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Abstract 
Identifying product families has been considered as an 
effective way to accommodate the increasing product 
varieties across the diverse market niches. In this paper, 
we propose a novel framework to identifying product 
families by using a similarity measure for a common 
product design data BOM (Bill of Materials) based on 
data mining techniques such as frequent mining and 
clustering. For calculating the similarity between BOMs, 
a novel Extended Augmented Adjacency Matrix (EAAM) 
representation is introduced that consists of information 
not only of the content and topology but also of the 
frequent structural dependency among the various parts of 
a product design. These EAAM representations of BOMs 
are compared to calculate the similarity between products 
and used as a clustering input to group the product 
families. When applied on a real-life manufacturing data, 
the proposed framework outperforms a current baseline 
that uses orthogonal Procrustes for grouping product 
families. . 
Keywords: Product families BOM, frequent mining, 
matrix representation, and clustering. 

1 Introduction 
Agile manufacturing has resulted in mass customization 
and product proliferation, which consequently increases 
the number of products and part variations extensively. 
Simultaneously the current business climate demands for 
moving a product quickly from concept-to-market by 
reducing the product development lead time. A key 
element of shortening this lead time is the ability to use 
existing knowledge and designs to generate new 
variations of existing products, which ensure a reduction 
in time-to-market (Utterback & Meyer, 1993). Therefore, 
the concept of grouping product families has been 
introduced. Besides leveraging product development cost, 
this grouping can offer multiple benefits including 
reduction in new product launching risks, improved 
ability to upgrade products, and enhanced flexibility and 
responsiveness of manufacturing processes (Sawhney, 
1998). For example, if two products have 45 out of 50 
parts common, design of the similar parts can be reused 
and positioned for assembly early so that the remaining 
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five parts can be added to the assembly when an order for 
a specific assembly has arrived. Exploring similarity 
among products may lead to the redesign of some parts. 

Nowadays, with the advent of cheap storage and fast 
computer, a huge amount of data is generated during 
product design and development in a manufacturing 
system. The ability beyond human is required to process 
this huge amount of complex data into useful knowledge 
such as common product family information. The 
identification of product families is a non-trivial task due 
to the volume and complexity of the available data. A 
well-known historical approach of grouping product 
families is Group Technology (GT) (Harhalakis, Kinsey 
& Minis, 1992; Marion, Rubinovich & Ham, 1986). 
However, the practical acceptance of GT has been limited 
in modern manufacturing (Romanowski & Nagi, 2002; 
Romanowski & Nagi, 2005), as it requires enormous 
effort to do groupings due to the involvement of manual 
intermittent steps for developing a “coding system” to 
summarize the key design and other attributes.  Some 
efforts have been made towards automation (Iyer & Nagi, 
1997), but acceptable performance is not reached yet, 
especially for situations where the sheer volume of data 
becomes overwhelming for both human and systems. 

Data mining techniques have been specifically 
designed to deal with massive amount of data 
automatically (i.e. without human intervention) and to 
identify meaningful patterns and dependencies hidden 
behind the data. However, due to the complex nature of 
the data generated in product design domain, existing 
data mining algorithms require modifications. Although 
data mining algorithms have been specifically written to 
effectively analyse large datasets, the product design data 
often cannot be simply “plugged in” to these programs 
(Romanowski, Nagi & Sudit, 2006).  

Bill of Materials (BOM) is a common product design 
data used in various domains like mechanical, electrical, 
electronic and civil/infrastructure. BOM is a hierarchical, 
structured representation of the products that details 
information such as parts descriptions, raw materials, 
quantities, manufacturing details, production times, etc. 
(Romanowski & Nagi, 2005). Researchers and 
practitioners have started using BOM specifications more 
commonly to represent their data (Matías, Garcia, Garcia 
& Idoipe, 2008). It has become essential to propose 
similarity measures for BOM data to determine similarity 
between product designs, which will eventually lead to 
find effective groupings of product families.  

