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Abstract

Random walk is a powerful tool, not only for mod-
eling, but also for practical use such as the Inter-
net crawlers. Standard random walks on graphs have
been well studied; It is well-known that both hit-
ting time and cover time of a standard random walk
are bounded by O(n3) for any graph with n vertices,
besides the bound is tight for some graphs. Ikeda
et al. (2003) provided “β-random walk,” which real-
izes O(n2) hitting time and O(n2 logn) cover times for
any graph, thus it archives, in a sense, “n-times im-
provement” compared to the standard random walk.

This paper is concerned with optimizations of hit-
ting and cover times, by drawing a comparison be-
tween the standard random walk and the fastest ran-
dom walk. We show for any tree that the hitting time
of the standard random walk is at most O(

√
n)-times

longer than one of the fastest random walk. Sim-
ilarly, the cover time of the standard random walk
is at most O(

√
n log n)-times longer than the fastest

one, for any tree. We also show that our bound for
the hitting time is tight by giving examples, while we
only give a lower bound Ω(

√
n/ log n) for the cover

time.

Keywords: Random walk, Markov chain, Hitting
time, Cover time.

1 Introduction

1.1 Standard random walk

Given a finite undirected and connected graph G =
(V,E) the transition probability matrix P0 of the
standard random walk is defined by, for u, v ∈ V ,

puv =

{ 1
deg(u) v ∈ N(u),

0 otherwise,

whereN(u) and deg(u) are the set of vertices adjacent
to vertex u and the degree of u respectively.

For a random walk on G with a transition proba-
bility P in general, let HG(P ;u, v) denote the hitting
time from u ∈ V to v, that is the expected num-
ber of transitions necessary for random walk starting
from u to reach v for the first time under P , and let
HG(P ) denote the hitting time of G, that is defined
by HG(P ) = maxu,v∈V HG(P ;u, v). The cover time
CG(P ;u) from u is the expected number of transitions
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necessary for random walk starting from u to visit all
vertices in V under P , and the cover time CG(P ) of
G is defined as CG(P ) = maxu∈V CG(P ;u).

Let n = |V | and m = |E|. Then the cover time
of the standard random walk of any graph G with n
vertices and m edges holds CG(P0) ≤ 2m(n−1) (leli-
unas et al., 1979; Aldous, 1983), whose results were
later refined by Feige (1995) as

(1− p(1))n log n ≤ CG(P0) ≤ (1 + o(1))
4

27
n3.

There is a graph L (called a Lollipop) such that

HL(P0) = (1− o(1))
4

27
n3,

and CL(P0) ≥ HL(P0), and thus both the hitting
and the cover times of standard random walks are
Θ(n3) (Gilks et al., 1995).

1.2 Related work

Ikeda et al. (2003) proposed a random walk with a
transition probability matrix P1 = (puv)u,v∈V defined
by

puv =

{
deg(u)−1/2∑

w∈N(u) deg(w)−1/2 u ∈ N(u),

0 otherwise.

for any u, v ∈ V , and showed for any graph G with
order n that the hitting and the cover times of the
random walk are bounded by O(n2) and O(n2 log n),
respectively. In addition, they proved that the hit-
ting and the cover times of any random walk on path
graph are bounded by Ω(n2). It should be noted that
the above random walk is defined only by using local
degree information.

When we are allowed to use (global) information
on G to define a transition probability, instead of local
degree information, we may obtain a faster random
walk. In fact, it is easy to see that, for any graph G,
there exists a random walk whose cover time is O(n2),
by considering a random walk on its spanning tree.

It remains to be seen if there exists a random walk
using “local information” only, such that its cover
time is O(n2) for any graph. (Ikeda et al., 2003)

1.3 Results

Our motivation is an optimization of the hitting and
the cover times of random walks on graphs by design-
ing a transition probability matrix. Generally, there
is a graph which has n-times faster random walk than
the standard random walk. For example, The hit-
ting and the cover times of β-random walk on lollipop
graph where β = 1/2 are both Θ(n2) while ones of the



standard random walk are Θ(n3). On the other hand,
the standard random walk is the fastest one on some
graphs(e.g., path graph). In this paper, we consider
that the optimization of random walks on trees.

