
Importance of Single-Core Performance in the Multicore Era

Toshinori Sato Hideki Mori Rikiya Yano Takanori Hayashida
Department of Electronics Engineering and Computer Science

Fukuoka University
8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan

toshinori.sato@computer.org

Abstract
This paper first investigates what the best multicore
configuration will be in the future, when the number of
usable transistors further increases. Comparing five
multicore models: single-core, many-core, heterogeneous
multicore, scalable homogeneous multicore, and
dynamically configurable multicore, surprisingly unveils
that single-core performance is a key to improve multicore
performance. Based on the findings, this paper secondly
proposes a technique to improve single-core performance.
It is based on Intel’s Turbo Boost technology. From the
detailed simulations, it is found that the technique achieves
single-core performance improvement. .

Keywords: Multicore, Amdahl’s law, Pollack’s rule,
Turbo Boost technology.

1 Introduction
Multicore processors have already been popular to
improve the total performance (Howard, et al. 2010).
Considering the power and temperature constraints, they
might be the sole practical solution. A lot of studies to
determine the best multicore configuration is conducted
(Annavaram, et al. 2005, Balakrishnan, et al. 2005, Ekman
and Stenstrom 2003, Hill and Marty 2008, Kumar, et al.
2005 and Morad, et al. 2006) and it is believed that the
heterogeneous multicore is the best in power and
performance trade-off. However, it is not clear whether
this answer is still correct in the future. As Amdahl’s law
states, performance of parallel computing is limited by that
of its serial computing portion inside. Hence, to utilize the
increasing number of transistors for increasing the number
of cores on a chip might not be the best choice.

This paper has two contributions. The one is that it
investigates which configuration is the best multicore
processor and unveils that single-core processor
performance should be still improved. The other is that it
proposes a technique that improves single-core
performance, which we name Cool Turbo Boost
technique.

The rest of the paper is organized as follows. The next
section summarizes the related works. Section 3
investigates the best multicore configuration. Section 4
proposes Cool Turbo Boost technique. Section 5
concludes.

Copyright © 2012, Australian Computer Society, Inc. This paper
appeared at the 35th Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia, January-February 2012.
Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 122. M. Reynolds and B. Thomas, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

2 Related Works
There are a lot of studies investigating configurations of
multicore processors (Annavaram, et al. 2005,
Balakrishnan, et al. 2005, Ekman and Stenstrom 2003, Hill
and Marty 2008, Kumar, et al. 2005 and Morad, et al.
2006). Most of them assume the number of usable
transistors is fixed and then search the best processor
configuration. Early studies mostly conclude that
integrating a lot of simple cores is better in the
power-performance trade-off than integrating a single
complex core (Ekman and Stenstrom 2003). Later,
heterogeneity and dynamic configurability are also
considered. They might be keys to overcome Amdahl’s
law (Hill and Marty 2008).

On the top of the above studies, this paper further
investigates what the best multicore configuration is. We
also consider the advance in semiconductor technologies.
We guess the best choice is different when the number of
transistors increases.

3 Searching for Best Multicore
As the number of transistors on a chip increases, the
flexibility to determine a processor configuration also
increases. The current trend is to use them to integrate
multiple cores on a chip and we have almost 50 cores
(Howard, et al. 2010). With such a large flexibility, we are
confused what the best configuration is. How many cores
should be integrated on a chip? Should each core have
simple in-order pipelines or complex out-of-order ones?
Should all cores are the same? These questions have to be
answered.

(a) Single-core (b) Many-core (c) Heterogeneous (d) Scalable

Figure 1: Variations of Multicore Processors

Figure 1 shows some variations of multicore processors.
When chip integration is advanced, there are two choices.
One is to increase the size of a core, and the other is to
increase the number of cores. Figure 1a explains the
former choice. All transistors on a chip are utilized by a

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

107

single core. Figure 1b explains the latter choice. The core
microarchitecture is fixed and multiple copies of the core
are integrated on the chip. Figures 1c and 1d consider
hybrids of the two choices. In Figure 1c, only one core
becomes large and the other cores remain small, and hence
the multicore is heterogeneous. In Figure 1d, all cores
become large and thus the multicore is homogeneous.

The best configuration must be different according to
applications executed on the processor. Hence, we analyse
theoretically and use simple model to compare these
variations in the following subsections.

