
IEEE 802.11 Chipset Fingerprinting by the Measurement of Timing
Characteristics

Guenther Lackner1 Peter Teufl1

1 Institute of Applied Information Processing and Communications (IAIK)
University of Technology Graz

Inffeldgasse 16a, 8010 Graz, AUSTRIA
Email: guenther.lackner@iaik.tugraz.at, peter.teufl@iaik.tugraz.at

Abstract

In this paper we present a technique to create WLAN
device fingerprints by measuring timing properties
without the use of special-purpose hardware. Our
proposed process is absolutely passive and cannot be
detected by the targeted device. The timing mea-
surement is based on a delay caused by the hardware
implementation of the CRC checksum algorithm at
the network interface card (NIC) of the client. This
delay turned out to be significant for a large number
of different chipset implementations. The ability of
identifying connected devices could improve the secu-
rity of a wireless network significantly. It could help
to enhance access control mechanisms and would de-
liver valuable real time information about the con-
nected clients. As a proof of our concept we present
a prototype implementation called WiFinger to eval-
uate our approach.

Keywords: IEEE 802.11, MAC Address Spoof-
ing, passive Chip-set Fingerprinting, Significant His-
tograms

1 Introduction

During the last years wireless networking spread into
countless fields of application like mobile telephony,
wireless computer networks, mobile sensor networks,
and many more. This wireless revolution daily per-
vades new areas of our lives providing an increase
in the grade of mobility, usability and comfort. But
there seems to be a price to pay. Due to their open-
air propagation nature, wireless networks raise a new
variety of potential security and privacy risks for at-
tackers. During the development and definition of
related industrial standards there was obviously not
enough focus on security issues. Some of the most
popular and widest spread standards in wireless com-
puter communications like WEP (Wireless Equivalent
Privacy) are full of security breaches which open up
all gates to attackers (Fluhrer et al. 2001). Further
on, even state-of-the art standards like WPA2 (Wire-
less Protected Access based on AES) begin to crumble
(Airtight-Networks 2010).

The aim of our work is to bring more safety into
the wireless world by identifying network participants
via timing measurements. Our approach focuses on
the widely spread standards of the IEEE 802.11 fam-
ily. We do not intend to improve or alter encryp-
tion mechanisms. With our tool called WiFinger, one

Copyright c©2011, We want to thank the Austrian Science
Fund(FWF), who supported this work as part of the project
P21936. This paper appeared at the 9th Australasian Infor-
mation Security Conference (AISC 2011), Perth, Australia,
January 2011. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 116, Colin Boyd and Josef
Pieprzyk, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

could be able to detect, and in succession prevent
layer 2 MAC address spoofing attacks. If unautho-
rized participation of attackers in a wireless network
can be detected many possible attacks could be pre-
vented. Our work is based on a technique of passive
fingerprint creation by observing the timing behavior
of IEEE 802.11 compliant devices without the neces-
sity of special purpose hardware like frequency spec-
trum analyzers.
This paper is organized as follows. Section 2 intro-
duces related work. Section 3 describes our method of
creating fingerprints of IEEE 802.11 device chipsets.
Section 4 introduces the fundamentals of the classifi-
cation method developed us, based on Self Organizing
Maps. Section 5 illustrates the design and implemen-
tation details of the WiFinger software. The real-
world applicability and performance analysis is placed
in section 6. Section 7 provides a short outlook on fu-
ture extensions and improvements and concludes the
article.

2 Related Work

A straightforward approach for device identification
is to utilize the device addresses such as the MAC
(Media Access Control) address (layer 2) or the
assigned IP address (layer 3). This can easily
be achieved by analyzing relevant ARP (Address
Resolution Protocol) traffic (Plummer 1982). Unfor-
tunately, this approach has a major drawback. Most
devices allow to modify their assigned MAC address
with easy to use, free software tools. This problem
might be tackled by creating fingerprints of net-
work hardware. This would allow the identification
of any device by observing its external characteristics.