For BOM data, the critical information lays in the 
recursive parent-child relationships between the end item, 
its components or subassemblies, and the raw (or 
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purchased) materials they contain. This information can 
naturally be depicted in rooted labelled unordered tree 
format. In this paper we represent BOM data as 
unordered trees and introduce a novel matrix form called 
Extended Augmented Adjacency Matrix (EAAM) for 
equivalent tree representation. This representation 
facilitates search for similar designs and thus reduces the 
time consumption between concept and product launch. 
Our approach is to utilize the data mining techniques like 
frequent mining and clustering for ensuring efficient 
similarity calculation and reducing the search space for 
finding similar groups. Using frequent mining allows 
finding frequent structural dependencies like parent-child 
in a particular database, which gives the list of most 
occurred BOM parts or components relations. This 
information is then used with other content and 
topological information such as optimal part encoding, 
hierarchical position or level, and part quantity, in 
clustering. Using EAAM representations of BOM data, 
cosine similarity measure is used to generate a similarity 
matrix that becomes input to a clustering algorithm for 
identifying the product families. 

When applied on a real-life manufacturing data, the 
proposed framework including the BOMs similarity 
measure method has proven to excel in solving the 
problem of grouping product families automatically. The 
results are also compared with a current baseline that uses 
orthogonal Procrustes (Shih, 2011) for finding the 
product families and the proposed framework clearly 
outperforms. 

Road map: In the following section, the related work 
is discussed. In section 3, the background knowledge is 
presented. In section 4, the proposed method for BOM 
similarity measure and the framework for identifying 
product families are given. The results are discussed in 
section 5. In section 6, the conclusion is drawn. 

2 Related Works 
Many efforts have been made for grouping the product 
families based on similarity schemes with emphasis on 
the different design areas and manufacturing. Most of 
them have focused on the historical approach of grouping 
individual parts into families, called as Group 
Technology (GT) (Harhalakis, Kinsey & Minis, 1992; 
Marion, Rubinovich & Ham, 1986)). The practical 
acceptance of GT has remained limited due to the 
expensive coding system development for summarizing 
the key product design and manufacturing attributes for 
doing the grouping. The main limitation of GT is the 
manual coding system. Though some efforts have been 
made towards automation, still more improvements are 
needed. Later, Authors in (Kao & Moon, 1991) used a 
back-propagation neural network based method for the 
product family grouping, but kept the existing GT 
classification and coding system. Another automated 
retrieval and ranking process for finding similar parts was 
proposed by authors in (Iyer & Nagi, 1997), but again 
based on GT coding. Authors in (Lee-Post, 2000) 
employed genetic algorithm to form the families, 
however, this approach also required to use the existing 
classification and coding scheme. 

Instead of using information derived from a fixed GT 
code; some methods proposed similarity based on product 

functional features. Authors in (Chen, Chen, Wang & 
Chen, 2004) used the adaptive resonance theory (ART) 
neural network to develop a functional feature-based 
similarity method for grouping product families. Authors 
in (Liu, Yang, Bai & Tan, 2008) introduced another 
functional similarity-based combinatorial design method 
to produce a variety of products that satisfy various 
customer requirements in time. However, these functional 
feature-based schemes did not consider the hierarchical 
product design features. Authors in (Shih, 2011) 
attempted to calculate the similarity between BOMs 
considering the shape or geometrical structure, where a 
matrix representation and orthogonal Procrustes method 
were used to calculate the similarity score for grouping 
the product families. But BOMs are very flexible in 
shape, since there is no common rule or template to 
follow for generating them, therefore looking for 
geometrical or exact shape difference may give false 
similarity score. Emphasis should be put on the 
significant structural dependencies, hierarchical positions 
and other important contents during similarity calculation. 
The proposed framework in this paper focuses on the 
above for identifying the product families. To our best of 
knowledge, this is the first work on BOM data to 
determine product families using data mining.  