3.1 Single-core vs. Many-core
First, a single-core (Figure 1a) and a many-core (Figure
1b) processors are compared. As the single-core processor
becomes larger and larger, its area-performance ratio
meets a diminishing return as explained by Pollack’s rule
(Borkar 2007). It says processor performance is
proportional to the square-root of its area. Performance
improvement rate IPollack is expressed as:

NIPollack 

where N explains that the processor is N times larger in
area than the baseline one. On the other hand,
multiprocessor performance is dominated by Amdahl’s
law. It says if a portion p of a program is executed in
parallel by N baseline processors, the speedup IAmdahl is:

)1(

1

p
N
p

I Amdahl




Hence, p is an important factor that determines how
efficient in performance the many-core processor is. Note
that we use N both for area of the single-core processor
and for the number of cores in the many-core processor. It
is not confusing because the area of N cores equals that of
N-times larger core. N is interchangingly used in this paper
as the size of core, the number of cores, and the chip area.

0

2

4

6

8

10

0 20 40 60 80

Pollack 0.9 0.8 0.7

Figure 2: Pollack’s Rule vs. Amdahl’s Law

Figure 2 compares the single-core processors and the

many-core processors. The horizontal axis indicates N and
the vertical one indicates performance improvement rate.
There are four lines. The blue line labelled with Pollack
presents the performance improvement rate of the
singe-core, IPollack. The other three lines present the rate of
the many-core, IAmdahl. The labels indicate the parallelized
portion, p.

When p is as large as 0.9, the many-core processor is
always better in performance until N reaches 81. This

matches with the investigation in (Ekman and Stenstrom
2003): multiple simple cores are better in
power-performance ratio than a big core. Please note that
power consumption is proportional to the total area, N, in
the model of Pollack’s rule. Unfortunately, only large
scale scientific computing enjoys such a large p. The
conventional computing such as desktop and mobile
cannot be easily parallelized. p is small (Wang, et al. 2009).
As p becomes smaller and smaller, many-core
performance is seriously limited. When p equals 0.7, the
8-core processor is poorer in performance than the 8-times
larger single-core processor. We already have commercial
8-core processors such as Intel’s Xeon 7500 series and
AMD’s FX series. Now is the time when single-core
processors would be more beneficial for desktop and
mobile applications than many-core processors, if
single-core processor performance were ideally scalable to
Pollack’s rule.

3.2 Single-core vs. Heterogeneous Multicore
Next, the winner single-core processor (Figure 1a) is
compared with a heterogeneous multicore processor
(Figure 1c) (Kumar, et al. 2005). The heterogeneous or
asymmetric multicore processors are widely studied for
improving energy efficiency (Annavaram et al. 2005,
Balakrishnan et al. 2005 and Morad et al. 2006). They can
be utilized to attack Amdahl’s law (Hill and Marty 2008).
Parallelized portions are executed by multiple small cores
and hard-to-parallelize portions are executed by a big and
strong core.

0

2

4

6

8

10

12

0 4 8 12 16 20 24 28 32

1/2 1/3 1/4 Pollack 0.8

Figure 3: Single-core vs. Heterogeneous Multicore

Figure 3 compares the heterogeneous multicore

processors with the single-core processors when p equals
0.8. Each heterogeneous multicore has only one big core.
The figure has the same layout to Figure 2. The vertical
axis additionally includes performance improvement rate
of the heterogeneous multicore processors, IHetero. The
lines labelled with Pollack and 0.8 are for IPollack and
IAmdahl. The other three lines are for IHetero. The labels 1/2,
1/3, and 1/4 mean the big core occupies half, one third,
and one fourth of the chip area, respectively. Pollack’s rule
models the big core’s performance. The rest of chip area is
used by the baseline cores. Figure 1c presents the case
labelled with 1/4.

Interestingly, the heterogeneous multicore processors
have equivalent performance regardless of the big core’s
size and their performance is much scalable to the chip
area. This confirms that hard-to-parallelize portion

CRPIT Volume 122 - Computer Science 2012

108

dominates the speedup. If that portion can be executed by
the big core, the speedup is significantly improved.