Remote Physical Device Fingerprinting:
One of the most significant papers in the field of de-
vice fingerprinting has been published by Tadayoshi
Kohno and his team at UC San Diego (Kohno et al.
2005). Kohno developed a method to identify remote
devices by exploiting small, microscopic deviations
in the hardware: clock skews. By analyzing the
deviation of TCP or ICMP timestamps over a certain
period of time it is feasible to distinct different
hardware clocks and thus different devices. The main
difference to our approach is, that Kohno et al. is not
applicable in an encrypted wireless environment as it
needs plaintext TCP or ICMP payloads for analysis.

Radio Frequency Fingerprinting: This
fingerprinting technique is based on the signal
characteristics of turn-on transients of wireless
transceivers. These transients are specific to each
different transceiver and thus are perfectly suited
as data source for fingerprint generation. Transient
capturing and analysis requires a special infrastruc-
ture for signal capturing which is expensive and has



to be operated by experts. Hall et al. evaluated the
performance of the fingerprinting method with 30
transceivers. For each transceiver 120 signals were
captured and used for the performance evaluation.
The results indicate that the method is capable of
achieving a very low false positive rate (0% during
the evaluation) and a high detection accuracy (95%
during the evaluation). The biggest disadvantage of
this method is the special hardware needed for signal
capturing which limits the broad deployment. (Hall
et al. 2006)

Passive Data Link Layer Fingerprinting:
Franklin et al. (McCoy et al. 2006) identified
an imprecision in the IEEE 802.11 Media Access
Control specifications that has been interpreted
differently by wireless NIC firmware developers. The
time between sending two so called beacon frames
used for network detection is not strictly defined.
This method is able to classify different firmware
versions instead of the underlying hardware. For
creating a meaningful fingerprint a large number of
probe-requests need to be captured. Due to the fact
that a NIC willing to join a network, usually just
needs a hand-full of these requests it could take a
rather long time to obtain a suitable amount of data.
Another significant drawback is that fingerprinting
may easily be avoided by using passive-scanning or
altering the device firmware. (McCoy et al. 2006)
Some improvements to this approach have been
developed by Loh et al. (Desmond et al. 2008).

Active Fingerprinting by Timing Analy-
sis: Bartolomiej Siekas work on device fingerprint-
ing (Sieka 2006) is probably the one closest related to
our approach. It uses the time that elapses between
the first acknowledgement is sent and the moment
the authentication response is sent. For classifica-
tion purpose, support vector machines are used. The
drawback of this approach is its limitation to the au-
thentication phase for measurements. As this phase
only occurs during the initialization of the connection,
Sieka actively needs to provoke the repetition of it by
sending specifically crafted 802.11 frames. This could
be detected by an intrusion detection system or the
device to fingerprint, allowing it to counteract. As
the next section describes, our approach is immune
against such countermeasures as it is absolutely pas-
sive.

3 Fingerprinting on Layer 2

Creating a fingerprint of a device is the process of
identifying it by the observation of its external char-
acteristics. We developed one possibility of creating
fingerprints of IEEE 802.11 devices by observing their
timing behavior. This section provides a compact
overview of the basic principles.
Our approach examines the timing behavior of IEEE
802.11 devices generating so called acknowledge pack-
ets (ACK). Due to the fact that IEEE 802.11 stan-
dards follow the principle of half-duplex communi-
cation, a collision avoidance technique is generally
needed to be deployed. If a participant A (client) has
sent a data frame to participant B (access point), A is
not able to observe if its message was transmitted cor-
rectly or collided with a data frame sent from another
participant at the same time. IEEE 802.11 standards
are based on the so called Carrier Sense Multiple Ac-
cess with Collision Avoidance (CSMA/CA) mecha-
nism (Brenner 1997). In this paper we just shortly
describe the IEEE 802.11 media access system. For
further details consult (IEE 1999) and (Kerry 2007).

To inform A that its data frame was transmitted

Client Access Point
Frame 1 Data request

Frame 2 ACK

Frame 3 Data response

AC
K

De
la

y

De
la

y

Frame 4 ACK

AC
K

De
la

y

Figure 1: ACK delay

correctly, B generates and transmits an ACK packet
after having correctly evaluated the CRC checksum
of A’s data frame. If the CRC check fails, no ACK
will be sent and A retransmits the data frame after a
certain time (IEE 1999).

