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Abstract 
This paper first investigates what the best multicore 
configuration will be in the future, when the number of 
usable transistors further increases. Comparing five 
multicore models: single-core, many-core, heterogeneous 
multicore, scalable homogeneous multicore, and 
dynamically configurable multicore, surprisingly unveils 
that single-core performance is a key to improve multicore 
performance. Based on the findings, this paper secondly 
proposes a technique to improve single-core performance. 
It is based on Intel’s Turbo Boost technology. From the 
detailed simulations, it is found that the technique achieves 
single-core performance improvement. . 

Keywords:  Multicore, Amdahl’s law, Pollack’s rule, 
Turbo Boost technology. 

1 Introduction 
Multicore processors have already been popular to 
improve the total performance (Howard, et al. 2010). 
Considering the power and temperature constraints, they 
might be the sole practical solution. A lot of studies to 
determine the best multicore configuration is conducted 
(Annavaram, et al. 2005, Balakrishnan, et al. 2005, Ekman 
and Stenstrom 2003, Hill and Marty 2008, Kumar, et al. 
2005 and Morad, et al. 2006) and it is believed that the 
heterogeneous multicore is the best in power and 
performance trade-off. However, it is not clear whether 
this answer is still correct in the future. As Amdahl’s law 
states, performance of parallel computing is limited by that 
of its serial computing portion inside. Hence, to utilize the 
increasing number of transistors for increasing the number 
of cores on a chip might not be the best choice. 

This paper has two contributions. The one is that it 
investigates which configuration is the best multicore 
processor and unveils that single-core processor 
performance should be still improved. The other is that it 
proposes a technique that improves single-core 
performance, which we name Cool Turbo Boost 
technique. 

The rest of the paper is organized as follows. The next 
section summarizes the related works. Section 3 
investigates the best multicore configuration. Section 4 
proposes Cool Turbo Boost technique. Section 5 
concludes. 
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2 Related Works 
There are a lot of studies investigating configurations of 
multicore processors (Annavaram, et al. 2005, 
Balakrishnan, et al. 2005, Ekman and Stenstrom 2003, Hill 
and Marty 2008, Kumar, et al. 2005 and Morad, et al. 
2006). Most of them assume the number of usable 
transistors is fixed and then search the best processor 
configuration. Early studies mostly conclude that 
integrating a lot of simple cores is better in the 
power-performance trade-off than integrating a single 
complex core (Ekman and Stenstrom 2003). Later, 
heterogeneity and dynamic configurability are also 
considered. They might be keys to overcome Amdahl’s 
law (Hill and Marty 2008). 

On the top of the above studies, this paper further 
investigates what the best multicore configuration is. We 
also consider the advance in semiconductor technologies. 
We guess the best choice is different when the number of 
transistors increases. 

3 Searching for Best Multicore 
As the number of transistors on a chip increases, the 
flexibility to determine a processor configuration also 
increases. The current trend is to use them to integrate 
multiple cores on a chip and we have almost 50 cores 
(Howard, et al. 2010). With such a large flexibility, we are 
confused what the best configuration is. How many cores 
should be integrated on a chip? Should each core have 
simple in-order pipelines or complex out-of-order ones? 
Should all cores are the same? These questions have to be 
answered. 

 

(a) Single-core (b) Many-core (c) Heterogeneous (d) Scalable  
 

Figure 1: Variations of Multicore Processors 
 

Figure 1 shows some variations of multicore processors. 
When chip integration is advanced, there are two choices. 
One is to increase the size of a core, and the other is to 
increase the number of cores. Figure 1a explains the 
former choice. All transistors on a chip are utilized by a 
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single core. Figure 1b explains the latter choice. The core 
microarchitecture is fixed and multiple copies of the core 
are integrated on the chip. Figures 1c and 1d consider 
hybrids of the two choices. In Figure 1c, only one core 
becomes large and the other cores remain small, and hence 
the multicore is heterogeneous. In Figure 1d, all cores 
become large and thus the multicore is homogeneous. 

The best configuration must be different according to 
applications executed on the processor. Hence, we analyse 
theoretically and use simple model to compare these 
variations in the following subsections. 