Office Chair A

P(1) Q(2) R(1) S(1)

W(1) V’(1)T(1) U(1) V(1)

X(1) Y(4)

Nodes meanings: P=Seat, Q=Elbow rest, R=Lumbar support, S and S’=Back variation, 
T and T’=Under frame variation, U=Seat frame, V and V’=Upholstery variation, 
W=Back frame, X =Standard, Y=Wheel, Z=Footrest

Office Chair B

P(1) S’(1)

T’(1) U(1) V(1) W(1) V’(1) R(1)

X(1) Y(4) Z(1)

Figure 1: Variants of office chair 

3 Background Knowledge 

3.1 Bill of Materials (BOMs) 
BOM represents hierarchical relations between various 
product parts with necessary details of manufacturing a 
particular product. It is a structural representation of a 
product including its required subassemblies, components 
and parts at various levels of production (Clement, 
Coldrick & Sari, 1992). To understand the proposed 
framework, following definitions need to be considered. 

Definition 1 (End Items): The entities that are sold 
directly to the customer without any further value added 
manufacturing step. End items usually contain several 
subassembly parts and raw materials and appear at the top 
of the BOM hierarchal position. 

Definition 2 (Subassemblies): These are the entities 
that cannot be sold to the customer. Subassemblies may 
contain manufactured or purchased part or other 
subassemblies, and therefore, are appeared at a level of 
BOM hierarchy which is positioned neither at the top nor 
at the bottom. 

Definition 3 (Purchased Parts): The raw materials 
which are the initial entities for finishing a final product. 
Purchased parts are positioned at the bottom level of the 
BOM structure. 
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Definition 4 (Quantity Representation): In BOM, 
repeated subassemblies or parts are represented by a 
quantity per value. This value is the number of the part 
required per one unit of the part’s parent. 

Definition 5 (Part Number): This is an alphanumeric 
string that uniquely identifies an end item, subassembly 
and a purchased part. Each number corresponds to a 
specific item with specific characteristics. 

Properties of BOM: BOM structures can be different 
for the identical end items, as each end item may be 
designed by a different company. Moreover, the product 
design is the result of human made input and developed 
completely based on individuals’ understandings of how 
the product is manufactured or assembled. Similar BOMs 
may have different structures with same parts appearing 
at different level. However they will share similar 
components or parts and, most importantly, the structural 
dependencies among them will be usually kept same 
(Figure 1). BOMs substructures are unordered which 
means that the order of components is not significant. For 
instance, it does not matter if we say a chair has a seat, 
elbow rest and wheel, or a chair has a wheel, seat and 
elbow rest. In this paper we depicted BOM as rooted 
labelled unordered tree.  

Definition 6 (Unordered Tree): A rooted labelled 
unordered tree has an identical root node and preserves 
only ancestor-descendant or parent-child relationships 
among nodes. There is no left-to-right order among the 
sibling nodes. 

3.2 Data Mining Techniques Used 
To satisfy the need of mass customization and agile 
manufacturing, we need to apply techniques that will 
extract implicit, previously unknown, potentially useful 
and understandable pattern from a large database 
(Fayyad, Piatetsky-Shapiro & Smyth, 1996), thus the 
product design and manufacturing system will have 
substantial improvement. Using data mining techniques 
in advance manufacturing is becoming popular 
(Choudhary, Harding & Tiwari, 2009). In the proposed 
framework, we have used frequent mining and clustering, 
two well-known data mining techniques for finding 
similarities between products and grouping them into 
families. 

Frequent mining is used to extract interesting patterns 
from a database using a specified support (Chowdhury & 
Nayak, 2014a, 2014b). Support determines how often a 
pattern is applicable to or appears to a given data set. It 
represents the probability that a database instance 
contains that pattern. 

Raw DataMultiple 
Databases

Data Integration

Final Data

Removal of Noises , 
Handling of Missing 

Data…..