FC

Du
ra
tio
n

Receiver
Address CR

C

2 2 6 4

Figure 2: ACK packet

The computing and evaluation of the CRC check-
sum plus the generation of the ACK packet takes a
certain amount of time. This amount depends on
the hardware implementation of the CRC algorithm,
the firmware and some other components of the used
wireless network device. We call this delay The Ac-
knowledge Delay. If one regards the distribution of
a certain number of ACK delay values the outcome
represents a significant property of the used wireless
device. This outcome is called Significant Histogram.

Figure 3: Significant Histograms of 400 ACK delays
each, over several time periods t

Based on these Significant Histograms it is possi-



ble to distinct between different IEEE 802.11 device
chipsets.
The classification results in lab environment were very
promising.

4 Classification

This section describes the classification algorithm
based on multiple Self Organizing Maps (SOM) ar-
ranged in a tree and implements an extension which
improves the quality of SOMs when used for super-
vised learning.

4.1 SOM based algorithm

Self Organizing Maps (SOM) belong to the broader
category of neural networks (Kohonen 2001). They
are mainly used for unsupervised learning and the vi-
sualization of high-dimensional data. In this paper we
employ SOMs for a supervised classifier. Although,
other supervised algorithms like neural networks or
support vector machines are better suited for classi-
fication tasks, we still focus on the SOM due to one
main reason: The visual representation of the data
in a 2D map allows us to quickly gain insight on the
analyzed data (an example is given in Figure 5).

By labeling the SOM units during the training pro-
cess according to the class labels of the data they rep-
resent, the SOM can also be employed for supervised
learning. However, due to the unsupervised nature
of the SOM, the class information is not taken into
account during the training process. Therefore, the
accuracy of the trained model might be inadequate for
the separation of data belonging to different classes.
This data is mapped by the same units and leads to
classification errors that decrease the accuracy of the
SOM. In order to cope with this issue, our classifier
utilizes multiple SOMs arranged in a tree.

Whenever the model of a trained SOM is not pre-
cise enough to separate data of different classes ac-
curately, we extract this data, train a new SOM on
this data and link the units of the old SOM cov-
ering this data to the new SOM. Therefore, we do
not need to deal with SOM model complexity manu-
ally. If the model of a trained SOM is not accurate
enough, the algorithm simply trains a new SOM that
is only trained on the data which requires more com-
plex modeling (indicated by a higher misclassification
rate).

The multiple SOMs are trained and arranged in a
tree according to this algorithm:

1. Train a SOM on the input data

2. Label the units according to the classes they rep-
resent

3. Calculate misclassification rates for all classes

4. Extract the data of classes that cannot be sep-
arated with an error rate lower than a given
threshold

5. Mark the units that cover the extracted data
to indicate that the actual classification will be
made in the next SOM.

6. Go to step one and train a SOM for new ex-
tracted data. Repeat these steps until the error
conditions are met or only two classes remain in
one SOM.

A simple example with five classes is shown in Figure
4. The first SOM is trained on the complete data set
and the misclassification rates are determined. The
example shows that classes A/B/C and D/E cannot

be separated accurately by the first SOM. Therefore,
two data sets for A/B/C and D/E are extracted. For
both data sets, new SOMs are trained and the units
corresponding to these classes in the first SOM are
linked to the newly trained SOMs. In case of A/B/C,
the second SOM is able to separate the class C from
A/B but the misclassifications rates for A/B are still
too high. Therefore, another SOM is trained that in-
creases the classification performance. The picture
indicates that the SOM for A/B still has some mis-
classification errors, which cannot be removed with-
out losing generalization (and thereby overfitting the
data).

The trained SOM hierarchy of SOM tree is used
for the classification of unknown data in this way:

• Present the data to the root SOM of the tree and
determine the best matching unit (BMU)

• If the unit is linked to another SOM further down
in the hierarchy, load this SOM and go to the
previous step. If the unit is not linked to another
SOM, return the class label of the unit.

This procedure is indicated in the example by the
two classification paths for data vectors from class B
end E.

The described strategy is employed for the classi-
fication of the WLAN chipsets. The same technique
was already successfully applied to other classification
problems, especially for network traffic classification
(Payer et al. 2005).
For SOM training, the SOM toolbox (Vesanto et al.
n.d.) which is available for Matlab R©(MATLAB -
The Language of Technical Computing: Mathworks,
http://www.mathworks.com n.d.) was used. The clas-
sification algorithm was also implemented in the tool
WiFinger.