In Section 2, we give the definition of random walk
on graph and present some early studies. In Section 3,
we show that for any random walk on any tree, the
cover is bounded by Ω(n log n). Then, we investi-
gate the ratio between the standard random walk and
the optimal random walk of the hitting and the cover
times. Let P ∗ be a transition probability matrix of
which the hitting or the cover time becomes mini-

mum. For any tree T , the ratio of HG(P0)
HG(P∗) and

CG(P0)
CG(P∗)

has smaller upper bound than n. In Section 4, we

show HT (P0)
HT (P∗) = O(

√
n), which is tight. In Section 5,

we show CT (P0)
CT (P∗) = O(

√
n log n) using the results in

Section 3 and 4.

2 Preliminaries

Suppose a graph G = (V,E) is finite, undirected, sim-
ple and connected with the order n = |V | and the size
m = |E|. Let l be a diameter of G. For u ∈ V , let
N(u) = {v | (u, v) ∈ E} and deg(u) = |N(u)| be the
set of vertices adjacent to a vertex u ∈ V and the
degree of u, respectively.

We say P = (puv)u,v∈V is a transition probability
matrix of a random walk on G if puv > 0 for (u, v) ∈
E, puv = 0 for (u, v) /∈ E and

∑
v∈V puv = 1.

Assume that each undirected edge e = (u, v) has
a weight wuv. We can obtain a weighted walk whose
transition probability is defined by

puv =
wuv∑

v′∈N(u) wuv′
.

If all weights are 1, the weighted walk is the standard
random walk.

We assume that each edge (u, v) ∈ E is a resistance
whose value is ruv = 1/wuv. For any u, v, let Ruv be
the effective resistance between u and v. Let w =∑

(u,v)∈E wuv.

Theorem 1 (Chandora et al., 1997) Arbitrarily
given weighted graph G, if a transition probabil-
ity matrix P is defined by the edge weight, then
HG(P ;u, v)+HG(P ;u, v) = 2wRuv for any u, v ∈ V .

Any irreducible random walk on tree is represented
as a weighted walk. From Theorem 1, we obtain the
following.

Proposition 2 Assume that the shortest path from
u to v is u = v1, v2, · · · , vk = v. For any u, v on a
tree T ,

HT (P ;u, v) +HT (P ; v, u) = 2w
k−1∑
i=1

1

wvi,vi+1

.

Proof. Since T is a tree, Ruv depends only on the sum
of the edge resistance on a unique path from u to v.

Therefore Ruv =
∑k−1

i=1
1

wvi,vi+1
. �

Theorem 3 l(n− 1) ≤ HT (P0) ≤ 2l(n− 1).

Proof. In the standard random walk, all of the edge
weights are 1. Thus HT (P0;u, v) + HT (P0; v, u) ≤
2l(n − 1). For any u, v ∈ V , and the equality
holds when u and v defines the diameter l. Thus
max{HT (P0;u, v),HT (P0; v, u)} ≤ l(n − 1) for u, v
with the distance l. HT (P0) ≤ 2l(n− 1) is clear. �

The following Matthew’s theorem (Ikeda et al.,
2003; Matthews, 1988) is known, which bounds the
cover time by the hitting time.

Theorem 4 For any G and P ,

CG(P ) ≥ min
u,v∈V

HG(P ;u, v) · h(n− 1),

CG(P ) ≤ max
u,v∈V

HG(P ;u, v) · h(n− 1),

holds, where h(n) is the n-th harmonic number, which
is defined by h(n) =

∑n
i=1

1
i , that is h(n) is almost

lnn.

3 Lower bounds of cover times on trees

In this section, we prove that for any tree with n
vertices and for any transition probability matrix, the
cover time of a random walk is Ω(n log n), which we
will use in Section 5 to derive an upper bound of
CG(P0)
CG(P∗) . First, we show that the tight lower bound of

the cover time of a random walk on the star graph is
n ·h(n) ≈ n log n. Then, we show that the cover time
of the fastest random walk on an arbitrarily fixed tree
with n vertices is not less than the cover time of the
fastest random walk on the star graph with n vertices.