3.3 Heterogeneous vs. Scalable Homogeneous
Next, the winner heterogeneous (Figure 1c) and a scalable
homogeneous multicore (Figure 1d) are compared with
each other. The scalable multicore is different from the
many-core investigated in Section 3.1 in that the former
has the smaller number of large cores. The number of large
cores is determined as follows. Guess when utilizing the
half number of double-size cores become desirable in
terms of performance. That is expressed as:

2
22

1
1

)1(

1

N
pp

N
p

p







p

p
N





1

2

Hence, when p equals 0.8 for example, 3 double-size cores
have better performance than 6 small cores do.

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64

0.9 hetero

0.8 hetero

0.9 homo

0.7 hetero

0.8 homo

0.7 homo

Pollack

Figure 4: Heterogeneous vs. Scalable Homogeneous

Figure 4 compares two kinds of multicore processors:

heterogeneous and scalable homogeneous. The figure has
the same layout to Figures 2 and 3. The vertical axis
additionally includes performance improvement rate of the
scalable homogeneous multicore processors, IHomo. The
grey line labelled with Pollack presents IPollack. The other
six lines consist of three for the heterogeneous and three
for the scalable homogeneous. Each of their labels is the
combination of p and the multicore type. For example,
“0.9 hetero” and “0.7 homo” present IHetero when p
equals 0.9 and IHomo when p equals 0.7, respectively. The
heterogeneous multicore utilizes one fourth of its chip area
as its big core.

As for the heterogeneous multicore, performance is still
improved when p is increased. When p is increased from
0.8 to 0.9, performance is improved by approximately
50%. In addition, different from the case of many-core,
which we have already seen in Figure 2, its scalability is
not diminished regardless of p. In contrast, the scalable
homogeneous one shows poor performance. Even though
p equals 0.9, its performance improvement rate is smaller
than that of the heterogeneous multicore when p equals 0.8.
This means that the heterogeneous multicore exploit
performance even when hard-to-parallelize portions are
large.

3.4 Hetero vs. Dynamically configurable
Up to now, the heterogeneous multicore processor is the
best choice. However, we only investigated the statically
configured multicores. We have not yet considered
dynamically configurable multicores such as Core-fusion
(Ipek, et al. 2007) and CoreSymphony (Wakasugi, et al.
2010). They dynamically configure the number of cores
and the size of each core, as shown in Figure 5. When the
currently executing portion of a program is easy to
parallelize, the dynamically configurable multicore
processor increases the number of cores. In contrast,
otherwise, it combines some cores to a large core. The
adaptability will improve the performance.

Figure 5: Dynamically configurable Multicore

Figure 6 compares the dynamically configurable
multicore processor (Figure 5) with the current winner
heterogeneous one (Figure 1c) when p is 0.8. Since we do
not perform a simulation of an application, the
configuration does not change dynamically but can be
determined statically. The parallelizable part is executed
by all small cores and the not-parallelizable part is
executed by a single core, which is a combination of all
small cores. The figure has the same layout to Figures 2-4.
There are five lines. The green one labelled with “0.8
hetero” presents IHetero. The other four lines presents
performance improvement rate of the configurable
multicore, IDC. We consider four models of the
reconfigurable multicore. The dynamic reconfigurability
suffers a penalty in performance. It is approximately 25%
of performance loss in comparison with a monolithic core
(Ipek, et al. 2007 and Wakasugi, et al. 2010). The models
labelled with “0.8 DC-n” and “0.8 DC-8” considers the
penalty. The other models labelled with “0.8 DC-in” and
“0.8 DC-i8” do not consider it and thus has an ideal
single-core performance. As the number of cores increases,
it becomes difficult to combine all cores due to the
increasing complexity of interconnects. Hence, we
consider a limit in the number of combinable cores. In this
investigation, we assume the number is 8. The models
labelled with “0.8 DC-i8” and “0.8 DC-8” consider the
limit. The other models labelled with “0.8 DC-in” and
“0.8 DC-n” do not consider it and thus are ideally scalable.
The model “0.8 DC-8” is the most practical one.

When there are not any limits in the number of
combinable cores, the performance improvement is very
significant. IDC is almost twice better than IHetero. The
penalty slightly diminishes performance, but the

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

109

improvement rate is still fascinating. Comparing with
IAmdahl, IDC is increased by approximately 400% even if the
penalty is considered. However, if the number of
combinable cores is limited to 8, IDC is seriously degraded.
When N is around 30, the heterogeneous multicore
becomes better in performance than the dynamically
configurable one. As mentioned earlier, the model “0.8
DC-8” is the most practical one. Comparing it with the
heterogeneous multicore unveils that the latter is better
when N is larger than 27. The red dashed line in Figure 6
presents the current technology, where four
6-instruction-issue cores or sixteen 2-instruction-issue
cores can be integrated on a chip. Remember that the
integration is doubled generation by generation. N will be
32 very soon. Considering the above, the heterogeneous
multicore processor is the best choice in the near future.

