
Improving Product Configuration in Software Product Line
Engineering

Lei Tan Yuqing Lin Huilin Ye Guoheng Zhang

School of Electrical Engineering and Computer Science
University of Newcastle,

University Drive, Callaghan, NSW, 2308,
Email: {lei.tan, guoheng.zhang}@uon.edu.au,
{yuqing.lin, huilin.ye}@newcastle.edu.au

Abstract

Software Product Line Engineering (SPLE) is a e-
merging software reuse paradigm. SPLE focuses on
systematic software reuse from requirement engineer-
ing to product derivation throughout the software de-
velopment life-cycle. Feature model is one of the most
important reusable assets which represents all design
considerations of a software product line. Feature
model will be used in the product configuration pro-
cess to produce a software. The product configuration
is a decision-making process, where all kinds of rela-
tionships among configurable features will be consid-
ered to select the desired features for the product. To
improve the efficiency and quality of product configu-
ration, we are proposing a new approach which aims
at identifying a small set of key features. The prod-
uct configuration should always start from this set of
features since, based on the feature dependencies, the
decisions made on these features will imply decisions
on the rest of the features of the product line, thus
reduce the features visited in the configuration pro-
cess. We have also conducted some experiments to
demonstrate how the proposed approach works and
evaluate the efficiency of the approach.

Keywords: Software Product Line; Feature Model;
Product Configuration; Minimum Vertex Cover.

1 Introduction

During the last decade, software product line (SPL)
engineering has emerged as an effective software de-
velopment methodology to promote systematic soft-
ware reuse. An SPL is a collection of software prod-
ucts that share common characteristics as a family.
The key idea of software product line engineering is
to discover and exploit commonalities across a prod-
uct family, thus to improve the reusability of various
software engineering assets. A successful SPL based
software development will improve the development
productivity and the quality of software, and signifi-
cantly reduce development cost and time-to-market.

Copyright c⃝2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

This work is supported by Australian Research Council under
Discovery Project DP0772799.

In addition to the commonalities shared by al-
l the products in an SPL, individual products may
somehow vary from each other. The variabilities a-
mong products in an SPL must be appropriately rep-
resented and managed. Feature oriented modelling
approaches have been widely used in software product
line engineering for this purpose. Features are promi-
nent and distinctive system requirements or charac-
teristics that are visible to various stakeholders in a
product line (Lee et al. 2002). A feature model spec-
ifies the features, their relationships, and the con-
straints of feature selections for product configura-
tion. A product in an SPL is defined by a unique valid
combination of selected features. Product configura-
tion is a process of selecting features for developing a
product in an SPL.

A feature model is usually represented as a tree in
which the variabilities of features are represented as
variation points (VPs). A variation point (Pohl et al.
2005) consists of a parent feature, a group of child
features, called variants, and a multiplicity specify-
ing the minimum and maximum number of variants
that can be selected from the variation point when
configuring a product. The selection of variants at a
variation point is not only constrained by the multi-
plicity but also by the dependencies between the vari-
ants at this variation point and the variants at other
variation points. Dependencies are the constraints on
configurations in a product line. The following two
dependencies have been defined by Kang et al. (1990).

1. Requires: If a feature requires, or uses, anoth-
er feature to fulfil its task, there is a Requires
relationship between these two features.

2. Excludes: If a feature has conflicts with anoth-
er feature, they cannot be chosen for the same
product configuration, i.e. they mutually exclude
each other. There is a bi-directional Excludes re-
lationship between two features.

Many other types of dependencies have been
considered as well, such as Impact, Mandatory,
Optional, Alternative and Or (Benavides et al. 2010,
Ye et al. 2008). It does not seem that there is an
agreeable industry standard for the types of depen-
dencies to be included in the feature model.

