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Abstract 
In this paper we report on an empirical study into the use 
of software metrics as a way of estimating the difficulty 
of code writing tasks. Our results indicate that software 
metrics can provide useful information about the 
difficulties inherent in code writing in first year 
programming assessment. We conclude that software 
metrics may be a useful tool to assist in the design and 
selection of questions when setting an examination.. 
Keywords: software metrics, code writing, novice 
programmers, assessment. 

1 Introduction 
There is a plethora of literature in computing education 
pointing to the fact that novice programmers find 
programming particularly difficult and that assessing the 
knowledge and skills the students have gained is 
problematic (for example see: Robins, Rountree & 
Rountree 2003). Historically the pass rates for students 
undertaking first year courses have been relatively low. 
This in part might be due to some difficulties related to 
the assessment of these courses. Whalley et al. (2006) 
noted that “assessing programming fairly and consistently 
is a complex and challenging task, for which 
programming educators lack clear frameworks and tools” 
(p. 251). More recently, Elliott Tew (2010) suggested that 
“the field of computing lacks valid and reliable 
assessment instruments for pedagogical or research 
purposes” (p.xiii) and Whalley et al. (2011) noted that 
there is a need for “more consistent and equitable designs, 
an improved learning experience for the novice and an 
overall increase in the quality of teaching and assessment 
of novice programmers” (p. 45). 

2 Background 
In order to design better novice programming 
assessments computer science educators have attempted 
to apply various educational taxonomies. The most 
commonly adopted taxonomies to date are Bloom’s 
(Bloom, 1956), the revised Bloom’s (Anderson et al., 
2001) and the SOLO Taxonomy (Biggs & Collis, 1982). 
One of the strengths of the use of educational taxonomies 
such as Bloom’s and SOLO for guiding the design of 
assessment is that they are designed to consider the level 
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of thinking and in the case of the revised Bloom’s 
taxonomy also the knowledge required in order to 
successfully solve a problem. However, the use and 
interpretation of Bloom and the revised Bloom’s 
taxonomy has proved to be problematic (for example see: 
Fuller et al. 2007, Thompson et al. 2008, and Shuhidan et 
al. 2009). In a recent, study Gluga et al. (2012) suggested 
that many of the ambiguities in the application of 
Bloom’s taxonomy to the assessment of computer 
programming are due to the necessity to have a deep 
understanding of the learning context in order to achieve 
an accurate classification. They also noted that the 
classifiers often had preconceived misunderstandings of 
the categories and differing views on the complexity of 
tasks and the sophistication of the cognitive processes 
required to solve them.  

Researchers have reported that SOLO can be reliably 
used to classify code reading questions and the student 
responses to those questions as long as the classifiers 
have a shared understanding of the application of the 
taxonomy to code comprehension tasks (Clear et al. 2008, 
Sheard et al. 2008). An initial set of guidelines and 
descriptors for using SOLO to classify student code 
writing solutions were proposed by Lister et al. (2009). 
However, classifying student answers to code writing 
tasks using this interpretation of the SOLO levels proved 
difficult even with these guidelines (Lister et al. 2009, 
Shuhidan et al. 2009).  A novel combination of SOLO 
and Bloom’s revised taxonomy was used by Meerbaum-
Salant, Armoni and Ben-Ari (2010) to guide the design of 
assessments.  

In a more recent study, Whalley et al. (2011) found 
that by combining a framework of salient elements and 
code quality factors they were able to more clearly define 
the SOLO categories. Using this approach they were able 
to reliably apply the principles of SOLO to determine the 
level of a code writing task or problem. However the 
programming tasks that they analysed were from various 
programming examinations and written using pen and 
paper rather than a computer. 

The body of research into using SOLO for classifying 
questions and student responses to both comprehension 
and writing questions has consistently reported that the 
higher the SOLO level of a question the more difficult, as 
measured by student performance, the question was 
(Clear et al. 2008, Sheard et al. 2008, Whalley et al. 
(2011)).  

Although some progress has been made towards being 
able to classify and estimate the difficulty of code-
comprehension questions “we have no reliable measure 
of the difficulty of code-writing questions even at the 
macro level” (Simon et al. 2009).  While SOLO and 

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

105



Bloom maybe useful, given the nature of novice code 
writing questions we really need reliable measures at a 
higher level of detail than taxonomies such as SOLO can 
provide in order to be able to research the nature of these 
questions and their role in assessment. 