Tree Modelling

Figure 2: Data Pre-Processing Steps 

BOM consists of structural dependencies like parent-
child and ancestor-descendant relations between the end 
item, its components or subassemblies, and the raw (or 
purchased) materials they contain. The main challenge in 
BOM data analysis is dealing with the flexibility in its 
representation. It is very hard to put BOM data into a 
common format, thus the accurate analysis like similarity 
comparison can be carried out. Apparently, in BOM no 
other information keeps constant except the structural 
dependencies. So, instead of considering geometrical 
structure and shape, understanding structural 
dependencies is crucial for BOM similarity comparison. 
We utilise frequent mining to extract common structural 
dependencies in a database, which can be used as 
important representational component of the BOM data. 
These common structures can be input to clustering along 
with other information about the BOM data. 

Clustering is an unsupervised data mining technique 
that can group objects based on their common 
characteristics, without the presence of any prior 
information about classification (Algergawy, Mesiti, 
Nayak & Saake, 2011; Kutty, Tran, Nayak & Li, 2008). 
Without using domain knowledge and GT coding based 
classification, the identification of product families can be 
possible using clustering. Clustering is now commonly 
used in manufacturing domain for doing unsupervised 
grouping (Ye & Gershenson, 2008).  To apply clustering, 
a similarity measure value needs to be calculated based 
on commonality of the features. In this work, we utilise 
cosine similarity (Cha, 2007) to determine a similarity 
matrix based on the equivalent Extended Augmented 
Adjacency Matrix (EAAM) of a BOM dataset. 

4 Proposed BOM Similarity Framework for 
Identifying Product Families 

In this section a method of similarity measure between 
two BOM data instances is presented. A framework is 
then proposed integrating the similarity measure for 
identifying product families.   

4.1 Data Pre-processing 
To begin with our approach it is necessary to pre-process 
BOM data in order to make it useful for knowledge 
discovery. Figure 2 shows the tasks, which are used in 
this process. 

4.1.1 Final Data 
A company’s database generally consists of a lot of data 
records. Only those records that correlate closely with the 
mining purpose are taken into account. Mostly BOM 
records are found in a tabular form, which typically 
contains the part name, part no, part revisions, part 
manufacturing description and the quantities required 
building a product assembly (as shown in Figure 3). 
Usually, the BOM input is given by human in 
spreadsheet, that can be formatted however one likes, but 
as anyone can format them, it often results in 
inconsistencies across a company’s BOMs. Hence for 
mining BOM data, these inconsistencies need to be 
removed. Moreover not all of the information comprised 
by BOMs is necessarily mined for knowledge discovery. 
Therefore, once received the raw data through integration 
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of multiple databases, the final data sets should be 
identified involving such data cleaning and filtering tasks 
as removal of noises, handling of missing data files, etc. 

Unordered Tree BOM data 
Root node End item 

Parent or ancestor node End item and subassemblies 

Child or descendant node Subassemblies and purchased 
parts 

Leaf node Purchased parts 

Parent-child or, ancestor-
descendant relationships 

End item-subassembly or, end 
item-purchased part or, 
subassembly-purchased part 
relationships 

Node label Part number 

Table 1: Considered Mapping for BOM to 
Unordered Tree Representation 

4.1.2 Unordered Tree Representation 
After identifying final BOM data, tree modelling is done 
to support the EAAM construction.  This modelling is 
carried out by using unordered tree structure scheme as 
template, where only parent-child and ancestor-
descendent relationships are important. The BOM data 
can naturally be represented as unordered tree. By 
considering the parent-child and ancestor-descendant 
relationships between end item, subassemblies and 
purchased parts, a mapping can be derived.  