Figure 5: SOM trained with data from three WLAN
chipsets. The map helps us to gain a quick insight
on the analyzed high dimensional data. In this case
we can see at a glance that the ”red” chipset can be
clearly separated from the other ones.



AB

D E

A

B

E

D

C

C

A

B

Classification of 
data belonging to

class B

Classification of 
data belonging to

class E

Figure 4: SOM Tree example: The classes A/B/C and D/E cannot be separated within the accepted error
threshold, therefore two new SOMs are trained for A/B/C data and D/E data. Another SOM is attached
due to a high number of misclassifications for A/B. The two arrows indicate the paths that are used for the
classification of unknown data.



4.2 Features

An initial evaluation of WLAN traffic showed us, that
the ACK delays of different packets vary from WLAN
chipset to chipset and therefore could be used to iden-
tify such chipsets. By analyzing the spectrum of the
ACK delays of the same chipset we can derive a his-
togram that represents the number of packets over the
various observed delay times. In addition we capture
the packet size in order to find out whether the ACK
delay also depends on the packet size. The packets of
a session – the time frame, where packets of a given
chipset are captured – are arranged in the histograms
in the following way:

1. Collect the ACK delays for each session of traffic
generated by different WLAN chipsets.

2. For each 50 packets, create a 3D histogram which
stores the frequency of the packets with a spe-
cific ACK delay and packet size. Each histogram
is converted into a feature vector used for SOM
training and classification.

3. Train a SOM tree with the histograms of the dif-
ferent WLAN chipsets.

4. The trained SOM tree is used for the classifica-
tion of new traffic.

The length of the feature vectors depend on the
number of analyzed ACK delay values (indicated as
n) and packet size values (indicated as m). By stor-
ing the number of packets for given delay values and
packet sizes we gain a 3D histogram that can be con-
verted into a feature vector with f = n×m entries. In
order to keep the feature vectors at a feasible length,
we need to map delay and packet size ranges into sin-
gle values. E.g. by considering ACK delay values
from 1 ms to 300 ms (n = 300) and packet size values
from 1 byte to 1600 bytes (m = 1600) we would get
feature vectors with f = 300 × 1600 = 480000 en-
tries, which is not feasible. However, this resolution
is not needed and on the contrary would decrease the
accuracy of the classifier. Therefore, we reduce the
number of features by mapping several ACK delay
values and packet size values into bins representing
value ranges. E.g. if we use a bin size of 10 ms for
the ACK delay (then n = 30) and a bin size of 40
bytes for the packet size (then m = 40) the feature
vector length is reduced to f = 30 × 40 = 1200.

In Figures 6 and 7 two histograms based on delay
information only (packet size is ignored) are shown.
We observe that there is a significant difference be-
tween the analyzed chipsets. The role of the packet
size combined with the delay values is visualized in
Figures 8 and 9. Here we observer that the ACK de-
lay values also depend on the packet size – at least
for certain chipsets. In Figure 8 the captured data of
the Agere chipset clearly shows that there is such a
dependence. In contrast this dependence cannot be
observed when analyzing the Edimax chipset (Figure
9).

By integrating both features into the classification
process we are able to increase the accuracy compared
to classifiers based on the delay information only. For
further details and evaluation results we refer to the
results section.

5 WiFinger

As proof of concept of our approach, a small linux
command line utility called WiFinger was developed
and implemented in C/C++. The implementation
was kept small in anticipation of possible use on hand-
held PCs as passive scanning devices. Additionally to

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time [ms]

re
la

tiv
e 

oc
cu

re
nc

e

Figure 6: Delay histogram without packet size for an
Orinoco chipset

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

time [ms]

re
la

tiv
e 

oc
cu

re
nc

e

Figure 7: Delay histogram without packet size for a
Broadcom chipset

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300
mean value and standard deviation of ACK delay over packet size

packet size (partitions)

AC
K 

de
la

y 
(m

s)

 

 
mean value
standard deviation

Figure 8: Agere (Chipset 2): Dependency between
packet size and ACK delay values



0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300
mean value and standard deviation of ACK delay over packet size

packet size (partitions)

AC
K 

de
la

y 
(m

s)

