an interpretation of the
English language Flesch Readability Ease Measure
(Flesch 1948) and Halstead’s difficulty metric (Halstead
1977).

In subsequent work a software metrics approach to
informing the design of code comprehension assessments,
for novice programmers, was reported by Kasto and
Whalley (2013). This work adopted a goal oriented
approach to the identification of software metrics for
measuring the difficulty of code comprehension tasks. In
this study the difficulty of a question was represented as
the percentage of fully correct answers provided. Novel
dynamic metrics were designed specifically to measure
the complexity of code tracing tasks and were shown to
correlate, along with cylcomatic complexity and average
block depth, significantly with the difficulty of the task.
They also investigated the use of metrics for explain in
plain English (EipE) questions but did not find any
significant correlations between difficulty and Halstead
metrics or cyclomatic complexity but noted that this may
have been an artefact of the assessment questions that
were used in the study. The authors concluded that
software metrics may be a useful tool to assist in the
design and selection of questions when setting an
examination and that code writing tasks might also be
amenable to the same approach by identifying relevant
software metrics and applying them to the model answer
and to the student solutions.

In this paper we report on preliminary attempts to use
software metrics as a way of estimating the difficulty of
code writing tasks.

3 Software Metrics
“Good code is short, simple, and symmetrical – the
challenge is figuring out how to get there”. –Sean Parent
There are no software metrics that measure code which
has yet to be written. Because we are aiming to develop
an objective means of measuring the difficulty of a

novice code writing task prior to the students undertaking
the task we elected to use the instructor’s model answer
as the code for which the metrics are calculated. While
the model answer might provide a better quality solution
that solution might actually have less complex code than
many of the answers elicited from the students. In order
to write the better answer the students may have to
produce a more generalised, connected or integrated
solution that reduces redundancy (Whalley et al. 2011).
The challenge for developing a metric, for measuring the
difficulty of a code writing task designed for novice
programmers, is finding a measure that measures the
level of quality of the code not just the structure of the
code. This view is supported by Börstler, Caspersen and
Nordström (2007) who reported that measures, for code
examples, that are suitable for use in an educational
context must also take into account factors such as level
of thinking required and cognitive load. This must also be
the case for code writing tasks.

3.1 Code structure metrics
When writing code it is necessary to come up with a
structure for the code. Regardless of the quality of the
solution we expect that some code structure metrics
should have some relationship to the relative difficulty of
code writing tasks.

The software metrics that have been shown to
correlate to code tracing task difficulty measure the
structure of the code and/or the data flow of the code
when executing. These metrics are:

• McCabe’s cyclomatic complexity (McCabe 1976),
• average nested block depth,

and two novel “dynamic metrics” for code tracing tasks
(Kasto and Whalley, 2013):

• Sum of all operators in the executed statements
• Number of commands in the executed statements.

In tracing code only the paths of code that the students
must trace though are adding to the complexity. In the
case of code writing all paths are important so the
dynamic metrics are not considered to be as relevant for
code writing questions. As a consequence the metrics we
selected for code writing were cyclomatic complexity and
average nested block depth.

It is important to acknowledge the limitations of these
metrics. Cyclomatic complexity in particular has been the
subject of considerable criticism (for details see Shepperd
1988, Piwaowaski 1982, and Magel 1981). Cyclomatic
complexity “directly measures the number of linearly
independent paths through a program’s source code”
(McCabe 1976). However in calculating cyclomatic
complexity statements such as else, do and try, object
creation and method calls are not considered. It is highly
likely that these statements contribute to the complexity
of a code writing task for novice programmers. However
given that cyclomatic complexity and average nested
block depth were found to correlate with the difficulty of
code comprehension tasks we elected to evaluate them
again here for code writing tasks.

Driven by the limitations of common software
complexity metrics, Magel (1981) proposed a complexity
metric based on regular expressions. Magel represented
the structure of a piece of code as a control flow graph

CRPIT Volume 148 - Computing Education 2014

106

and then derived a regular expression from the control
flow graph. The symbols in the regular expression were
then counted to give the complexity structure metric. Full
details of the calculation of this metric can be found in
Magel’s paper. Magel surmised that “confusing program
segments require longer regular expressions” and
therefore a higher value for his metric (p.63). Because the
quality of the model solution may prove to be more
predictive of difficulty than the structure of the code we
also selected Magel’s regular expression metric for
evaluation. We hypothesised that questions that provide
the opportunity for solutions that are more refined (more
generalised, connected or integrated) have a higher
regular expression metric and are likely to be more
difficult questions than those that do not have the
potential for refinement.