0

10

20

30

0 16 32 48 64

0.8 DC-in

0.8 DC-n

0.8 hetero

0.8 DC-i8

0.8 DC-8

6‐issue X 4‐core

2‐issue X 16‐core

Figure 6: Hetero vs. Dynamically configurable

In order to enjoy the continuously improving

performance of the heterogeneous multicore, one serious
problem should be solved. It consists of a single big core
and a lot of small cores and its configuration is statically
determined on the design phase. Both size and
performance of the big core have to be increased with the
same pace of N. This means that single-core performance
is still important.

4 Single-Core Performance Improvement
This section presents a preliminary study that aims to
improve single-core performance. Increasing clock
frequency is the easiest way to improve single-core
performance. However, as widely known, it also increases
the power supply voltage, resulting in serious power and
temperature problems. This section proposes a technique
that increases clock frequency without the increase in the
supply voltage.

4.1 Cool Turbo Boost Technique
Intel’s Turbo Boost technology (Intel Corporation

2008) has a unique feature that increases the supply
voltage and thus the clock frequency when the number of
active cores is small. This is possible because TPD
(Thermal Design Power) is determined by considering the
case when all cores are active and thus it has a large
margin in that case. We extend it and further increase the
core clock frequency. Different from the baseline Turbo
Boost technology, our technique will not require the
increase in the supply voltage, and hence we name it Cool
Turbo Boost technology.

Cool Turbo Boost exploits the small critical path delay
of a small core. If the hardware size and complexity
become small, its critical path delay is reduced. Hence,
there is an opportunity to increase its clock frequency.
Intel’s ATOM processor (Thakkar 2008) is a good
example that shows a simple and small core improves
energy efficiency. In Cool Turbo Boost, processors
datapath, where data flow and are processed, dynamically
becomes small to boost clock frequency.

When the datapath becomes small, its computing
performance is degraded. If the performance loss is not
compensated by the clock frequency boost, the total
processor performance is diminished. This is not our goal.
Hence, we consider the following observation. When
instruction level parallelism (ILP) is small, the small
datapath is enough. Otherwise, the datapath should not
become small. Hence, the datapath is dynamically
configured according to ILP in each program phases. In
order to realize the idea, we utilize Multiple
Clustered-Core Processor (MCCP) (Sato and Funaki
2008). It is shown in Figure 7. MCCP configures its
datapath according to ILP and thread level parallelism
(TLP) in the program. We extend MCCP so that its clock
frequency is increased when it configures its datapath
small.

The amount of ILP varies between application
programs and by more than a factor of two even within a
single application program (Bahar and Manne 2001).
Figure 8 shows an example of the issue rate for
SPECint2000 benchmark gcc. The horizontal axis
indicates the execution cycles and the vertical one
represents the average number of instructions issued per
cycles (issue IPC) over a window of 10,000 execution
cycles. The issue IPC varies by more than a factor of two
over a million cycles of execution. These variations can be
exploited to determine when the datapath should become
small. We manage MCCP to utilize wide datapath only
when issue IPC is high and similarly to utilize narrow
datapath only when issue IPC is low. When issue IPC is
low, there are idle execution resources and thus the narrow
datapath provides dependability without serious
performance loss. We assume that past program behaviour
indicates future behaviour. Hence, based on past issue IPC,
future issue IPC could be predicted. We measure the
number of instructions issued over a fixed sampling
window. We predict future issue IPC based on the past
number of issued instructions rather than on past issue IPC.
We use predicted issue IPC to determine when the
datapath should become small. If it is smaller than a
predetermined threshold value, MCCP switches to use the
narrow datapath. Similarly, if predicted issue IPC is larger
than another predefined threshold value, MCCP switches
to use the wide datapath.