 

 
mean value
standard deviation

Figure 9: EdimaxTech (Chipset 6): Here, we cannot
observer a dependency between the packet size and
the ACK delay values

IDLE

CAPTURED DATA FRAME
●time:=current time

●mac:=this frame's MAC
●payload_size:=this frame's size

CAPTURED ACK OF DATA
●save current_time-time

●save mac
●save payload_size

else

contains DATA

contains ACK

contains DATA only

else

Capture Frame

Decision

Immediate

Figure 11: WiFinger Feature Measurement FSM

our code just a small number of libraries was used(
libpcap1, libSom(Payer et al. 2005) and ncurses).

Two possible modes are provided by the appli-
cation. Frames may either be captured live from
the wireless network or be loaded from a previous
capture-session file in libpcap format. Only the first
24 bytes of each IEEE 802.11 frame i.e. only the frame
header bytes are examined. The payload itself plays
no role in the classification task but the overall packet
size does because of its influence to the CRC process-
ing time. The architecture allows the collection and
analysis of data on distributed devices.

5.1 Data Processing

Figure 10 shows how data is processed by WiFinger.
After capturing and feature measurement the mea-
sured delay and associated host information is han-
dled in two steps. First, the collected data is saved
unfiltered onto the hard-disk and converted in a for-
mat that could be imported by Matlab R©. Second,
the data is filtered and added to the Significant His-
togram. Hosts are distinguished by their MAC ad-
dress. The accuracy of the Significant Histogram in-
creases with time. Per default, classification is run
every 1000 measurements.

5.2 Feature Measurement

Figure 11 illustrates the process of feature measure-
ment. Depending on the type of the captured frame,
one of three states is entered: IDLE, CAPTURED
DATA FRAME and CAPTURED ACK OF DATA.
Recognized types are data frames and frames contain-
ing an ACK. During contention free periods, DATA
frames can contain contention free acknowledgments,
hence referred to as CF-Ack. During these periods
DATA frames with embedded CF-Acks may appear
in direct succession of each other. Thus as a spe-
cial case, the states LAST FRAME WAS DATA and
DATA/ACK PAIR CAPTURED can be entered dur-
ing the same pass. MAC addresses are read from
the frame header’s address 1 field which always con-
tains the wireless destination station and the address
2 field which always contains the sending wireless sta-
tion (IEE 1999). Both fields are 6 bytes long and start
at byte 4 and 10 respectively.

The destination station’s MAC address, payload
size and the time of reception of the latest data
frame are saved in temporary variables. If the frame
acknowledges the immediately previously sent data
packet, the acknowledge delay is measured as time
between the reception of the last data frame and the
reception of the acknowledging frame (see Figure 1).
Note that interval is longer than the Shortest Inter-
Frame Space, since the delay of receiving the data
frame is added.

Measurements on broadcast addresses are dis-
carded. Since an ACK frame carries only a desti-
nation address (see figure 2), it is possible that on-air
data is missed and a later ACK frame is mistaken
for an expected acknowledgment. To minimize such
mistakes, the sending stations address of the previous
data frame is checked against the destination address
of the following ACK frame. This only works outside
of contention free periods since the destination ad-
dress of frames containing CF-Ack does not need to
match the address of the previously transmitting sta-
tion. The following frame types are relevant during
contention free periods (IEE 1999):

• CF-End + CF-Ack

• Data + CF-Ack

• Data + CF-Ack + CF-Poll

• NoData + CF-Ack

• NoData + CF-Ack + CF-Poll

5.3 Usage of Matlab R©for SOM training

Figure 10 depicts the interaction between WiFinger
and Matlab R©. For each host WiFinger writes a sim-
ple tab and newline delimited text file. Measurements
exported for use in MatLab R©are not preprocessed by
WiFinger. During the experimentation process this
provided more flexibility in finding the best parame-
ters for classification. Like in (Payer et al. 2005) the
used scripts produce a SOM-tree which is then auto-
matically loaded by WiFinger.