3.1 Single-core vs. Many-core 
First, a single-core (Figure 1a) and a many-core (Figure 
1b) processors are compared. As the single-core processor 
becomes larger and larger, its area-performance ratio 
meets a diminishing return as explained by Pollack’s rule 
(Borkar 2007). It says processor performance is 
proportional to the square-root of its area. Performance 
improvement rate IPollack is expressed as: 

NIPollack   

where N explains that the processor is N times larger in 
area than the baseline one. On the other hand, 
multiprocessor performance is dominated by Amdahl’s 
law. It says if a portion p of a program is executed in 
parallel by N baseline processors, the speedup IAmdahl is: 

)1(

1

p
N
p

I Amdahl


  

Hence, p is an important factor that determines how 
efficient in performance the many-core processor is. Note 
that we use N both for area of the single-core processor 
and for the number of cores in the many-core processor. It 
is not confusing because the area of N cores equals that of 
N-times larger core. N is interchangingly used in this paper 
as the size of core, the number of cores, and the chip area. 
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Figure 2: Pollack’s Rule vs. Amdahl’s Law 

 
Figure 2 compares the single-core processors and the 

many-core processors. The horizontal axis indicates N and 
the vertical one indicates performance improvement rate. 
There are four lines. The blue line labelled with Pollack 
presents the performance improvement rate of the 
singe-core, IPollack. The other three lines present the rate of 
the many-core, IAmdahl. The labels indicate the parallelized 
portion, p. 

When p is as large as 0.9, the many-core processor is 
always better in performance until N reaches 81. This 

matches with the investigation in (Ekman and Stenstrom 
2003): multiple simple cores are better in 
power-performance ratio than a big core. Please note that 
power consumption is proportional to the total area, N, in 
the model of Pollack’s rule. Unfortunately, only large 
scale scientific computing enjoys such a large p. The 
conventional computing such as desktop and mobile 
cannot be easily parallelized. p is small (Wang, et al. 2009). 
As p becomes smaller and smaller, many-core 
performance is seriously limited. When p equals 0.7, the 
8-core processor is poorer in performance than the 8-times 
larger single-core processor. We already have commercial 
8-core processors such as Intel’s Xeon 7500 series and 
AMD’s FX series. Now is the time when single-core 
processors would be more beneficial for desktop and 
mobile applications than many-core processors, if 
single-core processor performance were ideally scalable to 
Pollack’s rule. 

3.2 Single-core vs. Heterogeneous Multicore 
Next, the winner single-core processor (Figure 1a) is 
compared with a heterogeneous multicore processor 
(Figure 1c) (Kumar, et al. 2005). The heterogeneous or 
asymmetric multicore processors are widely studied for 
improving energy efficiency (Annavaram et al. 2005, 
Balakrishnan et al. 2005 and Morad et al. 2006). They can 
be utilized to attack Amdahl’s law (Hill and Marty 2008). 
Parallelized portions are executed by multiple small cores 
and hard-to-parallelize portions are executed by a big and 
strong core. 
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Figure 3: Single-core vs. Heterogeneous Multicore 

 
Figure 3 compares the heterogeneous multicore 

processors with the single-core processors when p equals 
0.8. Each heterogeneous multicore has only one big core. 
The figure has the same layout to Figure 2. The vertical 
axis additionally includes performance improvement rate 
of the heterogeneous multicore processors, IHetero. The 
lines labelled with Pollack and 0.8 are for IPollack and 
IAmdahl. The other three lines are for IHetero. The labels 1/2, 
1/3, and 1/4 mean the big core occupies half, one third, 
and one fourth of the chip area, respectively. Pollack’s rule 
models the big core’s performance. The rest of chip area is 
used by the baseline cores. Figure 1c presents the case 
labelled with 1/4. 

Interestingly, the heterogeneous multicore processors 
have equivalent performance regardless of the big core’s 
size and their performance is much scalable to the chip 
area. This confirms that hard-to-parallelize portion 
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dominates the speedup. If that portion can be executed by 
the big core, the speedup is significantly improved. 