2.1 On metrics and instructional design 
Starsinic (1998) used an interpretation of the English 
language Flesch-Kincaid readability measure (Kincaid et 
al. 1975) to produce a script (in Perl) called Fathom that 
was designed to automatically measure the readability of 
code generated by junior programmers during time 
critical projects.  

 In a later study Börstler, Caspersen and Nordström 
(2007) proposed that some cognitive aspects of code 
reading can be expressed using common software 
measures and explored this idea in the context of two 
novice code reading tasks. Their aim was to develop a 
reliable means of selecting appropriate code examples to 
help guide novice programmers’ learning and to 
determine between good and bad examples. They 
surmised that a good example must be readable and 
comprehendible and designed a framework based on 
these principles. Their framework consisted of cylcomatic 
complexity (McCabe 1976), an interpretation of the 
English language Flesch Readability Ease Measure 
(Flesch 1948) and Halstead’s difficulty metric (Halstead 
1977).  

In subsequent work a software metrics approach to 
informing the design of code comprehension assessments, 
for novice programmers, was reported by Kasto and 
Whalley (2013).  This work adopted a goal oriented 
approach to the identification of software metrics for 
measuring the difficulty of code comprehension tasks. In 
this study the difficulty of a question was represented as 
the percentage of fully correct answers provided. Novel 
dynamic metrics were designed specifically to measure 
the complexity of code tracing tasks and were shown to 
correlate, along with cylcomatic complexity and average 
block depth, significantly with the difficulty of the task.  
They also investigated the use of metrics for explain in 
plain English (EipE) questions but did not find any 
significant correlations between difficulty and Halstead 
metrics or cyclomatic complexity but noted that this may 
have been an artefact of the assessment questions that 
were used in the study. The authors concluded that 
software metrics may be a useful tool to assist in the 
design and selection of questions when setting an 
examination and that code writing tasks might also be 
amenable to the same approach by identifying relevant 
software metrics and applying them to the model answer 
and to the student solutions.  

In this paper we report on preliminary attempts to use 
software metrics as a way of estimating the difficulty of 
code writing tasks. 

3 Software Metrics 
“Good code is short, simple, and symmetrical – the 
challenge is figuring out how to get there”. –Sean Parent 
There are no software metrics that measure code which 
has yet to be written. Because we are aiming to develop 
an objective means of measuring the difficulty of a 

novice code writing task prior to the students undertaking 
the task we elected to use the instructor’s model answer 
as the code for which the metrics are calculated. While 
the model answer might provide a better quality solution 
that solution might actually have less complex code than 
many of the answers elicited from the students. In order 
to write the better answer the students may have to 
produce a more generalised, connected or integrated 
solution that reduces redundancy (Whalley et al. 2011). 
The challenge for developing a metric, for measuring the 
difficulty of a code writing task designed for novice 
programmers, is finding a measure that measures the 
level of quality of the code not just the structure of the 
code. This view is supported by Börstler, Caspersen and 
Nordström (2007) who reported that measures, for code 
examples, that are suitable for use in an educational 
context must also take into account factors such as level 
of thinking required and cognitive load. This must also be 
the case for code writing tasks. 

3.1 Code structure metrics 
When writing code it is necessary to come up with a 
structure for the code. Regardless of the quality of the 
solution we expect that some code structure metrics 
should have some relationship to the relative difficulty of 
code writing tasks. 

The software metrics that have been shown to 
correlate to code tracing task difficulty measure the 
structure of the code and/or the data flow of the code 
when executing. These metrics are: 

• McCabe’s cyclomatic complexity (McCabe 1976), 
• average nested block depth,  

and two novel “dynamic metrics” for code tracing tasks 
(Kasto and Whalley, 2013): 

• Sum of all operators  in the executed statements  
• Number of commands in the executed statements. 

In tracing code only the paths of code that the students 
must trace though are adding to the complexity. In the 
case of code writing all paths are important so the 
dynamic metrics are not considered to be as relevant for 
code writing questions. As a consequence the metrics we 
selected for code writing were cyclomatic complexity and 
average nested block depth. 