5.4 Usage of libSom for SOM classification

libSom (Payer et al. 2005) provides loading of SOM-
trees, datatypes for SOMs and vectors as well as clas-
sification functionality. Classification works as de-
scribed above in section 4. For each host a SOM-
Vector is used to save a histogram of ACK delays.
The file somconfig generated by the scripts was ex-
tended to save the parameters used in the training of
the SOM-tree. These are:

1http://www.tcpdump.org/



IEEE802.11
Packet Capturing Feature Measurement MatLab formated Data

Classification

MatLab

MatLab
Result

pre-generated
SOM-Tree

Figure 10: WiFinger Dataflow

• minimum

• maximum

• number of subdivisions

for each of the two features, acknowledge delay and
data frame size.

Captured values above the given limits (500ms)
are discarded. If the number of values between mini-
mum and maximum differ from the number of subdi-
vision, values are scaled to fit the chosen resolution.
After a variable number of measured ACK delays, a
copy of the SOM-Vector is normalized and the result-
ing Significant Histogram is classified. Optionally, a
number of measurements can be defined after which
the histogram is reset.

6 Results

For performance evaluation, the packet size and ACK
delay time was taken from real traffic data with
WiFinger. To facilitate this, an Aironet 350 access
point was set up with Internet access. Traffic was
measured using a 802.11b wireless NIC with Orinoco
chipset, capable of capturing all layer 2 data in rfmon
mode. In turn, six different wireless NICs with known
chipsets were used to generate the traffic. The access
point shows up in the classification results as chipset
3.

60% of this data was used for the SOM training
process. The remaining test data was used to create
simulated sessions with 500 respectively 1000 packets.
This session based classification should give a hint on
how much data from a chipset is needed to get an
accurate classification result. Table 1 gives details on
the evaluated chipsets and the training respectively
test sets.

training/test data test data
Chipset in packets sessions

500/1000 pkts
1: Atheros 35105/23404 47/24
2: Agere 53006/35337 71/36
3: Aironet 292858/195239 391/196
6: RaLink 19265/12843 26/13
7: BCM4306 149864/99910 200/100
8: Intel2100 41390/27594 56/28
9: PRISM 16076/10714 22/11

Table 1: training/test data sets

For performance evaluation several parameters
were evaluated:

• Number of used features: By using the
packet size information in addition to the ACK
delay time information, the feature space can
easily exceed reasonable boundaries. Thus, the
ACK delay and packet size information needs to
be grouped. This is done by specifying the num-
ber of delay partitions and the number of size
partitions. A short example explains this group-
ing: If the packet size from 1 byte to 1600 bytes
and the delay time from 70 ms to 500 ms are
taken into consideration, the size of the feature
space would be 1600 × 430 = 688000. By using
40 partitions for the delay time and 40 partitions
for the packet size, this size can be lowered to
40 × 40 = 1600 features. The grouping is done
by mapping 1 byte to 40 bytes to the first fea-
ture, 41 bytes to 80 bytes to the second feature
and so on. The same procedure is applied to the
ACK delay information.

• Time/packet size range: These parameters
set the range of ACK time delay and packet size
which is used for feature generation. For the eval-
uation of WiFinger we used a range of 70 ms to
500 ms for the delay information and 1 byte to
1600 bytes for the size information.

• Histogram size: This parameter is used to set
the number of packets which are used to create a
histogram. For our tests we evaluated a setting
of 50 packets per histogram.

• Session size: This parameter is used to create
sessions from the test data sets. The evaluation
of different sessions sizes gives information about
how many packets need to be analyzed before an
accurate classification can be made.

• Training factor: This factor is used to separate
the whole data set into training and test data.
We used a setting of 0.6 for all tests.

The classification results were obtained in this
way:

• Data was collected with WiFinger for seven dif-
ferent chipsets.

• The parameters described above were tuned to
evaluate the impact of delay and packet size fea-
tures.

• The overall classification results were obtained
by getting the number of correctly classified
time/size histograms for the whole test dataset.



• The dataset was split into sessions with 500 and
1000 packets. This should give an indication on
how many packets are needed in order to get an
accurate classification result.

• The combination of delay and packet size fea-
tures which gave the best overall results was eval-
uated with sessions 500 and 1000 packets.