A valid feature model describes the configuration
space of a system family (Czarnecki et al. 2005). Dur-
ing product configuration process, application engi-
neers specify member products by selecting the de-
sired features from a feature model based on customer
requirements and constraints such as feature depen-
dencies. However, the traditional product configura-
tion becomes a time-consuming and error-prone task
because of the large number of features and feature
relationships. In literature, several approaches have

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

125

been proposed to improve the traditional product
configuration method. Czarnecki et al. (2005) pro-
pose staged configuration which allows incremental
configuration of cardinality-based feature model by
performing a step-wise specialization of feature mod-
els. White et al. (2009) provide automated support
of staged configuration based on constraint satisfac-
tion problem (CSP). Mendonca et al. (2008) develop
a collaborative product configuration method which
decomposes a feature model into several configuration
spaces. Each type of stakeholder makes feature selec-
tion in a corresponding configuration space and finally
the selected features in different configuration spaces
are merged to get the final configuration. Loesch et al.
(2007) simplify product configuration by reclassifying
variable features based on their usage and by restruc-
turing feature model to simplify variabilities. The
above proposed approaches have improved product
configuration process from different aspects.

In this paper, we propose an approach to improve
the efficiency of product configuration. The idea of
our approach is that, by taking into account of fea-
ture dependencies, it is possible to identify a small set
of variation points from a feature model. Selecting
variants from this variation point set implies the vis-
iting of all the variation points in the feature model,
thus we have reduced the number of variation points
to visit during the configuration process. As a result,
the number of decisions and rollbacks in the config-
uration process are significant reduced. We have not
found any other works along the same line and we
believe our method is an innovative approach.

The remainder of the paper is organized as fol-
lows. Section 2 and 3 define the basic concepts and
propose our approach. Section 4 discusses the adapt-
ed simulated annealing algorithm that is the core of
the proposed approach. In Section 5, we use an ex-
ample to demonstrate how our approach works. In
Section 6 and 7 we present experiments results which
demonstrate the efficiency of our proposed approach.
Section 8 concludes the paper and discusses future
works.

2 Feature Model and Product Configuration

Feature Model is a key artifact of the software prod-
uct line engineering. It tells the commonalities and
differences among the member products. As we have
already mentioned, various types of relationships a-
mong the features have been considered to be includ-
ed in the feature model, many of them are not pre-
cisely defined. Indeed, the relationships among the
features are complex and hard to describe.

For example, the “Requires” and “Excludes” rela-
tionships are simple and most understandable ones,
however, the “Impact” relationship is somehow more
complex. Feature A has impact on feature B could
mean several things, e.g. the selection of feature A
suggests in certain degree of selection of feature B, or
the implementation of feature A depends on the im-
plementation of feature B etc. So, the “Impact” re-
lationship is defined less precisely and harder to deal
with.

If we only consider the simple relationships, i.e.
the relationships we could define precisely, then many
mathematical approaches could be involved to im-
prove the efficiency of software engineering process.
Mannion (2002) uses propositional logic expressions
to detect “void feature model” errors and Zhang et al.
(2004) develop a propositional logic-based approach
to verify partially customized feature models at any
binding time. For detecting dead features and false

optional features, Czarneck et al. (2005) transform a
feature model into an CSP problem which includes
a set of variables and a set of constraints over the
variables and then uses CSP solvers to automate the
identification process. Trinidad et al. (2008) further
develop a CSP-based approach to explain the identi-
fied feature model errors. To improve the efficiency
of CSP-based approaches, we have developed a con-
straint propagation-based method to identify and ex-
plain dead features and false variable features (Zhang
et al. 2011). We can use the above mentioned ap-
proaches to obtain a valid feature model by detecting
and correcting feature model errors and then perform
product configuration in the valid feature model.

As we would like to improve the efficiency of prod-
uct configuration by applying some mathematical ap-
proaches, we need to limit us to the dependencies
which can be defined properly. In this paper, we only
consider the “Requires” and “Excludes” dependen-
cies. We also like to point out that our approach
is extendable to cover other types of dependencies if
they are defined accurately and the logical operations
involving these dependencies are defined precisely.