Additionally we used the following structural metrics:
• The total number of commands; the number of java

method calls.
• The total number of operators
• The number of unique operators

We included the number of commands because as an
artefact of using a micro-world almost all of the
procedures written required the students to call methods
on objects. The number of commands metric measures the
number of java methods called in the model answer. Both
number of operators and number of unique operators
were included because we were interested to know
whether it is the total number or the number of different
operators required that increases the difficulty.

3.2 Code readability metrics
A basic prerequisite for understandability is readability
(Börstle, Caspersen and Nordström 2007). In order for
code to be readable the basic syntactical elements must be
easy to recognize. Only then, can relationships between
the elements be established which may then lead to an
understanding. It is reasonable to include a metric that
measures the readability of code (i.e. of the model answer
for a novice programming question) because empirical
research has found that there is a strong relationship
between the ability to explain code and write code with
pen and paper (Lopez et al., 2008).

Readability metrics have been developed and applied
to natural languages. These language measures generally
produce a single numeric value, which indicates either the
grade level (1-12) or readability (usually 1-100) of a
document and which is constructed from the average
number of syllables per word and the average number of
words per sentence.

Although these natural language metrics are far from
perfect, and despite their apparent simplicity, they have
been found to be useful in practice. One of the most
commonly used measures, the Flesch-Kincaid metric
(Flesh 1948) is integrated into popular text editors and
has been in used for over 50 years. However, these
measures don't map well onto code therefore simply
running a prose-readability test on student code would not
generate a useful measure (Starsinic 1998).

The Software Readability Ease Score (SRES) is an
adaptation of the Flesch Reading Ease Score where the
lexemes of the programming language are interpreted as
syllables, its statements as words, and its units of

abstraction as sentences (Börstler, Caspersen and
Nordström 2007). This metric was designed on the
premise that the smaller the average word length and the
average sentence length, the easier it is to recognize
relevant chunks (units of understanding). Unfortunately
the authors did not provide the detail for the calculation
of the metric.

Starsinic (1998) developed a similar metric where he
opted to measure the number of tokens per expression
(e.g. ++, ; , {, && and any keyword) , the number of
expressions (e.g. 0.2 and ($a + 6)) per statement
(e.g. a = $foo::bar * 7;) and the number of
statements per Perl subroutine. His final formula was;
code complexity =

 ((average expression length in tokens) * 0.55)
+ ((average statement length in expressions) * 0.28)
+ ((average subroutine length in statements) * 0.08).
The paper concluded that a low Starsinic readability

metric value indicates a more readable piece of code and
that a piece of code with a readability of 2.91 was very
readable whereas code with a readability of 6.85 was
considered to be very complex and therefore hard to read.

No justification or explanation is provided for the
weightings given to each operand in the formula or for
the thresholds that were used to determine the relative
level of complexity of the code readability.

We elected to start from Starsinic’s readability metric
but we altered the way in which expressions are counted.
For example, in Starsinic’s method an expression such as
n=n+1; would count as one expression but we counted
this as two expressions in an attempt to more closely map
the way in which a novice might read the expression. We
think it is likely that a novice would break this down into
two expressions firstly evaluating n+1; and then
evaluating the assignment.

4 Dataset
The eleven code writing questions analysed in this study
were selected from a series of controlled, summative
practical programming tests held throughout the first
semester of a first year Java programming course. The
course adopts a back to basics procedural approach
(similar to that suggested Reges (2006)) except that the
learning is supported by an in-house micro-world called
Robot World in the BlueJ IDE. For each question the
students were provided starting code with unit tests, as a
BlueJ project, and asked to add a method to that project
(see Appendix A for the questions). Sixty student
responses were analysed for each question. These
students had given ethical consent for their data to be
used and were representative of the entire cohort.