The first row of Table 2 shows the results when
using delay information only. Tests from row 2 - 5
evaluate the performance of different feature sets and
indicate that adding packet size information can sig-
nificantly increase the classification performance. In
case of 40 time slots and 40 packet size slots 80% of
all histograms were classified correctly, which is an in-
crease in classification accuracy of 64% over the first
version, which only classifies 51,4% of all histograms
correctly. These parameters result in a feature vec-
tor with 1600 entries, which is quite large. However,
row 2 shows, that the classification performance only
drops slightly when using just 10 features for packet
size. The feature vector size is also reduced to 25%
(400 instead of 1600), which is even lower than the
feature vector size used in row 1, where only delay
information is taken into consideration.

It is necessary to be careful with the number of
features used for the packet size. As real data is
used for SOM training, it is not guaranteed that this
data has an equal distribution of packet sizes over
all chipsets. Thus, by using a too fine resolution for
the packet size (meaning a large feature space), the
algorithm learns to classify the chipsets according to
the packet size.
The parameters which gave the best classification
accuracy (row 5) were used to rerun the experiment
with 500/1000 packets per session. These sessions
were created by using data from the test sets. The
results of this evaluation can be seen in Table 3 and
4.
The following conclusions can be drawn from the
results:

• There is only a very small performance increase
if 1000 packets instead of 500 are used per ses-
sion. The session size needed for an accurate
classification result depends on the type of an-
alyzed data. Generally, increasing the session
size increases classification accuracy as noise is
reduced.

• Most of the classification errors are made, when
chipsets are classified as chipset 7 (PRISM 3).
It seems that this chipset is quite similar to the
other ones tested. Furthermore, the training set
for chipset 7 was rather small. As the classifica-
tion is based on the hits on the SOM, noise plays
a larger role when smaller training sets are used.

1 2 3 4 5 6 7
1 89,4 0 2,1 8,5 0,0 0,0 0,0
2 9,9 16,9 0,0 1,4 5,6 28,2 38,0
3 0,0 0,0 93.6 0,0 6,4 0,0 0,0
4 0,0 0,0 0,0 34,6 0,0 0,0 65,4
5 0,0 0,0 0,0 0,0 100,0 0,0 0,0
6 0,0 3,6 0,0 0,0 0,0 82,1 14,3
7 0,0 0,0 0,0 0,0 0,0 0 100,0

Table 3: Confusion matrix for 500 packet sessions.
E.g. 89,4 % of chipset 1 (in row 1) sessions are clas-
sified correctly as chipset 1, 0 % as chipset 2, 2.1 %
as chipset 3, etc.

1 2 3 4 5 6 7
1 95,8 0 4,1 0,0 0,0 0,0 0,0
2 11,1 13,9 0,0 0,0 5,6 22,2 47,2
3 0,0 0,0 93.4 0,0 6,6 0,0 0,0
4 0,0 0,0 0,0 30,8 0,0 0,0 69,2
5 0,0 0,0 0,0 0,0 100,0 0,0 0,0
6 0,0 0,0 0,0 0,0 0,0 85,7 14,3
7 0,0 0,0 0,0 0,0 0,0 0 100,0

Table 4: Confusion matrix for 1000 packet sessions.
E.g. 95.8 % of chipset 1 (in row 1) sessions are clas-
sified correctly as chipset 1, 0 % as chipset 2, 4.1 %
as chipset 3, etc.

7 Conclusion and Future Work

This article describes the possibility of chipset finger-
printing based on timing characteristics in wireless
networks in IEEE 802.11 standards compliance. The
presented approach is absolutely passive and thus not
detectable by the fingerprintee or any other party. All
measurements are carried out by off-the-shelve low-
cost hardware. The approach is resistant against any
kind of standardized cryptographic routines like WEP
and WPA due to the fact that management frames
are not encrypted by these standards. As a proof
of concept we implemented a tool called WiFinger
to validate our approach in real world scenarios and
obtained promising results in identifying single de-
vices and chipsets. This paper further on describes
the basics and application of the applied classifica-
tion method based on Self Organizing Maps (SOM).