It is important to acknowledge the limitations of these 
metrics. Cyclomatic complexity in particular has been the 
subject of considerable criticism (for details see Shepperd 
1988, Piwaowaski 1982, and Magel 1981). Cyclomatic 
complexity “directly measures the number of linearly 
independent paths through a program’s source code” 
(McCabe 1976). However in calculating cyclomatic 
complexity statements such as else, do and try, object 
creation and method calls are not considered. It is highly 
likely that these statements contribute to the complexity 
of a code writing task for novice programmers. However 
given that cyclomatic complexity and average nested 
block depth were found to correlate with the difficulty of 
code comprehension tasks we elected to evaluate them 
again here for code writing tasks.  

Driven by the limitations of common software 
complexity metrics, Magel (1981) proposed a complexity 
metric based on regular expressions. Magel represented 
the structure of a piece of code as a control flow graph 
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and then derived a regular expression from the control 
flow graph. The symbols in the regular expression were 
then counted to give the complexity structure metric. Full 
details of the calculation of this metric can be found in 
Magel’s paper.  Magel surmised that “confusing program 
segments require longer regular expressions” and 
therefore a higher value for his metric (p.63). Because the 
quality of the model solution may prove to be more 
predictive of difficulty than the structure of the code we 
also selected Magel’s regular expression metric for 
evaluation. We hypothesised that questions that provide 
the opportunity for solutions that are more refined (more 
generalised, connected or integrated) have a higher 
regular expression metric and are likely to be more 
difficult questions than those that do not have the 
potential for refinement. 

Additionally we used the following structural metrics:  
• The total number of commands; the number of java 

method calls.  
• The total number of operators  
• The number of unique operators 

We included the number of commands because as an 
artefact of using a micro-world almost all of the 
procedures written required the students to call methods 
on objects. The number of commands metric measures the 
number of java methods called in the model answer. Both 
number of operators and number of unique operators 
were included because we were interested to know 
whether it is the total number or the number of different 
operators required that increases the difficulty. 

3.2 Code readability metrics 
A basic prerequisite for understandability is readability 
(Börstle, Caspersen and Nordström 2007). In order for 
code to be readable the basic syntactical elements must be 
easy to recognize. Only then, can relationships between 
the elements be established which may then lead to an 
understanding. It is reasonable to include a metric that 
measures the readability of code (i.e. of the model answer 
for a novice programming question) because empirical 
research has found that there is a strong relationship 
between the ability to explain code and write code with 
pen and paper (Lopez et al., 2008). 

Readability metrics have been developed and applied 
to natural languages. These language measures generally 
produce a single numeric value, which indicates either the 
grade level (1-12) or readability (usually 1-100) of a 
document and which is constructed from the average 
number of syllables per word and the average number of 
words per sentence.  

Although these natural language metrics are far from 
perfect, and despite their apparent simplicity, they have 
been found to be useful in practice. One of the most 
commonly used measures, the Flesch-Kincaid metric 
(Flesh 1948) is integrated into popular text editors and 
has been in used for over 50 years. However, these 
measures don't map well onto code therefore simply 
running a prose-readability test on student code would not 
generate a useful measure (Starsinic 1998). 

The Software Readability Ease Score (SRES) is an 
adaptation of the Flesch Reading Ease Score where the 
lexemes of the programming language are interpreted as 
syllables, its statements as words, and its units of 

abstraction as sentences (Börstler, Caspersen and 
Nordström 2007). This metric was designed on the 
premise that the smaller the average word length and the 
average sentence length, the easier it is to recognize 
relevant chunks (units of understanding).  Unfortunately 
the authors did not provide the detail for the calculation 
of the metric. 

Starsinic (1998) developed a similar metric where he 
opted to measure the number of tokens per expression 
(e.g. ++, ; , {, && and any keyword) , the number of 
expressions (e.g. 0.2 and ($a + 6))  per statement 
(e.g. a = $foo::bar * 7;) and the number of 
statements per Perl subroutine. His final formula was; 
code complexity = 

  ((average expression length in tokens) * 0.55) 
+ ((average statement length in expressions) * 0.28) 
+ ((average subroutine length in statements) * 0.08). 
The paper concluded that a low Starsinic readability 

metric value indicates a more readable piece of code and 
that a piece of code with a readability of 2.91 was very 
readable whereas code with a readability of 6.85 was 
considered to be very complex and therefore hard to read. 

No justification or explanation is provided for the 
weightings given to each operand in the formula or for 
the thresholds that were used to determine the relative 
level of complexity of the code readability. 