3.1 Lower bound on the cover time of a star

A star graph is a tree whose diameter is 2. Let
a star graph with n vertices be denoted by Sn =
({u1, · · · , un}, {(u1, ui) | i = 2, · · · , n}), in which
n−1 vertices are connected to a vertex u1 as pendant-
vertices. We first show that for any random walk on
Sn, the cover time is Ω(n log n).

Figure 1: Star graph

Figure 2: A graph with
two pendant-vertices

To prove this, we consider transition probabili-
ties between vertex v0 and two pendant-vertices v1, v2
connected to v0 in a general setting. Let G = (V,E)
be a graph that has two pendant-vertices v1 and v2.
These pendant-vertices are both connected to vertex
v0. Let P be a transition probability matrix of a
random walk on G, and p1 and p2 denote the tran-
sition probabilities from v0 to v1 and from v0 to v2,
respectively. Fix the probabilities in P other than p1
and p2, and we consider another transition probabil-
ity P (q1, q2) in which p1 and p2 are replaced by q1
and q2 satisfying that 0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 1 and
q1 + q2 = p1 + p2.

Lemma 5 The cover time CG(P (q1, q2)) is mini-
mized by q1, q2 satisfying that q1 = q2.

Proof. Let V ′ = V \ {v1, v2}, and let pi be the tran-
sition probability from v0 to wi ∈ {N(v0) ∩ V ′} for
i = 3, · · · deg(v0).

The hitting times from v0 to pendant-vertices v1
and v2 are represented as follows:

HG(P (q1, q2); v0, v1) =
1

q1
(1 + q2 + H̃), (1)

HG(P (q1, q2); v0, v2) =
1

q2
(1 + q1 + H̃), (2)



where H̃
def
=

∑deg(v0)
i=3 piHG(P (q1, q2);wi, v0) and pi

denotes the transition probability of P from v0 to wi.
We consider the following two cases:
(i) Starting at u ∈ V ′

Hitting times between two vertices other than v1 and
v2 do not depend on q1 and q2. This implies that the
expected number of transitions of the token to visit
all vertices other than v1 and v2 is fixed. Thus, the
cover time is minimized when the expected number
of transitions for the token to visit both v1 and v2
achieves the minimum. Let C ′ denote the expected
number of transitions when the token starting from
v0 takes to visit v1 and v2. We consider three cases on
covering process of v1 and v2. First, if the token visits
v1 with probability q1 in the first step, then it visits
v2 with 1 + H(v0, v2) expected steps. Second, if the
token visits v2 with probability q2 in the first step,
then it visits v1 with 1 + H(v0, v2) expected steps.
Finally, for i = 3, . . . ,deg(v0), if the token visits wi
with probability pi in the first step and return v0 with
H(wi, v0) expected steps, then it visits v1 and v2 with
C ′ expected steps. Therefore C ′ is represented by

C ′ = q1(2 +H(v0, v2)) + q2(2 +H(v0, v1))

+

deg(v0)∑
i=3

pi(1 +H(wi, v0) + C ′)

= 2 +
(q21 + q22)(1 + H̃) + q31 + q32

(1− p̃)q1q2
+

p̃+ H̃

1− p̃
, (3)

where p̃
def
=

∑deg(v0)
i=3 pi. In the following, we consider

to find q1 and q2 minimizing C ′, meaning that the
cover time C(P (q1, q2);u) is minimum. Since q1+q2 =
1− p̃ by the definition of p̃, we have

q21 + q22 = (q1 + q2)
2 − 2q1q2 = (1− p̃)2 − 2q1q2,

q31 + q32 = (1− p̃)((1− p̃)2 − 3q1q2).