3.3 Heterogeneous vs. Scalable Homogeneous 
Next, the winner heterogeneous (Figure 1c) and a scalable 
homogeneous multicore (Figure 1d) are compared with 
each other. The scalable multicore is different from the 
many-core investigated in Section 3.1 in that the former 
has the smaller number of large cores. The number of large 
cores is determined as follows. Guess when utilizing the 
half number of double-size cores become desirable in 
terms of performance. That is expressed as: 

2
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Hence, when p equals 0.8 for example, 3 double-size cores 
have better performance than 6 small cores do. 
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Figure 4: Heterogeneous vs. Scalable Homogeneous 

 
Figure 4 compares two kinds of multicore processors: 

heterogeneous and scalable homogeneous. The figure has 
the same layout to Figures 2 and 3. The vertical axis 
additionally includes performance improvement rate of the 
scalable homogeneous multicore processors, IHomo. The 
grey line labelled with Pollack presents IPollack. The other 
six lines consist of three for the heterogeneous and three 
for the scalable homogeneous. Each of their labels is the 
combination of p and the multicore type. For example, 
“0.9 hetero” and “0.7 homo” present IHetero when p 
equals 0.9 and IHomo when p equals 0.7, respectively. The 
heterogeneous multicore utilizes one fourth of its chip area 
as its big core. 

As for the heterogeneous multicore, performance is still 
improved when p is increased. When p is increased from 
0.8 to 0.9, performance is improved by approximately 
50%. In addition, different from the case of many-core, 
which we have already seen in Figure 2, its scalability is 
not diminished regardless of p. In contrast, the scalable 
homogeneous one shows poor performance. Even though 
p equals 0.9, its performance improvement rate is smaller 
than that of the heterogeneous multicore when p equals 0.8. 
This means that the heterogeneous multicore exploit 
performance even when hard-to-parallelize portions are 
large. 

3.4 Hetero vs. Dynamically configurable 
Up to now, the heterogeneous multicore processor is the 
best choice. However, we only investigated the statically 
configured multicores. We have not yet considered 
dynamically configurable multicores such as Core-fusion 
(Ipek, et al. 2007) and CoreSymphony (Wakasugi, et al. 
2010). They dynamically configure the number of cores 
and the size of each core, as shown in Figure 5. When the 
currently executing portion of a program is easy to 
parallelize, the dynamically configurable multicore 
processor increases the number of cores. In contrast, 
otherwise, it combines some cores to a large core. The 
adaptability will improve the performance. 
 

 
 

Figure 5: Dynamically configurable Multicore 
 

Figure 6 compares the dynamically configurable 
multicore processor (Figure 5) with the current winner 
heterogeneous one (Figure 1c) when p is 0.8. Since we do 
not perform a simulation of an application, the 
configuration does not change dynamically but can be 
determined statically. The parallelizable part is executed 
by all small cores and the not-parallelizable part is 
executed by a single core, which is a combination of all 
small cores. The figure has the same layout to Figures 2-4. 
There are five lines. The green one labelled with “0.8 
hetero” presents IHetero. The other four lines presents 
performance improvement rate of the configurable 
multicore, IDC. We consider four models of the 
reconfigurable multicore. The dynamic reconfigurability 
suffers a penalty in performance. It is approximately 25% 
of performance loss in comparison with a monolithic core 
(Ipek, et al. 2007 and Wakasugi, et al. 2010). The models 
labelled with “0.8 DC-n” and “0.8 DC-8” considers the 
penalty. The other models labelled with “0.8 DC-in” and 
“0.8 DC-i8” do not consider it and thus has an ideal 
single-core performance. As the number of cores increases, 
it becomes difficult to combine all cores due to the 
increasing complexity of interconnects. Hence, we 
consider a limit in the number of combinable cores. In this 
investigation, we assume the number is 8. The models 
labelled with “0.8 DC-i8” and “0.8 DC-8” consider the 
limit. The other models labelled with “0.8 DC-in” and 
“0.8 DC-n” do not consider it and thus are ideally scalable. 
The model “0.8 DC-8” is the most practical one. 

When there are not any limits in the number of 
combinable cores, the performance improvement is very 
significant. IDC is almost twice better than IHetero. The 
penalty slightly diminishes performance, but the 
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improvement rate is still fascinating. Comparing with 
IAmdahl, IDC is increased by approximately 400% even if the 
penalty is considered. However, if the number of 
combinable cores is limited to 8, IDC is seriously degraded. 
When N is around 30, the heterogeneous multicore 
becomes better in performance than the dynamically 
configurable one. As mentioned earlier, the model “0.8 
DC-8” is the most practical one. Comparing it with the 
heterogeneous multicore unveils that the latter is better 
when N is larger than 27. The red dashed line in Figure 6 
presents the current technology, where four 
6-instruction-issue cores or sixteen 2-instruction-issue 
cores can be integrated on a chip. Remember that the 
integration is doubled generation by generation. N will be 
32 very soon. Considering the above, the heterogeneous 
multicore processor is the best choice in the near future. 