0

1

2

3

4

Execution Cycles

IL
P

Sampling window

Figure 8: Issue IPC Variation (gcc)

CRPIT Volume 122 - Computer Science 2012

110

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

Core
gating

(a) Dual large core (b) Hetero core (c) Dual small core (d) Single large core (e) Single small core

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

Core
gating

(a) Dual large core (b) Hetero core (c) Dual small core (d) Single large core (e) Single small core

Figure 7: Multiple Clustered-Core Processor

4.2 Evaluation Methodology
SimpleScalar tool set (Austin, et al. 2002) is used for
evaluation. Table 1 summarizes the processor
configuration. The frontend and the L2 cache do not
change. When issue IPC is larger than 2.0, the wide
datapath is used. On contrary, when issue IPC is smaller
than 1.6, the narrow datapath is used. These threshold
values are not optimally determined and thus further study
to determine the optimal values is required. Six programs:
gzip, vpr, gcc, parser, vortex and bzip2 from
SPECint2000 are used. 1 billion instructions are skipped
before actual simulation begins. After that each program is
executed for 2 billion instructions.

 Narrow Wide

Fetch width 16 instructions

L1 I cache 16KB,2-way

Branch predictor 1K-gshare,512-BTB

Dispatch width 4 instructions

Scheduling queue 64 instructions 128 instructions

Issue width 2 instructions 4 instructions

Integer ALUs 2 4

Integer MULs 2 4

Floating ALUs 2 4

Floating MULs 2 4

L1 D cache 16KB,2-way,1-port 16KB,2-way,2-port

L2 cache 512KB,2-way

Table 1: Processor Configurations

Boosting ratio is defined as the clock frequency in the

narrow datapath mode divided by that in the wide mode.
We vary the boosting ratio between 1.0 and 2.0 and
evaluate how processor performance is improved.

4.3 Results

40%

60%

80%

100%

120%

140%

160%

1 1.2 1.4 1.6 1.8 2

gzip vpr gcc parser vortex bzip2

Figure 9: Narrow Datapath Results

Figure 9 presents the normalized performance when the
narrow datapath is always used. The horizontal axis
indicates the boosting ratio and the vertical one indicates
the single-core performance normalized by the baseline
performance. When the vertical value is less the 100%,
processor performance is degraded. When the boosting
rate is 1.0, performance is seriously diminished. It is not
improved until the boosting ratio reaches 1.6. Hence, it is
very difficult to improve single-core performance only by
combining the narrow datapath with high clock frequency.

80%

100%

120%

140%

160%

1 1.2 1.4 1.6 1.8 2

gzip vpr gcc parser vortex bzip2

Figure 10: Cool Turbo Boosting Results

Figure 10 presents how Cool Turbo Boosting technique

improves single-core performance. The figure has the
same layout to Figure 9. When the boosting ratio equals
1.0, performance is degraded in all programs. However,
the average performance loss is only 4.2% and is much
smaller than that seen in Figure 9, which is 36.1% loss.
When the boosting rate reaches 1.4 and 1.6, performance is
improved by 5.0% and 8.7% on average, respectively.
gzip and gcc achieve significant improvements, which are
26.7% and 15.2%, respectively.

Figure 11: Comparison of 2 Techniques (parser)

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

111

Figure 12: Comparison of 2 Techniques (vortex)

Figures 11 and 12 compare 2 techniques. In Figure 11,

parser represents the group of gzip, vpr, parser and
bzip2. When the boosting ratio is large, Cool Turbo
Boosting technique does not work well. In Figure 12,
vortex represents the group of gcc and vortex. Cool
Turbo Boosting achieves better performance regardless of
the boosting ratio. While determining the boosting ratio
requires future studies, the boosting ratio larger than 1.5
will be impractical. Because Cool Turbo boosting achieves
single-core performance improvement in the small
boosting ratio, it has the potential to further improve
performance.

Achieving much single-core performance improvement
requires further investigations.

5 Conclusions
This paper investigates what the best multicore
configuration is in the future. Five models of single-core,
many-core, heterogeneous multicore, scalable
homogeneous multicore, and dynamically configurable
multicore are compared with each other. From the
investigations, it is unveiled that single-core performance
is still important. Without the achievement, the
heterogeneous multicore processor cannot continue to
improve performance in the near future. This is the major
contribution of this paper.

In the latter half of the paper, we present the
preliminary case study that aims to improve single-core
performance. We named it Cool Turbo Boost technique.
When ILP in the program is small, the execution resources
in the processor are dynamically configured to be narrow
and thus its clock frequency is increased. From the detailed
simulations, we found the average performance
improvement of 5.0% is achieved. Unfortunately, this
achievement is not enough to continue multicore
performance improvement and the future studies are
strongly required.

