
Image Mosaics Base on Homogeneous Coordinates

 Xi Shao, Changsheng Xu, Joo Hwee Lim
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613

{shaoxi, xucs, joohwee}@i2r.a-star.edu.sg

Abstract
The need to combine pictures into panoramic mosaics has existed
since the beginning of photography, as the camera's field of view
is always smaller than the human field of view. Photo mosaicing,
a technique to paste together several pictures to create a
panoramic mosaic, gives us a more complete view of the scene.
In this paper, an image mosaic approach is proposed.
Homogeneous coordinates are used to represent points. The
overlapped points for each RGB channel are interpolated to
generate mosaics after projecting the points from different
images to the reference image. Experiments illustrate that the
proposed approach can obtain an ideal mosaic result..

Keywords: Image mosaics, homogeneous coordinates,
panoramic, projection.

1 Introduction
Computer graphics is an emerging technique and can be
applied to various fields. Among these fields, the special
effects industry is one of the important applications. A
technique like image mosaics would evoke uses such as
better texture maps (i.e. higher resolution texture maps by
stitching together several images) and image
backgrounds. The image backgrounds can be used for
environments maps or some blue/green screen techniques.

A number of methods have been proposed to build the
image mosaicing system. Szeliski [1] proposed the
Levenburg-Marquadt nonlinear minimization algorithm to
refine the estimate to achieve the best transformation.
Peleg [2] used manifold projection method to create the
panoramic mosaics under very general conditions. Both of
the methods achieve good mosaic results, but the
computation is complex.

In this paper, the image mosaicing system utilizes a
combination of manual user input for registration between
two images and a homography method to attempt to get
the relationship among several images. In this particular
implementation, there is an underlying assumption that the
pair images are related through some sort of planar
transformation (i.e. one that is either projective or at least
affine). The relationship between two images can be
obtained through a homography, H. More specifically, if x
is the homogeneous coordinates of a point in the source

Copyright © 2003, Australian Computer Society, Inc. This paper
appeared at the Pan-Sydney Area Workshop on Visual
Information Processing (VIP2002), Sydney, Australia.
Conferences in Research and Practice in Information Technology,
Vol. 22. J. S. Jin, P. Eades, D. D. Feng, H. Yan, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

image, and u is the homogeneous coordinates of the
corresponding point in the destination image, then u = Hx.
The steps to build an image mosaicing system can be
described as follows:

(1). Establish point correspondences.

(2). Estimate the forward homographies between pairs of
images.

(3). Compute the bounding box of the output image.

(4). Compute the backward homographies.

(5). Produce the output image.

The rest of this paper is organized as follows. Section 2
introduces the mosaic algorithm. The steps to implement
an image mosaicing system are described in section 3.
Experimental results are illustrated in section 4. Finally,
conclusions and future work are given in section 5.

2 Algorithm

2.1 Homogeneous Coordinates Represent
Points

Before proceeding, we need to consider the geometric
transformations that relate the images to the mosaic. To do
this, homogeneous coordinates is used to represent points,
that is, 2D points in the image plane can be represented as
(x, y, w). The corresponding Cartesian coordinates are (x/w,
y/w).

In homogeneous coordinates, all geometric
transformations can be written as Matrix Multiplication:

u=H x (1)

 !=

1'
'
'

y
x

H
w
v
u

 (2)

where

u=u’/w’,v=v’/w’,w’ 0 (3)

Composition can be done by applying transformation (1)
and transformation (4) to x.

u=H2H1 x (4)

The simplest transformations in this general class are pure
translations, followed by translations and rotations (rigid
transformations), plus scaling (similarity transformations),
affine transformations, and full projective transformations.
Figure 1 shows a square and possible rigid, affine, and
projective deformations. Forms for the rigid and affine
transformation matrix H are with three and six degrees of
freedom, respectively, while projective transformations
have a general H matrix with eight degrees of freedom.

Hrigid-2D=

"

100
cossin
sincos

y

x

t
t

##

##

 (5)

Haffine-2D=

100
fed
cba

 (6)

Figure 1. Square and rigid, affine, and projective
transformations.

2.2 Image Blending Calculations:
Since the two images that are used will probably not have
perfectly matching pixels at all regions where they overlap,
the image blending calculations are designed to average
and more properly meld the two images together. In
addition, this calculation is aimed at eliminating the
boundary line from one image to another. Without loss of
generality, let the four pixels immediately surrounding
(u,v) have coordinates (0,0); (0,1); (1,0); (1,1). And let (u,v)
have values between 0 and 1. Thus (u,v) falls within the
square whose corners are the coordinates given above. Let
the colors at these corners be c00, c01, c10, and c11
respectively. We have

cuv = (1-u)(1-v) c00 + u(1-v) c01 + (1-u)v c01+ uv c11 (7)

When working with RGB colours, we need to simply
interpolate for each channel (i.e. do it for R, G, B,
separately). The above formula can be optimized in terms
of following calculations, which uses three multiplies
instead of eight:

cu0 = c00 + u(c10- c00) (8)

cu1 = c01 + u(c11 - c01) (9)

cuv = cu0 + v(cu1-cu0) (10)

3 Mosaic System Implementation

3.1 Establish Point Correspondences

mosaic1.jpg

mosaic2.jpg

mosaic3.jpg

mosaic4.jpg

Figure 2. Four input images

There are four input images: mosaic1.jpg, mosaic2.jpg,
mosaic3.jpg, and mosaic4.jpg, shown in Figure 2.

