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Abstract 
The need to combine pictures into panoramic mosaics has existed 
since the beginning of photography, as the camera's field of view 
is always smaller than the human field of view. Photo mosaicing, 
a technique to paste together several pictures to create a 
panoramic mosaic, gives us a more complete view of the scene. 
In this paper, an image mosaic approach is proposed. 
Homogeneous coordinates are used to represent points. The 
overlapped points for each RGB channel are interpolated to 
generate mosaics after projecting the points from different 
images to the reference image. Experiments illustrate that the 
proposed approach can obtain an ideal mosaic result.. 

Keywords:  Image mosaics, homogeneous coordinates, 
panoramic, projection. 

1 Introduction 
Computer graphics is an emerging technique and can be 
applied to various fields. Among these fields, the special 
effects industry is one of the important applications.  A 
technique like image mosaics would evoke uses such as 
better texture maps (i.e. higher resolution texture maps by 
stitching together several images) and image 
backgrounds.  The image backgrounds can be used for 
environments maps or some blue/green screen techniques.  

A number of methods have been proposed to build the 
image mosaicing system. Szeliski [1] proposed the 
Levenburg-Marquadt nonlinear minimization algorithm to 
refine the estimate to achieve the best transformation. 
Peleg [2] used manifold projection method to create the 
panoramic mosaics under very general conditions. Both of 
the methods achieve good mosaic results, but the 
computation is complex. 

In this paper, the image mosaicing system utilizes a 
combination of manual user input for registration between 
two images and a homography method to attempt to get 
the relationship among several images.  In this particular 
implementation, there is an underlying assumption that the 
pair images are related through some sort of planar 
transformation (i.e. one that is either projective or at least 
affine). The relationship between two images can be 
obtained through a homography, H. More specifically, if x 
is the homogeneous coordinates of a point in the source 
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image, and u is the homogeneous coordinates of the 
corresponding point in the destination image, then u = Hx. 
The steps to build an image mosaicing system can be 
described as follows: 

 

(1). Establish point correspondences. 

(2). Estimate the forward homographies between pairs of 
images. 

(3). Compute the bounding box of the output image. 

(4). Compute the backward homographies. 

(5). Produce the output image. 

 

The rest of this paper is organized as follows. Section 2 
introduces the mosaic algorithm. The steps to implement 
an image mosaicing system are described in section 3. 
Experimental results are illustrated in section 4. Finally, 
conclusions and future work are given in section 5. 

2 Algorithm 

2.1 Homogeneous Coordinates Represent 
Points 

Before proceeding, we need to consider the geometric 
transformations that relate the images to the mosaic. To do 
this, homogeneous coordinates is used to represent points, 
that is, 2D points in the image plane can be represented as 
(x, y, w). The corresponding Cartesian coordinates are (x/w, 
y/w). 

In homogeneous coordinates, all geometric 
transformations can be written as Matrix Multiplication: 

u=H x                                     (1) 
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where 

u=u’/w’,v=v’/w’,w’ 0                        (3) 

Composition can be done by applying transformation (1) 
and transformation (4) to x. 

 

u=H2H1 x                                  (4) 



The simplest transformations in this general class are pure 
translations, followed by translations and rotations (rigid 
transformations), plus scaling (similarity transformations), 
affine transformations, and full projective transformations. 
Figure 1 shows a square and possible rigid, affine, and 
projective deformations. Forms for the rigid and affine 
transformation matrix H are with three and six degrees of 
freedom, respectively, while projective transformations 
have a general H matrix with eight degrees of freedom. 
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Figure 1. Square and rigid, affine, and projective 
transformations. 

2.2  Image Blending Calculations: 
Since the two images that are used will probably not have 
perfectly matching pixels at all regions where they overlap, 
the image blending calculations are designed to average 
and more properly meld the two images together.  In 
addition, this calculation is aimed at eliminating the 
boundary line from one image to another. Without loss of 
generality, let the four pixels immediately surrounding 
(u,v) have coordinates (0,0); (0,1); (1,0); (1,1). And let (u,v) 
have values between 0 and 1. Thus (u,v) falls within the 
square whose corners are the coordinates given above. Let 
the colors at these corners be c00, c01, c10, and c11 
respectively. We have 

 

cuv = (1-u)(1-v) c00 + u(1-v) c01 + (1-u)v c01+ uv c11   (7) 

 

When working with RGB colours, we need to simply 
interpolate for each channel (i.e. do it for R, G, B, 
separately). The above formula can be optimized in terms 
of following calculations, which uses three multiplies 
instead of eight: 

cu0 = c00 + u(c10- c00)                          (8) 

cu1 = c01 + u(c11 - c01)                         (9) 

cuv = cu0 + v(cu1-cu0)                         (10) 

3 Mosaic System Implementation 

3.1 Establish Point Correspondences 
 

 
mosaic1.jpg 

 
mosaic2.jpg 

 
mosaic3.jpg 

 
mosaic4.jpg 

Figure 2. Four input images 



There are four input images: mosaic1.jpg, mosaic2.jpg, 
mosaic3.jpg, and mosaic4.jpg, shown in Figure 2. 