Since p̃ is fixed, Equation (3) is minimized when q1q2
takes the maximum, i.e., q1 = q2.
(ii) Starting at u ∈ {v1, v2}
We abbreviate H(P (q1, q2); v0, v1) and
H(P (q1, q2); v0, v2) to H(v0, v1) and H(v0, v2),
respectively. The cover time C(P (q1, q2;u)) is
minimized when max{H(v0, v1),H(v0, v2)} takes the
minimum. Let qm be max{q1, q2}, then

max{H(v0, v1),H(v0, v2)} =
1 + qm + H̃

1− p̃− qm
(4)

holds. Equation (4) is minimized when qm takes the
minimum, that is q1 = q2. �

Lemma 5 can be generalized to the case in which
v0 is connected with k pendant-vertices for any pos-
itive integer k ≥ 2. Let G = (V,E) be a graph that
has k pendant-vertices v1, · · · , vk, and all of these
pendant-vertices are connected to vertex v0. Given
a transition probability matrix P on G, we can de-
fine P (q1, q2, . . . , qk) similarly to P (q1, q2), that is,
P (q1, q2, . . . , qk) is the transition probability matrix
obtained from P by replacing the transition proba-
bilities from v0 to vi in P with a variable qi. Then we
have the following.

Lemma 6 The cover time CG(P (q1, q2, . . . , k)) is
minimized at q1 = · · · = qk.

By applying Lemma 6 to a star graph, we can see
that the standard random walk is the fastest random
walk for star graph in terms of the cover time. Since
the cover time of the standard random walk on the
star graph can be evaluated as the coupon collector
problem, we obtain the following:

Theorem 7 The cover time of the standard random
walk on star graph Sn is 2n · h(n − 1), where h(i) is
the i-th harmonic number.

Corollary 8 For any random walk of transition
probability matrix P on star graph Sn with n vertices,
CSn(P ) = Ω(n log n).

3.2 Comparison of cover times on trees

As mentioned at the beginning of Section 3, we will
show in this subsection that Sn is the graph that has
the fastest cover time random walk among the trees
of n vertices. To this end, we first present a way to
“compare” two graphs having a similar structure.

Let us consider two graphs GA = (V,EA) and
GB = (V,EB), which have almost the same struc-
ture described as follows. Suppose that GA and GB
have a common maximal induced sub graph, sayG0 =
(V0, E0). Both the induced sub graphs of GA and GB
on V \V0∪{x} are isomorphic and form the star graph
Sk+1 = ({v1, . . . , vk+1}, {(v1, vi) | i = 1, . . . , k + 1}).
Only the difference is that x = vk+1 in GA but x = v1
in GB . Here we rename the stars of GA and GB as
follows:

SA = ({y, z1, · · · , zk}, {(y, x)} ∪ {(y, zi) | i = 1, . . . , k}),
SB = ({y, z1, . . . , zk}, {(y, x)} ∪ {(x, zi) | i = 1, . . . , k}).

Lemma 9 For any transition probability matrix P
for GA and u ∈ V0, there is a transition probability
matrix P ′ for GB such that CGA

(P ;u) ≥ CGB (P
′;u).

Figure 3: GA Figure 4: GB

Proof. In order to show the lemma, it is sufficient

to consider the case when P = (p
(A)
uv )u,v∈V on GA

gives the minimum cover time. Thus we assume that
transition probabilities in P to pendant-vertices are

uniform by Lemma 6. Let p
(A)
xy = p, p

(A)
yx = q, for

simplicity.

p(A)
yz1 = p(A)

yz2 = · · · = p(A)
yzk

=
1− q

k
.

For this P , we construct P ′ = (p
(B)
uv )u,v∈V as follows:

p(B)
uv =


p
(A)
uv u, v ∈ V0 \ {x},

γp
(A)
xv u = x, and v ∈ V0,

p′/(k + 1) u = x, and v ∈ {y, z1, . . . , zk},
1 v = x, and u ∈ {y, z1, . . . , zk},

where p′ and 0 ≤ γ ≤ 1 are tuned later.
From now on, we show that there exists P ′ satis-

fying that

CGA(P ;u) ≥ CGB (P
′;u)

with tuned P ′ and γ.