Some improvements are still possible. Beside the
optimization of the feature selection for the ACK de-
lay classification, we intend to add an implementa-
tion of the fingerprinting approach proposed by Jason
Franklin et al. (McCoy et al. 2006) (see section 2 for
further details) to our software. We plan to integrate
the SOM training algorithm into the WiFinger tool
which would eliminate the time consuming process
of exporting/importing the data from/into Matlab R©.
This integration allows for a better evaluation by us-
ing larger training/test sets with a larger number of
different chipsets and will help to explain why several
of the chipsets cannot be classified with high accu-
racy. The next step will then be to use openWRT
based IEEE 802.11 compatible access points for data
collection and a centralized analysis and classification
server for network wide WLAN MAC spoofing detec-
tion. This approach would allow the usage of existing
WLAN infrastructure to apply our method.

We further on need to validate if it is possible to
classify different devices with the same chipset. Hard-
ware properties like clock skews could render a timing
offset that affects the Significant Histograms and al-



feature range time size vector results
slots slots size

70-500 ms (time only) 430 1 430 51,4%
70-500 ms, 1-1600 bytes 40 10 400 74,4%

70-500 ms, 1-1600 bytes 10 40 400 69,8%
70-500 ms, 1-1600 bytes 20 20 400 68,7%

70-500 ms, 1-1600 bytes 40 40 1600 80,0%

Table 2: Comparing the impact of different features. The results show that the delay information is more
important than the packet size. However, adding packet size information increases the classification accuracy.

low their classification.

References

Airtight-Networks (2010), ‘Wpa2 hole196 vulnerabil-
ity’, Blackhat DEFCON 18 .
URL: http://www.airtightnetworks.com/WPA2-
Hole196

Brenner, P. (1997), A technical tutorial on the
ieee 802.11 protocol, Technical report, BreezeCOM
Wireless Communications.

Desmond, L. C. C., Yuan, C. C., Pheng, T. C. & Lee,
R. S. (2008), Identifying unique devices through
wireless fingerprinting, in ‘WiSec ’08: Proceedings
of the first ACM conference on Wireless network
security’, ACM, New York, NY, USA, pp. 46–55.

Fluhrer, S., Mantin, I. & Shamir, A. (2001), Weak-
nesses in the key scheduling algorithm of rc4, in
‘RC4, Proceedings of the 4th Annual Workshop on
Selected Areas of Cryptography’, pp. 1–24.

Hall, J., Barbeau, M. & Kranakis, E. (2006), Radio
frequency fingerprinting for intrusion detection in
wireless networks, in ‘IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING’.

IEE (1999), IEEE 802.11, 1999 Edition (ISO/IEC
8802-11: 1999) IEEE Standards for Information
Technology Telecommunications and Information
Exchange between Systems Local and Metropoli-
tan Area Network Specific Requirements Part 11:
Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications.

Kerry, S. J. (2007), IEEE Std 802.11-2007 Edition,
Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,
IEEE 802.11 Working Group, Secretary, IEEE-SA
Standards Board 445 Hoes Lane Piscataway, NJ
08854 USA.

Kohno, T., Broido, A. & Claffy, K. C. (2005), ‘Re-
mote physical device fingerprinting’, pp. 211–225.

Kohonen, T. (2001), Self-organizing maps, in ‘vol-
ume 30 of Springer Series in Information Sciences’,
Springer-Verlag, Berlin.

MATLAB - The Language of Technical Computing:
Mathworks, http://www.mathworks.com (n.d.).

McCoy, D., Randwyk, J. V., Tabriz, P., Sicker, D.,
Neagoe, V. & Franklin, J. (2006), Passive data link
layer 802.11 wireless device driver fingerprinting,
in ‘Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15’.

Payer, U., Lamberger, M. & Teufl, P. (2005), Traffic
classification using self-organizing maps,, in ‘INC
2005 5. International Networking Conference Work-
shops, Samos Island, Greece’.

Plummer, D. C. (1982), ‘Rfc 862 - an ethernet address
resolution protocol or converting network protocol
addresses to 48.bit ethernet address for transmis-
sion on ethernet hardware’.
URL: http://tools.ietf.org/html/rfc826

Sieka, B. (2006), Active fingerprinting of 802.11 de-
vices by timing analysis, in ‘Consumer Communi-
cations and Networking Conference, 2006. CCNC
2006. 3rd IEEE’, Vol. 1, pp. 15 – 19.

Vesanto, Himberg, Alhoniemi & Parhankangas (n.d.),
Som toolbox for matlab, technical report a57, Tech-
nical report, Helsinki University of Technology.