The first step is to establish point correspondences 
between the images. Because the input images only 
partially overlap, the correspondences are obtained only 
between the first and second, between the second and third, 
and between the third and fourth images. Using Matlab, 
manually mark and record at least four corresponding 
points between each pair of images. For the best results, 
the points should not all lie on a straight line, but should be 
spread out in the image. Use the zoom feature in Matlab to 
mark the points more accurately. It is usually easier to 
mark prominent features in the image, e.g. corners of 
buildings. 

3.2 Estimate Forward Homographies 
For each pair of images, the forward homographies are 
estimated. For instance, for the first pair of images, 
estimate H12, the homography that will map the points in 
mosaic1.jpg to their corresponding points in mosaic2.jpg.  

Do this as follows: let the points in the first image be (x1, 
y1), … , (x4, y4), and their corresponding ones in the second 
image be (u1, v1), … , (u4, v4). Then for each corresponding 
pair of points, we can obtain: 
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Although there are nine unknowns a,…,I in the 
homography matrix, only eight of them need to be 
calculated because we are working in homogeneous 
coordinates. It is customary to let i = 1,and then seek to 
determine the other unknowns. Rewriting all the equations 
in terms of the unknowns a,…,h, we get an 8x8 system: 
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Note the structure of matrix A, we can extend this matrix to 
handle n > 4 corresponding points. The vector p, and hence 
the homography H12, are solved using the pseudo inverse:  

 

p = A+ b                                   (13) 

where 

A+ =( AT A)-1 AT                            (14) 

3.3 Compute Bounding Box 
To figure out the size of the output image we need to 
compute the maximum extent of each image after it is 
warped. But we need to specify a reference image at first. 
This is the image to whose viewpoint all other images will 
be warped. Here, we will designate the third image 
(mosaic3.jpg) as the reference image. The other three 
images will be warped and blended with the reference 
image to produce the final mosaic. Because homographies 
transform rectangles into quadrilaterals, all we need to do 
is to keep track of the four corners of each image to be 
warped. After warping, we find the minimum and 
maximum corner coordinates from all the 16 corners, and 
these will determine the bounding box (the smallest 
rectangle that contains the mosaic). 

Since our reference image is the third one, we need the 
homographies: H13, H23, H33 and H43. We already have 
H23 from the previous step. Compute H13 as the product 
H13 = H23H12. This product warps a point from image 1 
to image 2, and then from 2 to 3. H33 is simply the 3x3 
identity matrix, and H43 is the inverse of H34. With these 
homographies, the four corners of each input image are 
warped into the reference image. The corners have 
coordinates: (1,1), (w,1), (1,h), and (w,h), where w is the 
width of each image, and h is its height. Then, find the 
minimum and maximum coordinates of the warped 
corners. These will become the upper left corner and lower 
right corner of the bounding box, respectively. Let (xmin , 
ymin); (xmax , ymax) be these coordinates. Then the width 
and height of the bounding box are: 

 

bw = xmax –xmin                           (15) 

bh = ymax -ymin.                           (16) 

3.4 Compute Backward Homographies 
Now we need to get the backward homographies H’31, 
H’32, H’33 and H’34. However, these are not just the 
inverse of the forward homographies, because we are 
shifting the origin. With respect to the reference image, the 
upper left corner of the bounding box is at (xmin, ymin). 
We have to make this the new origin, for convenience 
when producing the output image. Thus we introduce a 
shift (translation) in the homographies. This is achieved as 
follows: 

H’31 = 1
13
"H T                              (17) 

where the translation matrix is given by:  
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The other backward homographies H’32, H’33, and H’34 
are similarly computed. 



3.5 Produce the Mosaic 
We can now produce the final mosaic using the destination 
scan method: 

 

(1). for x = 1 to bw 

(2).  for y = 1 to bh 

(3).  Find (u,v), the point in image 1 where (x,y) warps  to. 
Use the backward homography H’31. 

(4).  Compute c, the color at (u,v) in image 1. Use bilinear 
interpolation to do this. If (u,v) falls outside image 1, 
no color is assigned to c. 

(5).  Repeat steps (3) and (4) for images 2, 3 and 4. Blend 
all the colors, so the blended color is computed by 
averaging them. Let c blend be the blended color.  

(6).  Set the color in the output image at (x,y) to be c blend. 

 

4 Experimental Results 
The experimental result of mosaic from input images in 
Figure 2 is illustrated in Figure 3. 

 

 
Figure 3. Mosaic image 

 

It can be seen that the mosaic image is able to get a better 
panoramic view than individual images that are used to generate 
the mosaic image. 

5 Conclusions and Future Work 
In this paper, we use homogeneous coordinates to 
represent points. After projecting the points from different 
images to the reference image, we simply interpolate 
overlapped points for each RGB channel and get the 
Mosaics.   

Still imagery can be used in a variety of ways, including 
the manipulation and compositing of photographs inside 
video paint systems, and the texture mapping of still 
photographs onto 3D graphical models to achieve 
photorealism. Although laborious, it is also possible to 
merge 3D computer graphics seamlessly with video 
imagery to produce dramatic special effects. As 
computer-based video becomes ubiquitous with the 
expansion of transmission, storage, and manipulation 
capabilities, it will offer a rich source of imagery for 
computer graphics applications. One novel use of image 
mosaics, or at least a related variant of it, would involve 

not only stitching images over space in a continuous 
fashion, but also over time. 
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