For GA and P , let ρ be the expected number of
steps that it takes for the token starting from x to
visit a vertex in V0 \ {x}. Then we have

ρ =
2p

q(1− p)
. (5)

Similarly, we define ρ′ for GB and P ′, then P ′ satisfies
that

ρ′ =
2p′

1− p′
. (6)

Since G0 and its transition probability are common
for (GA, P ) and (GB , P

′), it suffices to show ρ ≥ ρ′

for the claim. Let s be the expected number of times
that the token visits x to cover the vertices in V \ V0
in GA and P . We can see that

sρ =
2k · h(k)
1− q

+
2

q
,

= 2 (k · h(k) + 1) + 2

(
q · k · h(k)

1− q
+

1− q

q

)
.

For this s, we can set p′ and γ such that

sρ′ = 2(k + 1) · h(k + 1),

= 2(k + 1)

(
h(k) +

1

k + 1

)
,

= 2(k · h(k) + 1) + 2h(k),

Then this implies that ρ ≥ ρ′; If q·k
1−q ≥ 1, clearly

ρ > ρ′. On the other hand, if q·k
1−q < 1, also ρ > ρ′,

since k < 1−q
q and h(k) < k. Thus we have CGA(P ) ≥

CGB (P
′).

�
By applying Lemma 9 to a tree T repeatedly, we

obtain the following theorem and corollary.

Theorem 10 For any tree T with n vertices and
any transition probability matrix P on T , CT (P ) ≥
CSn(P0) holds, where P0 is the transition probability
matrix of the standard random walk on Sn.

Corollary 11 The cover time of any random walk
for any tree is Ω(n log n).

4 Limitation of speeding up on hitting time

In this section, we show for any tree T that the ratio
of the hitting time of standard random walk HT (P0)
and optimal hitting time HT (P

∗) is upper bounded
by O(

√
n).

To begin with, we show the following:

Lemma 12 For any tree T and transition matrix P ,
HT (P ) ≥ max{n− 1, l2}.

Proof. Without loss of generality we may assume w =
n− 1. Then, there exists an edge whose weight is at
most one since the number of edges is n−1. Therefore,
maximum resistance Rmax is at least one. Hence, we
obtain HT (P ) ≥ n− 1 from Proposition 2.

Since the diameter is l, it is clear that HT (P ) ≥ l2.
These inequalities are satisfied coincidentally. The

hitting time is at least max{n− 1, l2}. �

Theorem 13 For any tree T ,
HT (P0)

HT (P ∗)
≤ 2

√
n− 1.

Proof. (i)If l ≥
√
n− 1, then

HT (P0)

HT (P ∗)
≤ 2l(n− 1)

l2
≤ 2

√
n− 1

holds, since HT (P
∗) ≥ l2.

(ii)If l <
√
n− 1, then

HT (P0)

HT (P ∗)
≤ 2l(n− 1)

n− 1
< 2

√
n− 1

holds, since HT (P
∗) ≥ n− 1.

In both cases, HT (P0)
HT (P∗) ≤ 2

√
n− 1 holds. �

In the rest of this section, we show a tight example
of speeding up of the hitting time. That is a broom
graph whose diameter is Θ(

√
n).

Definition 14 A broom graph Bk,l = (V,E) is de-
fined by V = VT ∪ VS and E = ET ∪ ES, where

VT = {vi | 1 ≤ i ≤ l + 1},
VS = {uj | 1 ≤ j ≤ k},
ET = {(vi, vi+1) | 1 ≤ i < l},
ES = {(vl+1, uj) | 1 ≤ j ≤ k}.

Figure 5 is example of broom graph B3,3.

Figure 5: Broom graph B3,3

Proposition 15 For a broom graph Bk,l with l =√
n− 1, k = n − l − 1, there exist a random walk P1

such that HBk,l
(P0)/HBk,l

(P1) ≥
√
n− 1/8.

Proof. We define edge weights of Bk,l by

we =

{
1 + k

2l e ∈ ET ,
1
2 e ∈ ES ,

then the total weight w is n− 1. At that time, Rmax
is Ru1vl+1

+max{Rv1vl+1
, Ru2vl+1

}. Now,

Ru1ul+1
=

l

1 + k
2l

and Ru1vl+1
= Ru2vl+1

= · · · = Rukvl+1
= 2, respec-

tively.
Now set l =

√
n− 1, then Rmax = 4 since

Rv0ul+1
=

2(n− 1)

n− 1 +
√
n− 1

< 2 = Ru2vl+1
.