5 Analysis
Table 1 gives the software metrics and student
performance for each of the questions analysed. It should
be noted in interpreting the analysis that difficulty is
being measured as the percentage of fully correct
answers. For example question 11 is the easiest question
with a percentage difficulty of 100% whereas question 1
was the most difficult question with 14% of students
giving a correct working solution.

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

107

 Questions
 1 2 3 4 5 6 7 8 9 10 11
Difficulty (%) (n = 60) 14 24 39 52 55 63 84 84 90 98 100
cyclomatic complexity 12 5 5 5 6 5 4 3 2 2 1
average nested block depth 4 2 3 2 4 2 2 2 2 2 1
number of operators 18 15 4 14 8 8 3 6 1 1 0
number of unique operators 5 8 2 6 4 4 2 6 1 1 0
number of commands 49 13 14 27 20 20 9 7 3 4 4
regular expression metric 60 24 24 29 31 25 20 14 8 8 3
readability metric 5.78 4.88 2.74 1.78 2.38 4.20 1.69 1.90 1.14 1.33 1.28

Table 1: Metrics for the instructor’s model answer for each question

Cyclomatic complexity, average nested block depth,
number of operators and number of unique operators
were calculated using the standard procedures provided
by the Rationale® Software Analyzer 7.1 (RSA 2013)
tool. The regular expression metric and the readability
metric were calculated by hand.

The significance of the correlation of each metric to
the difficulty of each question was then tested using a
Pearson’s correlation (Table 2).

Cyclomatic complexity, the regular expression metric
and the readability metric were found to all correlate
strongly with the difficulty of the novice code writing
questions that we analysed in this study.

The higher the cyclomatic complexity, the more
complex the control flow of the program code is and the
more difficult the question is (as evidenced by a low
percentage of students getting the answer correct).

The more deeply nested the branches of the code are
the higher the average nested block depth is and the more
difficult the question was for the students. This is not
really surprising. Research investigating student
responses to code writing questions found that students
find questions that can be solved by writing the code line
by line with limited reference to the previous lines of
code are easier than those that require the students to
understand the relationship between the chunks or blocks
of code that they have written (Whalley et al. 2011).

software metric Pearson’s correlation
r p

cyclomatic complexity -0.848 0.0009
average nested block depth -0.647 0.0313
number of operators -0.836 0.0013
number of unique operators -0.644 0.0321
number of commands -0.763 0.0062
regular expression metric -0.839 0.0012
readability metric -0.906 0.0001

Table 2: The correlations between metrics and
difficulty

The number of operators, in the case of the questions
analysed here, correlates more strongly with difficulty
than the number of unique operators. The opposite was
found for code tracing questions where the unique
operators correlated more strongly to difficulty (Kasto
and Whalley, 2013). The repetition of operators perhaps
doesn’t contribute to the complexity of the task but it
does correlate to the student difficulty measure so perhaps
it gives them more opportunity to make mistakes.

Similarly we found that the higher the number of Java
commands required the more difficult the question is.

For the regular expression metric a higher value results
from nested code (Figure 1, A vs. B), backward branches
rather than forward branches (Figure 1, D vs. C) and
increasing complexity in selection statements (Figure 1, E
and F).

The strong correlation between difficulty of the
question and increasing structural and data flow
complexity, as measured by the regular expression
metric, confirms our original hypothesis and supports the
conjecture that many students cannot write code that
requires more complex structures and that there must be
some relationship between the ability to design code
structure and being able to produce working code
regardless of the quality of their code.

Given that we are analysing the instructor’s model
answer, we are assuming that it is good code. If there are,
for example, nested blocks to reach this solution a
relatively high level of integration of the code and
merging of plans is likely to be required. For such a
question there are usually several solutions that could
provide a working solution. If the student’s solutions are
of a lower quality than the instructor’s code then you
could argue that the code produced by them is more
confusing and that the students would find it hard to
correct any errors in their code. This could make the
question more difficult for the novice programmer than
the analysis of the model answer would indicate.

The readability measure also correlates strongly to
difficulty. The easier the model answer code is to read the
easier the code is to write. It is possible that there is a
causal relationship between readability of code and the
ease of writing.