We elected to start from Starsinic’s readability metric 
but we altered the way in which expressions are counted. 
For example, in Starsinic’s method an expression such as 
n=n+1; would count as one expression but we counted 
this as two expressions in an attempt to more closely map 
the way in which a novice might read the expression. We 
think it is likely that a novice would break this down into 
two expressions firstly evaluating n+1; and then 
evaluating the assignment.  

4 Dataset 
The eleven code writing questions analysed in this study 
were selected from a series of controlled, summative 
practical programming tests held throughout the first 
semester of a first year Java programming course. The 
course adopts a back to basics procedural approach 
(similar to that suggested Reges (2006)) except that the 
learning is supported by an in-house micro-world called 
Robot World in the BlueJ IDE.  For each question the 
students were provided starting code with unit tests, as a 
BlueJ project, and asked to add a method to that project 
(see Appendix A for the questions). Sixty student 
responses were analysed for each question. These 
students had given ethical consent for their data to be 
used and were representative of the entire cohort.  

5 Analysis 
Table 1 gives the software metrics and student 
performance for each of the questions analysed.  It should 
be noted in interpreting the analysis that difficulty is 
being measured as the percentage of fully correct 
answers. For example question 11 is the easiest question 
with a percentage difficulty of 100% whereas question 1 
was the most difficult question with 14% of students 
giving a correct working solution. 
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 Questions 
 1 2 3 4 5 6 7 8 9 10 11 
Difficulty (%) (n = 60) 14 24 39 52 55 63 84 84 90 98 100 
cyclomatic complexity 12 5 5 5 6 5 4 3 2 2 1 
average nested block depth 4 2 3 2 4 2 2 2 2 2 1 
number of operators 18 15 4 14 8 8 3 6 1 1 0 
number of unique operators 5 8 2 6 4 4 2 6 1 1 0 
number of commands 49 13 14 27 20 20 9 7 3 4 4 
regular expression metric 60 24 24 29 31 25 20 14 8 8 3 
readability metric 5.78 4.88 2.74 1.78 2.38 4.20 1.69 1.90 1.14 1.33 1.28 

Table 1: Metrics for the instructor’s model answer for each question 
 

Cyclomatic complexity, average nested block depth, 
number of operators and number of unique operators 
were calculated using the standard procedures provided 
by the Rationale® Software Analyzer 7.1 (RSA 2013) 
tool. The regular expression metric and the readability 
metric were calculated by hand. 

The significance of the correlation of each metric to 
the difficulty of each question was then tested using a 
Pearson’s correlation (Table 2).  

Cyclomatic complexity, the regular expression metric 
and the readability metric were found to all correlate 
strongly with the difficulty of the novice code writing 
questions that we analysed in this study.  

The higher the cyclomatic complexity, the more 
complex the control flow of the program code is and the 
more difficult the question is (as evidenced by a low 
percentage of students getting the answer correct). 

The more deeply nested the branches of the code are 
the higher the average nested block depth is and the more 
difficult the question was for the students. This is not 
really surprising. Research investigating student 
responses to code writing questions found that students 
find questions that can be solved by writing the code line 
by line with limited reference to the previous lines of 
code are easier than those that require the students to 
understand the relationship between the chunks or blocks 
of code that they have written (Whalley et al. 2011).  

 

software metric Pearson’s correlation 
r p 

cyclomatic complexity -0.848 0.0009 
average nested block depth -0.647 0.0313 
number of operators -0.836 0.0013 
number of unique operators -0.644 0.0321 
number of commands -0.763 0.0062 
regular expression metric -0.839 0.0012 
readability metric -0.906 0.0001 

Table 2:  The correlations between metrics and 
difficulty 

The number of operators, in the case of the questions 
analysed here, correlates more strongly with difficulty 
than the number of unique operators. The opposite was 
found for code tracing questions where the unique 
operators correlated more strongly to difficulty (Kasto 
and Whalley, 2013). The repetition of operators perhaps 
doesn’t contribute to the complexity of the task but it 
does correlate to the student difficulty measure so perhaps 
it gives them more opportunity to make mistakes. 

Similarly we found that the higher the number of Java 
commands required the more difficult the question is. 

For the regular expression metric a higher value results 
from nested code (Figure 1, A vs. B), backward branches 
rather than forward branches (Figure 1, D vs. C) and 
increasing complexity in selection statements (Figure 1, E 
and F). 