From Proposition 2, H(P ′) ≤ 2wRmax ≤ 8(n − 1).
From Theorem 3,H(P0) ≥ (n−1)1.5. Thus, we obtain
that

H(P0)

H(P1)
≥ (n− 1)1.5

8(n− 1)
=

√
n− 1

8
.

�



5 Limitation of speeding up on cover time

In this section, we provide that for any tree T , the ra-
tio of the cover time of standard random walk CT (P0)
and optimal cover time CT (P

∗) is upper bounded by
O(

√
n).

Lemma 16

(1) CT (P0) ≤ min{2(n− 1)2, 2l(n− 1) log(n− 1)}.
(2) CT (P

∗) ≥ max{l2, 2(n− 1) log(n− 1))}.

Proof. (1). For any graph, the cover time of a stan-
dard random walk is upper bounded by 2m(n −
1) (leliunas et al., 1979; Aldous, 1983). Since a tree
has just n−1 edges, the cover time is at most 2(n−1)2.
On the other hand, Theorems 3 and 4 indicate that
2l(n − 1) log(n − 1) is an upper bound of the cover
time of the standard random walk.

(2) Since the hitting time can be a lower bound
of the cover time clearly, Lemma 12 gives a lower
bound max{n − 1, l2} of the cover times. On the
other hand, Theorem 10 gives another lower bound
CS(P0) = 2(n− 1) log(n− 1) of the cover time of any
random walk on any tree. �
Theorem 17 For any tree T ,

CT (P0)

CT (P ∗)
≤

√
2(n− 1) log(n− 1).

Proof. From Lemma 16,

CT (P0)

CT (P )
≤ min{2(n− 1)2, 2l(n− 1) log(n− 1)}

max{2(n− 1) log n, l2}
holds.

(i) If 2l log(n−1) ≤ n−1 and 2(n−1) log(n−1) ≤
l2, then

CT (P0)

CT (P )
≤ 2l(n− 1) log(n− 1)

l2
,

≤
√

2(n− 1) log(n− 1),

holds.
(ii) If 2l log(n−1) ≤ n−1 and 2(n−1) log(n−1) >

l2, then

CT (P0)

CT (P )
≤ 2l(n− 1) log(n− 1)

2(n− 1) log(n− 1)
,

<
√

2(n− 1) log(n− 1),

holds.
(iii) If 2l log(n−1) > n−1 and 2(n−1) log(n−1) ≤

l2, then

CT (P0)

CT (P )
≤ 2(n− 1)2

l2
,

< 4 log2(n− 1), (7)

holds. In case that n is large enough, Equation (7) is

smaller than
√

2(n− 1) log(n− 1).
(iv) If 2l log(n−1) > n−1 and 2(n−1) log(n−1) >

l2, then

n− 1 < 2l log(n− 1),

<
√
n− 1(2 log(n− 1))1.5,

holds. This inequality implies that n − 1 ≤ log3(n −
1). Hence case (iv) does not appear when n is large
enough.

Therefore, CT (P0)
CT (P∗) ≤

√
2(n− 1) log(n− 1) in all

cases. �

6 Conclusion

In this paper, we investigated speeding up random
walk on trees. We first proved that for any tree with n
vertices and for any transition probability matrix, the
cover time is Ω(n log n). Then, we presented the hit-
ting and the cover time ratio of standard random walk
to optimal random walk is O(

√
n) and O(

√
n log n),

respectively. In particular, the ratio of hitting time
is tight. Whether that the standard random walk is
slow or fast, bad or good depends on the intended
use.

There still remains some problems. The tight case
of the cover time is not found. We would like to design
better random walks than the standard random walk
whose ratio compered to optimum are o(

√
n) for the

hitting time and o(
√
n log n) for the cover time. An

extension of arguments to more generally graph is a
future work. It is open if there always exists a fastest
walk for hitting time which is also fastest for cover
time, and vice versa.
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