 

0

10

20

30

0 16 32 48 64

0.8 DC-in

0.8 DC-n

0.8 hetero

0.8 DC-i8

0.8 DC-8

6‐issue X 4‐core

2‐issue X 16‐core

 
Figure 6: Hetero vs. Dynamically configurable 

 
In order to enjoy the continuously improving 

performance of the heterogeneous multicore, one serious 
problem should be solved. It consists of a single big core 
and a lot of small cores and its configuration is statically 
determined on the design phase. Both size and 
performance of the big core have to be increased with the 
same pace of N. This means that single-core performance 
is still important. 

4 Single-Core Performance Improvement 
This section presents a preliminary study that aims to 
improve single-core performance. Increasing clock 
frequency is the easiest way to improve single-core 
performance. However, as widely known, it also increases 
the power supply voltage, resulting in serious power and 
temperature problems. This section proposes a technique 
that increases clock frequency without the increase in the 
supply voltage. 

4.1 Cool Turbo Boost Technique 
Intel’s Turbo Boost technology (Intel Corporation 

2008) has a unique feature that increases the supply 
voltage and thus the clock frequency when the number of 
active cores is small. This is possible because TPD 
(Thermal Design Power) is determined by considering the 
case when all cores are active and thus it has a large 
margin in that case. We extend it and further increase the 
core clock frequency. Different from the baseline Turbo 
Boost technology, our technique will not require the 
increase in the supply voltage, and hence we name it Cool 
Turbo Boost technology.  

Cool Turbo Boost exploits the small critical path delay 
of a small core. If the hardware size and complexity 
become small, its critical path delay is reduced. Hence, 
there is an opportunity to increase its clock frequency. 
Intel’s ATOM processor (Thakkar 2008) is a good 
example that shows a simple and small core improves 
energy efficiency. In Cool Turbo Boost, processors 
datapath, where data flow and are processed, dynamically 
becomes small to boost clock frequency. 

When the datapath becomes small, its computing 
performance is degraded. If the performance loss is not 
compensated by the clock frequency boost, the total 
processor performance is diminished. This is not our goal. 
Hence, we consider the following observation. When 
instruction level parallelism (ILP) is small, the small 
datapath is enough. Otherwise, the datapath should not 
become small. Hence, the datapath is dynamically 
configured according to ILP in each program phases. In 
order to realize the idea, we utilize Multiple 
Clustered-Core Processor (MCCP) (Sato and Funaki 
2008). It is shown in Figure 7. MCCP configures its 
datapath according to ILP and thread level parallelism 
(TLP) in the program. We extend MCCP so that its clock 
frequency is increased when it configures its datapath 
small. 

The amount of ILP varies between application 
programs and by more than a factor of two even within a 
single application program (Bahar and Manne 2001). 
Figure 8 shows an example of the issue rate for 
SPECint2000 benchmark gcc. The horizontal axis 
indicates the execution cycles and the vertical one 
represents the average number of instructions issued per 
cycles (issue IPC) over a window of 10,000 execution 
cycles. The issue IPC varies by more than a factor of two 
over a million cycles of execution. These variations can be 
exploited to determine when the datapath should become 
small. We manage MCCP to utilize wide datapath only 
when issue IPC is high and similarly to utilize narrow 
datapath only when issue IPC is low. When issue IPC is 
low, there are idle execution resources and thus the narrow 
datapath provides dependability without serious 
performance loss. We assume that past program behaviour 
indicates future behaviour. Hence, based on past issue IPC, 
future issue IPC could be predicted. We measure the 
number of instructions issued over a fixed sampling 
window. We predict future issue IPC based on the past 
number of issued instructions rather than on past issue IPC. 
We use predicted issue IPC to determine when the 
datapath should become small. If it is smaller than a 
predetermined threshold value, MCCP switches to use the 
narrow datapath. Similarly, if predicted issue IPC is larger 
than another predefined threshold value, MCCP switches 
to use the wide datapath. 
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Figure 8: Issue IPC Variation (gcc) 
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Figure 7: Multiple Clustered-Core Processor 
 

4.2 Evaluation Methodology 
SimpleScalar tool set (Austin, et al. 2002) is used for 
evaluation. Table 1 summarizes the processor 
configuration. The frontend and the L2 cache do not 
change. When issue IPC is larger than 2.0, the wide 
datapath is used. On contrary, when issue IPC is smaller 
than 1.6, the narrow datapath is used. These threshold 
values are not optimally determined and thus further study 
to determine the optimal values is required. Six programs: 
gzip, vpr, gcc, parser, vortex and bzip2 from 
SPECint2000 are used. 1 billion instructions are skipped 
before actual simulation begins. After that each program is 
executed for 2 billion instructions. 