Table 1 shows a general mapping that can be used to 
represent the BOM data as unordered tree. The end item, 
or finished product, can be considered a root of the tree; 
manufactured or assembled components can become the 
nodes; purchased parts or raw materials can be the leaf 
nodes. For example, in figure 3 the tabular or indented 
BOM of an ABC Lamps Product-LA01 (Fogarty, 
Blackstone & Hoffmann, 1991) is given, where the lamp 
is the end product, and the parts given under first column 
are different subassemblies and purchased parts. For 
constructing a tree from this BOM only the relationships 
among various parts are important, such as B100, S100 
and A100 are the children of the end item; 1100, 1200, 
1300, 1400 are the children of B100, representing 
descendants of the end item. 

For node labelling, part numbers are used. If we 
compared two BOMs of product Lamp, using part 
numbers as labels, two BOMs would only match where 
the part numbers were exactly the same. For instance, 
suppose part S-14 is a shade with I.D. = 14” (inch). Part 
S-18 is a shade with I.D. = 18” (inch). These two shades 
would not be matched because of the unique part 
numbers. However, we are interested in finding BOMs of 
similar nature even if they do not share exact content and 
topology. For this reason, we replace the part numbers 
with general node labels derived from the part 
characteristics and types. In the case of these two parts, 
we would replace the unique part labels with a single 
label S for the class of shades. 

4.2 Finding Frequent Structural Relationship 
The objective of the proposed framework is to form the 
product families based on the existing product models 
(BOMs). Due to the vast flexibility in BOM data, 

characterizing structural relationships based on frequent 
occurrence is essential to include in the global similarity 
calculation as in some cases, frequent-infrequent decision 
are used as a scale to measure the importance of the 
structural relations (Chi, Muntz, Nijssen & Kok, 2004). 
We consider these relationships as a representational 
component for the BOM dataset. We explain next how 
these relationships are derived. 

Figure 3: ABC Lamps Product-LA01 (Fogarty, 
Blackstone, & Hoffmann, 1991) 

4.2.1 Tree traversal 
Prior to implement frequent subtree mining algorithm, an 
optimal traversal (Chowdhury & Nayak, 2013) algorithm 
is used to ensure unique identity or canonical form 
(Valiente, 2002) of each product model, which is in 
unordered tree form. Optimal traversal is included as it 
ensures optimality by providing unique encoding within 
minimum computation time (Chowdhury & Nayak, 2013). 

4.2.2 Frequent Mining Algorithm 
Once the canonical form is built, the frequent mining can 
now be applied that permits not only to explore the 
relationships and dependencies but also to handle a huge 
amount of data in an optimal way (Chowdhury & Nayak, 
2014a, 2014b). However, such algorithms are sometimes 
limited to the memory because of its size and calculations 
that they perform. The candidate frequent subtrees 
generation can be exponential in large databases (Chi et 
al., 2004). 

We propose to apply the BOSTER algorithm 
(Chowdhury & Nayak, 2014b) which allows setting the 
subtree length equal to 1 and retrieves only single 
relationships exhibiting between parent-parts. This 
algorithm has proved to be memory efficient and exhibits 
limited computational complexity (Chowdhury & Nayak, 
2014b).  A support threshold is needed for frequent 
subtree mining process. A minimum support is set by trial 
and error, as it is a data specific parameter that prunes the 
infrequent subtree. 

4.2.3 Characterizing Structural Relationships 
Based on the result of the frequent subtree mining 
algorithm the structural relationships are characterized. If 
a subtree is frequent then the inherent parent child 
relation is considered as mandatory. Once all mandatory 
parent-child relationships are identified, the remaining 
parent-child relationships are classified as optional. 
During the EAAM representation a weighted value of 1 
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and 0 are used to represent the mandatory and optional 
relationship respectively.  

4.3 Extended Augmented Adjacency Matrix 
(EAAM) Representation 

In this paper a new matrix representation called EAAM is 
introduced. Although, EAAM is an extension of 
Augmented Adjacency Matrix (AAM) representation 
(Chowdhury & Nayak, 2013), but to our best knowledge, 
this is the first matrix, where the frequent structural 
relationship is included as one of the representational 
components. The rest of the components are: 

• Optimal part sequence of BOM using optimal
traversal. 