The strong correlation between difficulty of the 
question and increasing structural and data flow 
complexity, as measured by the regular expression 
metric, confirms our original hypothesis and supports the 
conjecture that many students cannot write code that 
requires more complex structures and that there must be 
some relationship between the ability to design code 
structure and being able to produce working code 
regardless of the quality of their code. 

Given that we are analysing the instructor’s model 
answer, we are assuming that it is good code. If there are, 
for example, nested blocks to reach this solution a 
relatively high level of integration of the code and 
merging of plans is likely to be required. For such a 
question there are usually several solutions that could 
provide a working solution. If the student’s solutions are 
of a lower quality than the instructor’s code then you 
could argue that the code produced by them is more 
confusing and that the students would find it hard to 
correct any errors in their code. This could make the 
question more difficult for the novice programmer than 
the analysis of the model answer would indicate. 

The readability measure also correlates strongly to 
difficulty. The easier the model answer code is to read the 
easier the code is to write. It is possible that there is a 
causal relationship between readability of code and the 
ease of writing. 

6 Limitations  
While the findings of this study are encouraging there are 
some caveats. 

 We have only examined a relatively small set of code 
writing questions. The questions were selected to cover 
the key topics taught in our first year programming 
course; sequence, selection and iteration. The sequencing 
of the questions within the tests could add to our observed 
difficulty of the question. However with such strong 
correlations it is unlikely that this effect would 
significantly alter our findings. 
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A 

 

ab (ab)*c (bc)* 13 

B 

 

abc (bc)* (abc (bc)*)* 19 

C 

 

a(b+n)c 6 

D 

 

ab (ab)*c 8 

E 

 

a (b+c) 6 

F 

 

a (b+c)d 7 

Figure 1: Flow graphs, regular expressions and 
regular expression metric exemplars 

The questions we have analysed are also limited to 
“unseen” questions presented to student in a test situation. 
If previously seen questions are included it is likely 
correlations with the metrics used here will be less 
significant or even not significant. The difficulty of the 
question would be affected by the level of thinking 
required. A problem for which the students have already 
seen the code may mean that students can simply answer 
the question by recall. 

Much of the reasoning around why we are seeing the 
relationships between the metrics and actual difficulty is 
based on conjecture and this aspect of the work could be 
improved by observing the students in the tests. 

Some of the metrics used in this study may not be 
generalizable to all teaching contexts or indeed to all 
novice programming tasks. Courses that adopt an objects 
first pedagogy may have writing tasks for which other 
object orientated metrics might be applicable such as 
cohesion and coupling metrics. For a back to basics, 
algorithm focused, java course that does not utilise micro 
worlds but instead uses a typical IDE metrics such as 
number of commands may not be relevant. It is worth 
noting that for most metrics the range of values in a 
typical novice code writing task is likely to be relatively 
small. For example average nested block depth where 
deep nesting may be discouraged, by the instructor, in 
favour of separation of inner blocks into method calls. 
Despite the relatively small range of values we have 
found the metrics still correlate strongly with difficulty. 

In selecting the metrics to use we believe that average 
nested block depth, cyclomatic complexity, regular 
expression metric and readability should provide a 
measure of difficulty of the task regardless of teaching 
approach and programming context. However other 
metrics would need to be selected based on the teaching 
approach. Some aspects of the teaching approach will be 
reflected in the model answer. For example, if 
considering a typical programming task such as printing a 
box of asters of any size the model answer may be a 
solution that has two for loops while another instructor’s 
model answer may consist of a nested loop. 

While you could argue that as experienced teachers we 
consider these aspects of a programming problem when 
setting an assessment it is still useful to have a method for 
objective evaluation of the difficulty of a code writing 
question prior to including it in an assessment. 

7 Future work  
Where to from here? 

Further analysis could be undertaken to examine 
which metrics are general predictors of difficulty of 
novice programming tasks. Moreover metrics could be 
identified that are useful for specific pedagogies.   