6 Limitations
While the findings of this study are encouraging there are
some caveats.

 We have only examined a relatively small set of code
writing questions. The questions were selected to cover
the key topics taught in our first year programming
course; sequence, selection and iteration. The sequencing
of the questions within the tests could add to our observed
difficulty of the question. However with such strong
correlations it is unlikely that this effect would
significantly alter our findings.

CRPIT Volume 148 - Computing Education 2014

108

A

ab (ab)*c (bc)* 13

B

abc (bc)* (abc (bc)*)* 19

C

a(b+n)c 6

D

ab (ab)*c 8

E

a (b+c) 6

F

a (b+c)d 7

Figure 1: Flow graphs, regular expressions and
regular expression metric exemplars

The questions we have analysed are also limited to
“unseen” questions presented to student in a test situation.
If previously seen questions are included it is likely
correlations with the metrics used here will be less
significant or even not significant. The difficulty of the
question would be affected by the level of thinking
required. A problem for which the students have already
seen the code may mean that students can simply answer
the question by recall.

Much of the reasoning around why we are seeing the
relationships between the metrics and actual difficulty is
based on conjecture and this aspect of the work could be
improved by observing the students in the tests.

Some of the metrics used in this study may not be
generalizable to all teaching contexts or indeed to all
novice programming tasks. Courses that adopt an objects
first pedagogy may have writing tasks for which other
object orientated metrics might be applicable such as
cohesion and coupling metrics. For a back to basics,
algorithm focused, java course that does not utilise micro
worlds but instead uses a typical IDE metrics such as
number of commands may not be relevant. It is worth
noting that for most metrics the range of values in a
typical novice code writing task is likely to be relatively
small. For example average nested block depth where
deep nesting may be discouraged, by the instructor, in
favour of separation of inner blocks into method calls.
Despite the relatively small range of values we have
found the metrics still correlate strongly with difficulty.

In selecting the metrics to use we believe that average
nested block depth, cyclomatic complexity, regular
expression metric and readability should provide a
measure of difficulty of the task regardless of teaching
approach and programming context. However other
metrics would need to be selected based on the teaching
approach. Some aspects of the teaching approach will be
reflected in the model answer. For example, if
considering a typical programming task such as printing a
box of asters of any size the model answer may be a
solution that has two for loops while another instructor’s
model answer may consist of a nested loop.

While you could argue that as experienced teachers we
consider these aspects of a programming problem when
setting an assessment it is still useful to have a method for
objective evaluation of the difficulty of a code writing
question prior to including it in an assessment.

7 Future work
Where to from here?

Further analysis could be undertaken to examine
which metrics are general predictors of difficulty of
novice programming tasks. Moreover metrics could be
identified that are useful for specific pedagogies.

If we can establish suitable heuristics for selection of
metrics for a given course it may be possible to use this
approach to automatically grade code writing tasks. We
may even be able to use metrics as a tool for providing
immediate feedback to the students about the quality of
their solutions. Good code must be simple, readable and
comprehendible and we want our students to be
producing quality code. However in this study, we do not
consider the quality of the students solutions in
determining the difficulty of a question – a fully correct

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

109

answer may not be a well-designed answer. If you were
wishing to adopt metrics to assist in the grading of
student work then perhaps some measure of distance of
the student’s answer from the instructor’s model answer
might be useful. Some work has been undertaken which
investigates the usefulness of software metrics as a form
of formative feedback for novice programmers (Cardell-
Oliver 2011). This work used program size metrics, unit
tests and program style violation counts as forms of
automated feedback. While software metrics such as the
ones we have explored in this paper are difficult for
novice programmers to interpret directly, if supplied with
guidelines for interpretation it is possible that students
might also find them a form of useful feedback.

Finally we believe that this approach has value as a
research tool and provides a way of comparing questions
in an empirical manner. However, we concur with
Börstle, Caspersen and Nordström (2007) that measures
that are suitable for use in an educational context must
also take into account factors such as level of thinking
required, cognitive load and instructional design.

Metrics should not be used as a silver bullet but used
in conjunction with more subjective measures of
difficulty such as SOLO or Bloom’s classification which
consider the level of thinking and/or knowledge required.

8 References
Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,

Cruikshank, K. A., Mayer, R. E., et al. (2001): A
Taxonomy for Learning, Teaching, and Assessing: A
Revision of Bloom’s Taxonomy of Educational
Objectives. Longman.