 
 Narrow Wide 

Fetch width 16 instructions 

L1 I cache 16KB,2-way 

Branch predictor 1K-gshare,512-BTB 

Dispatch width 4 instructions 

Scheduling queue 64 instructions 128 instructions 

Issue width 2 instructions 4 instructions 

Integer ALUs 2 4 

Integer MULs 2 4 

Floating ALUs 2 4 

Floating MULs 2 4 

L1 D cache 16KB,2-way,1-port 16KB,2-way,2-port

L2 cache 512KB,2-way 

Table 1: Processor Configurations 

 
Boosting ratio is defined as the clock frequency in the 

narrow datapath mode divided by that in the wide mode. 
We vary the boosting ratio between 1.0 and 2.0 and 
evaluate how processor performance is improved. 

4.3 Results 
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Figure 9: Narrow Datapath Results 

 
Figure 9 presents the normalized performance when the 
narrow datapath is always used. The horizontal axis 
indicates the boosting ratio and the vertical one indicates 
the single-core performance normalized by the baseline 
performance. When the vertical value is less the 100%, 
processor performance is degraded. When the boosting 
rate is 1.0, performance is seriously diminished. It is not 
improved until the boosting ratio reaches 1.6. Hence, it is 
very difficult to improve single-core performance only by 
combining the narrow datapath with high clock frequency. 
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Figure 10: Cool Turbo Boosting Results 

 
Figure 10 presents how Cool Turbo Boosting technique 

improves single-core performance. The figure has the 
same layout to Figure 9. When the boosting ratio equals 
1.0, performance is degraded in all programs. However, 
the average performance loss is only 4.2% and is much 
smaller than that seen in Figure 9, which is 36.1% loss. 
When the boosting rate reaches 1.4 and 1.6, performance is 
improved by 5.0% and 8.7% on average, respectively. 
gzip and gcc achieve significant improvements, which are 
26.7% and 15.2%, respectively. 

 

 
Figure 11: Comparison of 2 Techniques (parser) 
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Figure 12: Comparison of 2 Techniques (vortex) 

 
Figures 11 and 12 compare 2 techniques. In Figure 11, 

parser represents the group of gzip, vpr, parser and 
bzip2. When the boosting ratio is large, Cool Turbo 
Boosting technique does not work well. In Figure 12, 
vortex represents the group of gcc and vortex. Cool 
Turbo Boosting achieves better performance regardless of 
the boosting ratio. While determining the boosting ratio 
requires future studies, the boosting ratio larger than 1.5 
will be impractical. Because Cool Turbo boosting achieves 
single-core performance improvement in the small 
boosting ratio, it has the potential to further improve 
performance. 

Achieving much single-core performance improvement 
requires further investigations. 

5 Conclusions 
This paper investigates what the best multicore 
configuration is in the future. Five models of single-core, 
many-core, heterogeneous multicore, scalable 
homogeneous multicore, and dynamically configurable 
multicore are compared with each other. From the 
investigations, it is unveiled that single-core performance 
is still important. Without the achievement, the 
heterogeneous multicore processor cannot continue to 
improve performance in the near future. This is the major 
contribution of this paper. 

In the latter half of the paper, we present the 
preliminary case study that aims to improve single-core 
performance. We named it Cool Turbo Boost technique. 
When ILP in the program is small, the execution resources 
in the processor are dynamically configured to be narrow 
and thus its clock frequency is increased. From the detailed 
simulations, we found the average performance 
improvement of 5.0% is achieved. Unfortunately, this 
achievement is not enough to continue multicore 
performance improvement and the future studies are 
strongly required. 

The future studies regarding the heterogeneous 
multicore processors include investigating the 
heterogeneity to enhance dependability. Hardware defects 
also cause heterogeneity. We are studying to utilize the 
cores with defects to improve dependability. For example, 
high performance is not always required for checking 
correctness. Combining the idea with the findings in this 
paper will explore a new horizon for dependable multicore 
processors. 
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