• Part level information from BOM interface.
• Quantity representation (q) representing the

number of the part required per unit of the part’s
parent.

An adjacency matrix of a tree is based on the ordering 
chosen for the nodes (Rosen, 2011). For EAAM the 
ordering is achieved using optimal traversal (Chowdhury 
& Nayak, 2013) which ensures unique encoding of BOM 
represented in unordered tree form. For populating the 
cell of EAAM mainly structural relationship importance 
weight, level information and quantity representation are 
used. 

Let a BOM, B is depicted as a rooted labelled 
unordered tree B = (I, R), where I = {i0, i1, i2, …, in} 
denotes the set of items with i0 as end item, and other set 
elements as subassembly and purchased items,  R = {(i1, 
i2)|i1, i2 ∈ I} = {r1, r2, …, rn-1}. The number of each item 
is given as {q0, q1, q2, …, qn}. For B, the EAAM 
representation can be formulated in which a cell, acd is 
populated as follows: 

𝑎𝑐𝑑 =  

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

1                                                             if 𝑖𝑐  is a node of 𝐵 
𝐿(𝐵, 𝑖𝑑)
𝐿(𝐵, 𝑖𝑐) + 𝑞𝑑 + 1        if 𝑖𝑐  is an ancestor or parent of 𝑖𝑑

  and the relation is frequent 
𝐿(𝐵, 𝑖𝑑)
𝐿(𝐵, 𝑖𝑐) + 𝑞𝑑 + 0        if 𝑖𝑐  is an ancestor or parent of 𝑖𝑑

  and the relation is not frequent
0    otherwise

These four components are explained as follows: 
1. To represent the presence of each part in a

BOM, each diagonal cell is populated with 1. 
2. If the part is parent or ancestor of the other

respective part, and the parent-part relation is 
frequent then the cell is populated with level 
information (fraction of level of corresponding 
two parts), quantity representation of the child or 
descendant node and the mandatory structural 
relationship weight value equals 1. 

3. If the part is parent or ancestor of the other
respective part, and the parent-part relation is not 
frequent then the cell is populated with level 
information (fraction of level of corresponding 
two parts), quantity representation of the child or 
descendant node and the optional structural 
relationship weight value equals 0. 

4. If none of these are true, then the cell receives a
value of 0. 

Level 4

Level 3

Level 2

A

A

P S

Q

P

S

T

T

Y

Y

1 3/4+2+1 3/4+1+1 3/4+1+1 2/4+1+1 1/4+4+1

1

1

1

1

1

0

0

0

0

0

0

0 2/3+1+1

0 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0

Office Chair A

P(1) Q(2) R(1) S(1)

W(1) V’(1)T(1) U(1) V(1)

X(1) Y(4)
Level 1

1/3+4+1

Q

Figure 5: EAAM Construction 

Construct Ra×a, Rb×b, …, Rz×z

Compare Ra×a and Rb×b

Identical Size?
a = b

YesNo

Yes

Calculate Cosinie Similarity 
Measure, Cos(Ra×a, Rb×b)

Return Similarity Score 
between Ra×a and Rb×b

Augment 
Matrix Ra×a

Augment 
Matrix Rb×b 

a < b

No

Figure 6: The Flow Chart of Calculating 
Similarity 

Example: From figure 1, we consider the first example 
BOM of product model “office chair A” to explain the 
EAAM construction. Consider a BOM database that only 
consists of two BOM trees given in figure 1, and the 
minimum support is two. It means that if a subtree 
appears twice or more in the database, it will be 
considered as a frequent sub-tree. Based on this, A-Q, A-
R, A-Z, T-Z and S-R are found infrequent relationships 
and considered as optional. The order of the nodes for 
constructing EAAM is derived using optimal traversal. 
Consider the cell between nodes A and Q. For this BOM 
tree, A is the parent of part Q, therefore the level 
information is added as 3/4, where the level of A is 4 and 
the level of Q is 3. For the child part Q, the quantity 
representation value is 2, which is added after the fraction 
of level into that cell. Finally, the frequent parent-part 
relation adds a value 1 to indicate the mandatory 
relationship. The overall calculated value for this cell is 
3/4+2+1. The rest of the cell values are calculated 
following the same way. 
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4.4 BOM Similarity Measure 
After constructing EAAMs, we use cosine similarity for 
matrix comparison for measuring the similarities between 
a BOM pair (Chowdhury & Nayak, 2013) as follows: 