Biggs, J. B. and Collis, K. F. (1982): Evaluating the
Quality of Learning: The SOLO Taxonomy (Structure
of the Observed Learning Outcome). New York.
Academic Press.

Bloom, B. S. (1956): Taxonomy of Educational
Objectives, Handbook 1: Cognitive Domain. Addison
Wesley.

Börstler, J., Caspersen, M.E. and Nordström, M. (2007):
Beauty and the Beast — Toward a Measurement
Framework for Example Program Quality, Technical
Report, Department of Computing Science, Umeå
University, ISSN 0348-0542.

Cardell-Oliver, R. (2011): How can Software Metrics
Help Novice Programmers? Proc. of the 13th
Australasian Computing Education Conference (ACE
2011), Perth, Australia. 55-62.

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,
Sheard, J., et al. (2008): Reliably Classifying Novice
Programmer Exam Responses using the SOLO
Taxonomy. Proc. 21st Annual Conference of the
National Advisory Committee on Computing
Qualifications (NACCQ 2008), Auckland, New
Zealand, 23--30.

Gluga, R, J Kay, R Lister, S Kleitman, and T Lever
(2012): Coming to terms with Bloom: an online tutorial
for teachers of programming fundamentals. Proc. 14th
Australasian Computing Education Conference (ACE
2012), Melbourne, Australia, 147-156.

Elliott Tew, A. (2010): Assessing fundamental
introductory computing concept knowledge in a
language independent manner. PhD dissertation,
Georgia Institute of Technology, USA.

Flesch, R. (1948): A new readability yardstick. Journal of
Applied Psychology, 32: 221-233.

Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D.,
Hernán-Losada, I., et al. (2007): Developing a
Computer Science-specific Learning Taxonomy. ACM
SIGCSE Bulletin, 39 (4):152-170.

Halstead, M.H. (1977): Elements of Software Science
(Operating and Programming Systems Series). New
York, NY, USA, Elsevier Science Inc.

Kasto, N and Whalley J. (2013): Measuring the difficulty
of code comprehension tasks using software metrics.
Proc of the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, Australia, 57-6.

Kincaid, J. P., Fishburne R. P. Jr., Rogers R. L. and
Chissom B. S. (1975): Derivation of new readability
formulas (Automated Readability Index, Fog Count
and Flesch Reading Ease Formula) for Navy enlisted
personnel. Research Branch Report 8-75, Millington,
TN: Naval Technical Training, U. S. Naval Air Station,
Memphis, TN. http://digitalcollections.lib.ucf.edu/u?/
IST, 26253. Accessed 15 August 2013.

Lister, R., Clear, T., Simon, B. Bouvier, D.J., l Carter, P.
et al. (2009): Naturally occurring data as research
instrument: analyzing examination responses to study
the novice programmer. SIGCSE Bulletin, 41(4): 156-
173.

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M.
(2010): Learning Computer Science Concepts with
Scratch. Proc. of the 6th international workshop on
Computing Education Research (ICER10), Aaarhus,
Denmark, 69-76.

McCabe T. (1976): A Software Complexity Measure,
IEEE Transactions on Software Engineering, SE-2(4):
308-320.

Magel, K. (1981): Regular expressions in a program
complexity metric. Sigplan Notices - SIGPLAN. 16(7):
61-65.

Piwowarski, P. 1982); A nesting level complexity
measure. Sigplan Notices - SIGPLAN, 17(9): 44-50.

Robins, A., Rountree, J. and Rountree, N. (2003):
Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, 13(2): 137-
172.

RSA, IBM. http://publib.boulder.ibm.com/infocenter/
ieduasst/rtnv1r0/index.jsp?topic=/com.ibm.iea.rsar/plu
gin_types.html. Last accessed 8 August 2013.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,
E. and Whalley, J. L. (2008): Going SOLO to assess
novice programmers, Proc. of the 13th annual SIGCSE
conference on Innovation and Technology in Computer
Science Education (ITiCSE’08), Madrid, Spain, 209-
213.

Shepperd, M., (1988): A critique of cyclomatic
complexity as a software metric. Software Engineering
Journal, 3 (2): 30-36.