The future studies regarding the heterogeneous
multicore processors include investigating the
heterogeneity to enhance dependability. Hardware defects
also cause heterogeneity. We are studying to utilize the
cores with defects to improve dependability. For example,
high performance is not always required for checking
correctness. Combining the idea with the findings in this
paper will explore a new horizon for dependable multicore
processors.

6 Acknowledgments
This work was supported in part by JSPS Grant-in-Aid for
Scientific Research (B) #20300019, and is supported in
part by JST CREST program and by the fund from Central
Research Institute of Fukuoka University.

7 References
Annavaram, M., Grochowski, E. and Shen, J. (2005):

Mitigating Amdahl's law through EPI throttling. Proc.
International Symposium on Computer Architecture,
Madison, WI, USA:298-309, IEEE Computer Society
Press.

Austin, T., Larson, E. and Ernst, D. (2002): SimpleScalar:
an infrastructure for computer system modeling. IEEE
Computer, 35(2):59-67.

Bahar, R.I. and Manne, S. (2001): Power and energy
reduction via pipeline balancing. Proc. International
Symposium on Computer Architecture, Goteborg,
Sweden:218-229, ACM Press.

Balakrishnan, S., Rajwar, R. Upton, M. and Lai, K. (2005):
The impact of performance asymmetry in emerging
multicore architectures. Proc. International Symposium
on Computer Architecture, Madison, WI, USA:506-517,
IEEE Computer Society Press.

Borkar, S. (2007): Thousand core chips: a technology
perspective. Proc. Design Automation Conference, San
Diego, CA, USA:746-749, ACM press.

Ekman, M. and Stenstrom, P. (2003): Performance and
power impact of issue-width in chip-multiprocessor
cores. Proc. International Conference on Parallel
Processing, Kaohsiung, Taiwan: 359-368, IEEE
Computer Society Press.

Hill, M.D. and Marty, M.R. (2008): Amdahl’s law in the
multicore era. IEEE Computer 41(7): 33-28.

Howard, J., et al. (2010): A 48-core IA-32
message-passing processor with DVFS in 45nm CMOS.
Digest of Technical Papers International Solid-State
Circuit Conference, San Francisco, CA, USA:19-21,
IEEE Press.

Intel Corporation (2008): IntelR Turbo Boost technology in
IntelR CoreTM microarchitecture (Nehalem) based
processors. White Paper.

Ipek, E., Kirman, M., Kirman, N. and Martinez, J.F.
(2007): Core fusion: accommodating software diversity
in chip multiprocessors. Proc. International Conference
on Computer Architecture, San Diego, CA,
USA:186-197, ACM Press.

Kumar, R., Tullsen, D.M., Jouppi, N.P. and Ranganathan,
P. (2005): Heterogeneous chip multiprocessors. IEEE
Computer 38(11): 32-38.

Morad, T.Y., Weiser, U.C., Kolodny, A., Valero, M. and
Ayguade, E. (2006): Performance, power efficiency and
scalability of asymmetric cluster chip multiprocessor.
IEEE Computer Architecture Letters 5(1): 14-17.

Sato, T. and Funaki, T. (2008): Dependability, power, and
performance trade-off on a multicore processor. Proc.
Asia and South Pacific Design Automation Conference,
Seoul, Korea:714-719, IEEE Computer Society Press.

CRPIT Volume 122 - Computer Science 2012

112

Thakkar, T. (2008): Intel Centrino Atom processor
technology-enabling the best internet experience in your
pocket. Proc. Symposium on Low-Power and
High-Speed Chips, Yokohama, Japan:329-337.

Wakasugi, Y., Sakaguchi, Y., Miyoshi, T. and Kise, K.
(2010): An efficient physical register management
scheme for CoreSymphony architecture. IPSJ SIG
Technical Report, 2010-ARC-188(3): 1-10 (in
Japanese).

Wang, Y., An, H., Yan, J., Li, Q., Han, W., Wang, L. and
Liu, G. (2009): Investigation of factor impacting
thread-level parallelism from desktop, multimedia and
HPC applications. Proc. International Conference on
Frontier of Computer Science and Technology,
Shanghai, China:27-32.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

113

CRPIT Volume 122 - Computer Science 2012

114