cos(A, B) =  
∑ ∑ A𝑥𝑦

𝑛
𝑦=1

𝑛
𝑥=1 B𝑥𝑦

�∑ ∑ A𝑥𝑦
2𝑛

𝑦=1
𝑛
𝑥=1 �∑ ∑ B𝑥𝑦2𝑛

𝑦=1
𝑛
𝑥=1

Where, A and B are two (n×n) matrices. 

Figure 7: Framework for Product Family Design 

If sizes of the two BOM trees are not same, then 
additional columns and rows with zero elements are 
padded to the smaller matrix for making the size of both 
matrices equal, this is called the augmentation of matrix. 
These two square matrices can be considered as two 
|B|×|B| (where |B| = max {B1, B2}; B1, B1 are two BOM 
trees) dimensional vectors. The overall procedure for 
similarity measure is given in figure 6 using a flow chart, 
where matrix is represented as Ra×a, where a is the size of 
that matrix representing the number of the components or 
parts in a BOM tree. 

4.5 The Proposed Framework 
The proposed framework for grouping product families 
has three main phases as shown in figure 7. In the first 
phase data pre-processing is done. BOM has different 
storage under different enterprises; some of them store 
BOM data in database, some in files like XLS file. Some 
enterprises use part table/relationship table to express 
BOM, and some enterprises use a single table. All these 
variations need to save in memory as a BOM generating 
interphase, from this node the pre-processing will carry 
out in next.  

Next phase covers the EAAM construction where all 
necessary steps (dotted blue boxes) are implemented for 
populating the feature weights.  

(a) Data 1 

(b) Data 2 

(c) Data 3 

(d) Data 4 

Figure 8: Accuracy Performance over Data 1(a), 
Data 2(b), Data 3(c) and Data4(c) 

In the third and final phase, the pairwise similarity is 
calculated using the EAAM comparison and a similarity 
score is calculated between BOM pairs where a similarity 
score of 0 means completely dissimilar and a score of 1 
means exactly similar. Using this similarity values a 
similarity matrix is constructed which is then employed 
as an input to a clustering algorithm. Table 2 shows an 
example of the similarity matrix. We used a well-known 
clustering algorithm, Repeated Bisection Partitioning 
(Rasmussen & Karypis, 2004), for grouping the BOMs 
into families. This algorithm divides trees into two groups 
and then selects one of the larger groups according to a 
clustering criterion function and bisects further. This 
process is repeated until the desired number of clusters is 
achieved. During each step of bisection, the cluster is 
bisected so that the resulting 2-way clustering solution 
locally optimizes a particular criterion function. Other 
clustering algorithms can also be applied. Finally from 
the cluster result, the product families will be identified. 
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 

B1 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B2 0.40 1.00 0.43 0.47 0.40 0.49 0.37 0.40 0.40 0.42 0.32 0.43 0.32 0.54 0.39 

B3 0.43 0.43 1.00 0.65 0.43 0.53 0.43 0.43 0.43 0.45 0.39 0.44 0.39 0.52 0.33 

B4 0.57 0.47 0.65 1.00 0.57 0.70 0.60 0.57 0.57 0.71 0.50 0.35 0.50 0.63 0.34 

B5 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B6 0.50 0.49 0.53 0.70 0.50 1.00 0.62 0.50 0.50 0.71 0.65 0.34 0.65 0.71 0.35 