CRPIT Volume 148 - Computing Education 2014

110

http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567

Shuhidan, S., Hamilton, M. and D'Souza, D. (2009): A
taxonomic study of novice programming summative
assessment. Conferences in Research and Practice in
Information Technology, 95: 147-156.

Simon, B., Lopez, M., Sutton, K., and Clear, T. (2009):
Surely we must learn to read before we learn to write!.
Conferences in Research and Practice in Information
Technology, 95: 165-170.

Starsinic, K. (1998): Perl Style. The Perl Journal, Fall
1998. 3(3), http://www.foo.be/docs/tpj/issues/
vol3_3/tpj0303- 0006.html

Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M.,
and Robbins, P. (2008): Bloom's Taxonomy for CS
assessment. Conferences in Research and Practice in
Information Technology, 78: 155-162.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins,
P. and Prasad, C. (2006): An Australasian Study of
Reading and Comprehension Skills in Novice
Programmers, using the Bloom and SOLO
Taxonomies. Australian Computer Science
Communications, 52: 243-252.

Whalley, J., Clear, T., Robbins, P., and Thompson, E.
(2011): Salient Elements in Novice Solutions to Code
Writing Problems. Conferences in Research and
Practice in Information Technology, 114: 37-46.

Appendix A: The questions

1 This question asks the students to write a method
that makes the robot clean the room. The robot
must pick up all the beepers left lying around and
if there are enough beepers to fully load the beeper
wash then they should be loaded into the beeper
washer (at location (2, 12)) any remaining
beepers should be neatly placed at location (2,0).
The students are supplied with the method
signature and unit tests to test that the beepers have
been dropped at the appropriate location(s). The
tests include starting worlds with 0, 5, 9, 10, 15
and 20 beepers.

2 This question asks the students to write a method
called advanceRobot that has two parameters a
Robot and a distance to travel (the number of cells
that the robot should advance). The robot should
only be able to move if it is alive and if the distance
to travel is positive if it is unable to move an

appropriate exception should be thrown. If the
robot encounters a wall before moving the full
distance it should stop rather than crashing. The
method should return true only if the robot moved
the full distance.

3 In this question the students must write code to
move the robot from a set starting location at (4, 0)
to a fixed exit at location (4, 6). In order to do this
the robot must choose one of two paths. If there is
a beeper at the first intersection (4, 2) then the
robot must follow the eastern path otherwise it
should follow the western path.

4 In this scenario there are two corridors with a gap
between them. The length of each of the corridors
changes randomly every time the World is created,
but the gap is always in the same location.

5

The students were provided with a method header
and asked to write a summing algorithm; write
code that makes a robot move forwards until it
reaches a wall while picking up any beepers that it
encounters and then print out the total number of
beepers the robot collected.

6 Complete the method findBeeper that moves the
robot through a spiral maze until it reaches a
beeper. You should also count how many steps the
Robot navigate to the beepers and return the
number of steps required.

7 A robot starts in one of two possible initial states,

as shown in the figures below:

Write a program to move the robot to the end of
the corridor. If the robot starts at location (0, 0), it
must finish at location (4, 4) facing north. If the
robot starts at location (0, 5), it must finish at
location (4, 1) facing south.

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

111

8 In this question the students are provided with a
robot in a cell that contains a number of beepers.
The students are asked to write a method called
pickUpNBeepersCheckIfAll() that takes an integer
parameter, and makes the most recently created
robot pick up that number of beepers from the
beeper stack at its current location. You can
assume that there are enough beepers in the stack
for the robot to do this safely. The method should
return true if the robot has picked up all the
beepers at its current location, or false if there are
still beepers on the ground.

9 Write a method called pickUpBeeperStack() that
makes the most recently created robot pick up all
the beepers at its current location. The method
should return no value and take no parameters.

10 For this question the students are supplied with the

method header they are asked to complete the
method body so that the robot turns left then if
there is no wall in the way moves forward one cell.

11 For this question the students are supplied with the

method header they are asked to complete the
method body by writing a sequence of three
statements to make the robot drop the beeper it is
carrying, then move the robot forward one cell and
turn the robot left once.

CRPIT Volume 148 - Computing Education 2014

112