The first step is to establish point correspondences
between the images. Because the input images only
partially overlap, the correspondences are obtained only
between the first and second, between the second and third,
and between the third and fourth images. Using Matlab,
manually mark and record at least four corresponding
points between each pair of images. For the best results,
the points should not all lie on a straight line, but should be
spread out in the image. Use the zoom feature in Matlab to
mark the points more accurately. It is usually easier to
mark prominent features in the image, e.g. corners of
buildings.

3.2 Estimate Forward Homographies
For each pair of images, the forward homographies are
estimated. For instance, for the first pair of images,
estimate H12, the homography that will map the points in
mosaic1.jpg to their corresponding points in mosaic2.jpg.

Do this as follows: let the points in the first image be (x1,
y1), … , (x4, y4), and their corresponding ones in the second
image be (u1, v1), … , (u4, v4). Then for each corresponding
pair of points, we can obtain:

1
1

1

v
u

=

1
1

1

y
x

ihg
fed
cba

 (11)

Although there are nine unknowns a,…,I in the
homography matrix, only eight of them need to be
calculated because we are working in homogeneous
coordinates. It is customary to let i = 1,and then seek to
determine the other unknowns. Rewriting all the equations
in terms of the unknowns a,…,h, we get an 8x8 system:

=•

""

""

""

""

""

""

""

""

4

3

2

1

4

3

2

1

444444

333333

222222

111111

444444

333333

222222

111111

1000
1000
1000
1000
0001
0001
0001
0001

v
v
v
v
u
u
u
u

h
g
f
e
d
c
b
a

yvxvyx
yvxvyx
yvxvyx
yvxvyx
yuxuyx
yuxuyx
yuxuyx
yuxuyx

 (12)

Note the structure of matrix A, we can extend this matrix to
handle n > 4 corresponding points. The vector p, and hence
the homography H12, are solved using the pseudo inverse:

p = A+ b (13)

where

A+ =(AT A)-1 AT (14)

3.3 Compute Bounding Box
To figure out the size of the output image we need to
compute the maximum extent of each image after it is
warped. But we need to specify a reference image at first.
This is the image to whose viewpoint all other images will
be warped. Here, we will designate the third image
(mosaic3.jpg) as the reference image. The other three
images will be warped and blended with the reference
image to produce the final mosaic. Because homographies
transform rectangles into quadrilaterals, all we need to do
is to keep track of the four corners of each image to be
warped. After warping, we find the minimum and
maximum corner coordinates from all the 16 corners, and
these will determine the bounding box (the smallest
rectangle that contains the mosaic).

Since our reference image is the third one, we need the
homographies: H13, H23, H33 and H43. We already have
H23 from the previous step. Compute H13 as the product
H13 = H23H12. This product warps a point from image 1
to image 2, and then from 2 to 3. H33 is simply the 3x3
identity matrix, and H43 is the inverse of H34. With these
homographies, the four corners of each input image are
warped into the reference image. The corners have
coordinates: (1,1), (w,1), (1,h), and (w,h), where w is the
width of each image, and h is its height. Then, find the
minimum and maximum coordinates of the warped
corners. These will become the upper left corner and lower
right corner of the bounding box, respectively. Let (xmin ,
ymin); (xmax , ymax) be these coordinates. Then the width
and height of the bounding box are:

bw = xmax –xmin (15)

bh = ymax -ymin. (16)

3.4 Compute Backward Homographies
Now we need to get the backward homographies H’31,
H’32, H’33 and H’34. However, these are not just the
inverse of the forward homographies, because we are
shifting the origin. With respect to the reference image, the
upper left corner of the bounding box is at (xmin, ymin).
We have to make this the new origin, for convenience
when producing the output image. Thus we introduce a
shift (translation) in the homographies. This is achieved as
follows:

H’31 = 1
13
"H T (17)

where the translation matrix is given by:

T =

100
10
01

min

min

y
x

 (18)

The other backward homographies H’32, H’33, and H’34
are similarly computed.

3.5 Produce the Mosaic
We can now produce the final mosaic using the destination
scan method:

(1). for x = 1 to bw

(2). for y = 1 to bh

(3). Find (u,v), the point in image 1 where (x,y) warps to.
Use the backward homography H’31.

(4). Compute c, the color at (u,v) in image 1. Use bilinear
interpolation to do this. If (u,v) falls outside image 1,
no color is assigned to c.

(5). Repeat steps (3) and (4) for images 2, 3 and 4. Blend
all the colors, so the blended color is computed by
averaging them. Let c blend be the blended color.

(6). Set the color in the output image at (x,y) to be c blend.

4 Experimental Results
The experimental result of mosaic from input images in
Figure 2 is illustrated in Figure 3.

Figure 3. Mosaic image

It can be seen that the mosaic image is able to get a better
panoramic view than individual images that are used to generate
the mosaic image.

5 Conclusions and Future Work
In this paper, we use homogeneous coordinates to
represent points. After projecting the points from different
images to the reference image, we simply interpolate
overlapped points for each RGB channel and get the
Mosaics.

Still imagery can be used in a variety of ways, including
the manipulation and compositing of photographs inside
video paint systems, and the texture mapping of still
photographs onto 3D graphical models to achieve
photorealism. Although laborious, it is also possible to
merge 3D computer graphics seamlessly with video
imagery to produce dramatic special effects. As
computer-based video becomes ubiquitous with the
expansion of transmission, storage, and manipulation
capabilities, it will offer a rich source of imagery for
computer graphics applications. One novel use of image
mosaics, or at least a related variant of it, would involve

not only stitching images over space in a continuous
fashion, but also over time.

6 References
[1] R. Szeliski. Video mosaics for virtual nvironments.

IEEE Computer Graphics and Applications, pages
22-30, March 1996.

[2] S. Peleg and J. Herman. Panoramic mosaics by
manifold projection. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 338-343, San
Juan, Puerto Rico, June 1997.