When configuring a product, we usually need to go
through the feature model and make a configuration
decision at each variation point to select variant(s).
Usually a depth-first traversal of a feature tree will be
employed to make decision at each variation point.
Assuming that there are two variation points, VP1
and VP2, we first encounter VP1 during the traversal
and select a variant at VP1. If the selected variant
at VP1 has “Requires” dependency with a variant at
VP2, then the required variant at VP2 has to be s-
elected based on the “Requires” dependency. Thus,
we do not need to visit this variant at VP2 later. In
this case a selection of variants at one variation point
may already cover the selections at other variation
points. If those variation points with greater cover-
age are processed first, obviously, there will be less
number of decisions to make, thus the configuration
process is more efficient. Another advantage of do-
ing configuration this way is that we can reduce the
mistakes made during configuration. For the above
mentioned example, assume that we make configura-
tion decision at VP2 first and mistakenly decide not
to include this variant in the final product. We will
not realize this is a wrong decision until we make con-
figuration decision at VP1. In this case, we have to
go back to VP2 again to correct the wrong selection
made before. And in a worse situation, the correc-
tions might propagate, thus could be time consuming
to fix. Thus, in terms of configuration efficiency and
quality, it is better to visit VP1 first in the configu-
ration

The sequence of the variation points following
which we make our configuration decisions has sig-
nificant impact on the efficiency of product configu-
ration. Getting the correct sequence is the key idea
of our approach.

3 The Proposed Approach

As discussed in the precede section, the sequence of
variation points follow which we select the variants is
important for improving the efficiency of product con-
figuration. The sequence of the variation points can
be determined based on a parameter which we cal-
l Configuration Coverage. Configuration Coverage
(CC) of a variation point refers to what extent a con-
figuration decision made at a variation point covers
the configuration decisions of the remainder variation
points in a feature model. To improve the efficiency of

CRPIT Volume 135 - Computer Science 2013

126

configuration process, it is crucial to identify a mini-
mum set of variation points, where the decisions made
at this set of variation points cover the decisions to be
made at all the variation points in a feature model.
This set of variation points will be sorted based on
their configuration coverage and we will start mak-
ing configuration decision at the variation point with
the biggest configuration coverage. However, as the
feature model could be very complex, and the feature
dependency model could be hard to trace, it is not
always straightforward to find such a minimum set of
variation points for product configuration. We pro-
pose to employ some well studied mathematical tech-
niques to help identify the minimum variation point
set from a feature model. Before we present the pro-
posed approach, we first define some measurements
used in the approach.

As mentioned, each variation point consists of a
set of variants and a multiplicity. For a variant
v, we define two measurements, one is called the
Positive Coverage PC(v), another one is called the
Negative Coverage NC(v). When the variant v is
included in a product configuration, the positive cov-
erage of variant v (PC(v)) is a set of variable fea-
tures which will be automatically included or exclud-
ed based on their dependent relationships with vari-
ant v. Similarly, when the variant v is excluded in a
product configuration, the negative coverage of vari-
ant v (NC(v)) is a set of variable features which will
be automatically included or excluded based on the
multiplicity constraint between these variants. To
work out the positive coverage and negative coverage,
we need to examine the dependency relationships a-
mong the variants in a feature model. For example,
if variant v requires variant w, then we know w is
in PC(v), furthermore, if w requires variant u, then
u is also in PC(v) since if v is included in the final
product, then u will be included as well. If variant t
requires variant v, then we know t is in NC(v), since
if v is not included in the final product, then t can
not be included as well.

For a variation point in a feature model, the mul-
tiplication rule restricts the selection of the variants
associated with the variation point. For example, a
multiplicity of 1..n means only up to n variants can
be selected in the final product. For all the variants
associated with a variation point, we call a subset of
variants a valid selection if it obeys the multiplici-
ty. The complement of a valid selection is the set
of variants that are not included in the selection at
the variation point. When a certain valid selection
has been made at a variation point, the configura-
tion coverage of the selection is the union of all the
positive coverage of the variants in the valid selection
and all the negative coverage of the variants in the
complement of the selection. Below is an example
to illustrate how do we calculate these parameters.
Note a variation point may have different configura-
tion coverage when different valid selections are made
at the variation point.