If we can establish suitable heuristics for selection of 
metrics for a given course it may be possible to use this 
approach to automatically grade code writing tasks. We 
may even be able to use metrics as a tool for providing 
immediate feedback to the students about the quality of 
their solutions. Good code must be simple, readable and 
comprehendible and we want our students to be 
producing quality code. However in this study, we do not 
consider the quality of the students solutions in 
determining the difficulty of a question – a fully correct 
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answer may not be a well-designed answer. If you were 
wishing to adopt metrics to assist in the grading of 
student work then perhaps some measure of distance of 
the student’s answer from the instructor’s model answer 
might be useful. Some work has been undertaken which 
investigates the usefulness of software metrics as a form 
of formative feedback for novice programmers (Cardell-
Oliver 2011). This work used program size metrics, unit 
tests and program style violation counts as forms of 
automated feedback. While software metrics such as the 
ones we have explored in this paper are difficult for 
novice programmers to interpret directly, if supplied with 
guidelines for interpretation it is possible that students 
might also find them a form of useful feedback. 

Finally we believe that this approach has value as a 
research tool and provides a way of comparing questions 
in an empirical manner.  However, we concur with 
Börstle, Caspersen and Nordström (2007) that measures 
that are suitable for use in an educational context must 
also take into account factors such as level of thinking 
required, cognitive load and instructional design.  

Metrics should not be used as a silver bullet but used 
in conjunction with more subjective measures of 
difficulty such as SOLO or Bloom’s classification which 
consider the level of thinking and/or knowledge required.  
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Appendix A: The questions 
 

1 This question asks the students to write a method 
that makes the robot clean the room. The robot 
must pick up all the beepers left lying around and 
if there are enough beepers to fully load the beeper 
wash then they should be loaded into the beeper 
washer (at location (2, 12) ) any remaining 
beepers should be neatly placed at location (2,0). 
The students are supplied with the method 
signature and unit tests to test that the beepers have 
been dropped at the appropriate location(s). The 
tests include starting worlds with 0, 5, 9, 10, 15 
and 20 beepers. 

 
 

2 This question asks the students to write a method 
called advanceRobot that has two parameters a 
Robot and a distance to travel (the number of cells 
that the robot should advance). The robot should 
only be able to move if it is alive and if the distance 
to travel is positive if it is unable to move an 

appropriate exception should be thrown.  If the 
robot encounters a wall before moving the full 
distance it should stop rather than crashing. The 
method should return true only if the robot moved 
the full distance. 

3 In this question the students must write code to 
move the robot from a set starting location at (4, 0) 
to a fixed exit at location (4, 6). In order to do this 
the robot must choose one of two paths. If there is 
a beeper at the first intersection (4, 2) then the 
robot must follow the eastern path otherwise it 
should follow the western path. 

 

 
 

4 In this scenario there are two corridors with a gap 
between them. The length of each of the corridors 
changes randomly every time the World is created, 
but the gap is always in the same location. 

 
5  

The students were provided with a method header 
and asked to write a summing algorithm; write 
code that makes a robot move forwards until it 
reaches a wall while picking up any beepers that it 
encounters and then print out the total number of 
beepers the robot collected. 
 

6 Complete the method findBeeper that moves the 
robot through a spiral maze until it reaches a 
beeper. You should also count how many steps the 
Robot navigate to the beepers and return the 
number of steps required. 

 
7 A robot starts in one of two possible initial states, 

as shown in the figures below: 
 

  
 
Write a program to move the robot to the end of 
the corridor. If the robot starts at location (0, 0), it 
must finish at location (4, 4) facing north. If the 
robot starts at location (0, 5), it must finish at 
location (4, 1) facing south. 
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8 In this question the students are provided with a 
robot in a cell that contains a number of beepers. 
The students are asked to write a method called 
pickUpNBeepersCheckIfAll() that takes an integer 
parameter, and makes the most recently created 
robot pick up that number of beepers from the 
beeper stack at its current location. You can 
assume that there are enough beepers in the stack 
for the robot to do this safely. The method should 
return true if the robot has picked up all the 
beepers at its current location, or false if there are 
still beepers on the ground. 
 

9 Write a method called pickUpBeeperStack() that 
makes the most recently created robot pick up all 
the beepers at its current location. The method 
should return no value and take no parameters. 

 
10 For this question the students are supplied with the 

method header they are asked to complete the 
method body so that the robot turns left then if 
there is no wall in the way moves forward one cell. 

 
11 For this question the students are supplied with the 

method header they are asked to complete the 
method body by writing a sequence of three 
statements to make the robot drop the beeper it is 
carrying, then move the robot forward one cell and 
turn the robot left once. 
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