B7 0.61 0.37 0.43 0.60 0.61 0.62 1.00 0.61 0.61 0.58 0.56 0.33 0.56 0.58 0.41 

B8 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B9 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B10 0.64 0.42 0.45 0.71 0.64 0.71 0.58 0.64 0.64 1.00 0.56 0.31 0.56 0.72 0.39 

B11 0.41 0.32 0.39 0.50 0.41 0.65 0.56 0.41 0.41 0.56 1.00 0.25 1.00 0.47 0.31 

B12 0.30 0.43 0.44 0.35 0.30 0.34 0.33 0.30 0.30 0.31 0.25 1.00 0.25 0.42 0.31 

B13 0.41 0.32 0.39 0.50 0.41 0.65 0.56 0.41 0.41 0.56 1.00 0.25 1.00 0.47 0.31 

B14 0.58 0.54 0.52 0.63 0.58 0.71 0.58 0.58 0.58 0.72 0.47 0.42 0.47 1.00 0.31 

B15 0.44 0.39 0.33 0.34 0.44 0.35 0.41 0.44 0.44 0.39 0.31 0.31 0.31 0.31 1.00 

Table 2: BOM Similarity Matrix

5 Evaluation of the Proposed Framework 
We implemented the proposed framework on a real 
manufacturing data to evaluate the performance.  

This data is collected from a manufacturer of nurse 
calling devices (Romanowski & Nagi, 2004). It consists 
of 404 BOMs with four major product families. From this 
data set we randomly generated four samples, consisting 
100 BOMs each and named them as Data 1, Data 2, Data 
3 and Data 4. We used all these four datasets for 
empirical analysis.  

For benchmarking we consider a method that used the 
orthogonal Procrustes problem to find the orthogonal 
matrix for two given matrices that will closely map one 
matrix to another and used this as a geometrical 
similarities between BOMs and then clustered them into 
families (Shih, 2011). For the benchmark method we used 
the same clustering algorithm, but we used the orthogonal 
Procrustes based similarity measure as input and 
performed the product grouping. Finally we checked the 
clustering results with the known product family 
information and compared the performances. 

The main contribution of this paper is the similarity 
measure method of product BOMs. An efficient grouping 
of product families largely depends on an efficient 
similarity measure method. We evaluated our similarity 
measure approach using the well-known evaluation 
metrics including precision, recall and F1 score (Goutte 
& Gaussier, 2005) and performed on all four data 
samples. For these metrics, the value close to 1 is 
considered as an indication of better performance. From 
figure 8, we can see for all four data sets our proposed 
similarity measure method gives higher accuracy in 
comparison to the benchmark method. This good 
accuracy performance should also reflect during the 
clustering process, as we used this similarity method as 
an input for an off-the-self clustering algorithm for doing 
the product family grouping. Table 2 gives a partial view 
of the similarity matrix generated by our proposed BOM 
similarity measure method. For clustering we used this 
similarity matrix for identifying product families. 

Table 3 reports the clustering performance results, 
where we mainly included the number of mis-clustered 
product BOM for each data by the proposed method and 
the benchmarked method. The proposed framework 
outperforms the baseline method. 

Method Data 1 Data 2 Data 3 Data 4 

Proposed Framework 2 5 5 6 

Baseline Method 19 21 25 35 

Table 3: Number of Mis-Clustered BOMs for 
Different Data Sets 

6 Conclusion 
A product family is a group of related products based on 
a product platform, facilitating mass customization by 
cost-effectively providing a variety of products for 
different market segments. In this paper we present a data 
mining approach based framework for grouping various 
products into families. We introduced a similarity 
measure method for a common product data type, BOM 
that can be used to cluster products into families. The 
benchmarking results confirm the efficiency of the 
proposed work. 

In future work, we intend to expand the study on 
unifying the families into a single Generic Bill of 
Material (GBOM) (Hegge & Wortmann, 1991) group. 
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