Included in Fig. 1 is a fraction of a feature model.
There are four variants v1, v2, v3 and v4 associated
with the variation point V P , and the multiplicity re-
stricts the selection, i.e. only up to two variants can
be included in the final product. From the dependen-
cy relationship Fig. 2, we know that:

PC(v1) = {u1, u3}, NC(v1) = ∅, PC(v2) =
{u2, u4, u7, u8}, NC(v2) = ∅, PC(v3) = {u5},
NC(v3) = {u6}, PC(v4) = {u4, u8} and NC(v4) =
{u6}.

All possible selections based on the multiplicity at
the V P are listed below,

v1, v2, v3, v4, v1 ∪ v2, v1 ∪ v3, v1 ∪ v4, v2 ∪ v3,

v1

VP

v2 v3 v4

1..2

Figure 1: A Variation Point (V P) and its Variants.

require

v1 v2 v3 v4

u1 u2 u3 u4 u5 u6

require require require requirerequire

require

u7 u8

require require

Figure 2: The Dependencies among Variants.

v2 ∪ v4, v3 ∪ v4.
The configuration coverage (CC) of each selection

is listed as following:

CC(v1) = PC(v1) ∪NC(v2) ∪NC(v3) ∪NC(v4)

= {u1, u3, u6},
CC(v2) = {u2, u4, u7, u8, u6},

CC(v3) = {u5, u6}, CC(v4) = {u4, u8, u6},
CC(v1∪v2) = PC(v1)∪PC(v2)∪NC(v3)∪NC(v4)

= {u1, u2, u3, u4, u7, u8, u6},
CC(v1 ∪ v3) = {u1, u3, u5, u6},
CC(v1 ∪ v4) = {u1, u3, u4, u6},

CC(v2 ∪ v3) = {u2, u4, u7, u8, u5, u6},
CC(v2 ∪ v4) = {u2, u4, u7, u8, u6},

CC(v3 ∪ v4) = {u5, u6}.
The maximum from the above sets is the CC

when v1 and v2 are selected at this variation point,
we call this Maximum Configuration Coverage
(MAXCC). The Configuration Coverage of a varia-
tion point is the MAXCC of all the valid selections
at the variation point. If a selection of variants at a
variation point can result in MAXCC, we call the s-
election a Max Coverage Selection (MCS). For the
above example, MCS = v1 ∪ v2, MAXCC = CC
(v1 ∪ v2)= {u1, u2, u3, u4, u7, u8, u6}.

The MAXCC of a variation point indicates how
much a decision made at the variation point covers
the decisions at the other variation points of a feature
model. The bigger the coverage of a variation point,
the (potentially) more variant features will be includ-
ed/excluded as the result of including or excluding
the variation point, therefore, it is more important to
visit the variation point earlier in the configuration
process. Using the MAXCC of variation points, we
can construct a small set of variation points from a
feature model, the union of whose MAXCC will cov-
er all the variant features in the feature model. Soft-
ware engineers should start with this set of variation

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

127

points when configuring a product from the feature
model. This set of variation points represents the key
decisions for configuring a member product. Focusing
on this set of variation points will reduce the config-
uration effort.

One thing we would like to point out is that, in
the configuration process, the MAXCC of a varia-
tion point might not correspond to the CC of the ac-
tual selection. i.e. the actual selection might not give
the MAXCC. The MAXCC of a variation point on-
ly indicates the potential importance of the variation
point in the configuration process.

Our approach works like this, we firstly work out
the MAXCC of every variation point in the feature
model and then calculate the smallest set of variation
points that covers the whole feature model. In other
words, the union of the MAXCC of this set of vari-
ation points includes all the variants of the feature
model. The software engineers could start from this
set of variation points to configure the final product.
Once a decision is made on a variation point (or a set
of variation points), we then work out the coverage
of the selection(s), this is a straightforward task as
we already know the positive coverage and negative
coverage of each variable feature. For the rest of the
uncovered features in the feature model, we will then
repeat this process until all the variants are covered.

To identify a minimum set of variation points
which covers a feature model, there are many ways to
do it. One of the simple but less optimal approach-
es would be using greedy algorithm, i.e. selecting the
variation points with the biggest coverage until the u-
nion of the coverage covers the feature model. A more
precise approach is to model the problem as the min-
imum vertex cover problem and use some approxima-
tion algorithm to solve the problem, minimum vertex
cover problem is a well studied mathematic problem,
there are many approximation algorithms we could
use. In the following section, we will discuss this top-
ic.

4 Vertex Cover Problem and Simulated An-
nealing Algorithm

Before we discuss the vertex cover problem, we first-
ly describe how do we transfer a feature model into
a direct graph. The transformation is quite straight-
forward, every variable feature in the feature model
become a vertex in the resulting graph and the de-
pendencies between two variable features become the
arcs in the resulting graph. For example, if feature
A requires feature B, then there are two vertices in
the resulting graph, say vertex A and vertex B. And
also there is an arc goes from vertex A to vertex B in
the graph. If feature A excludes feature B, then there
will be two arcs between vertex A and B. Once we can
model the feature model into a direct graph, we can
then apply some discrete optimization techniques.

In graph theory terms, a “vertex-cover” of a direct-
ed graph (digraph) is a set of vertices such that each
arc of the digraph is incident to at least one vertex
of the set. A minimum vertex-cover is a vertex-cover
of the smallest size. The problem of finding a mini-
mum vertex-cover is a classical optimization problem
in computer science. This problem is a typical exam-
ple of a NP-hard optimization problem and an opti-
mal solution is very hard to obtain in general. Nor-
mally randomized algorithms become the first choice.
For example, Simulated Annealing and Genetic Algo-
rithm have been used very often in solving the vertex
cover problem. The algorithms are efficient and very
often can produce reasonable good solutions.

The problem we are dealing with here is very sim-
ilar to the classical Vertex Cover problem. The key
difference is the coverage in the classical minimum
vertex cover problem is the immediate neighbor of
the node, where in our problem, the coverage can ex-
tend to the nodes beyond the immediate neighbor.
However, this difference does not introduce much dif-
ficulties into the original problem. We believe that a
Simulated Annealing algorithm would still be suitable
for solving our problem, as the algorithm can produce
reasonable good solutions in a given time frame.

Simulated Annealing (SA) is a well known ran-
domized algorithm in approximating optimal solu-
tions. The technique was proposed by Metropolis
et al. (1958) and then been further developed for com-
binatoric optimization by Pincus (1970).

The technique was originally used as a means of
finding the equilibrium configuration of a collection
of atoms at a given temperature. Analogy with the
physical process, each step of the SA algorithm re-
places the current solution by a random “nearby” so-
lution, chosen with a probability that depends on the
difference between the solutions and on a global pa-
rameter T (called the temperature), that is gradually
decreased during the process. The current solution
changes almost randomly when T is large, but in-
creasingly “downhill” as T goes to zero. Occasional-
ly, we allow the current solution to go worst, which
prevents the method from becoming stuck at local
minimum.

The pseudo code of the Simulated Algorithm 4.1
for solving the minimum vertex cover problem is
given below. In the inner “for loop”, an original
vertex-cover is created at random using “Breadth-
First Search” (BFS). BFS is a graph searching al-
gorithm that begins at a root vertex (also selected at
random base) and explores all the neighboring ver-
tices. Then for each of those neighboring vertices,
it explores their unexplored neighbor vertices, and so
on, until it exhausts all the vertices. Once the for loop
terminates, we have an vertex cover which might not
be optimal. Next, we start the SA process, staring
from the vertex-cover found before, we shall random-
ly choosing a vertex from the original vertex-cover to
be replaced, in order to obtain a new vertex-cover. If
a smaller vertex-cover is produced, then we continue
from the new vertex-cover. Otherwise, with certain
probability, say e−∆/T , we still continue from the new
vertex-cover, where T is a global time-varying param-
eter called the Temperature and ∆ is the increase in
cost (i.e., |V C(G)| − |V Cmin(G)|). A limited number
of iteration is accepted at each Temperature level.
The optimality of the results depends on the number
of iterations. The more iterations we run, the results
we found are closer to the optimal results, however,
the more running time it will consume.

The HSAGA algorithm is an improvement of the
standard SA algorithm and was introduced by Tang
et al. (2008). The algorithm combines the Genetic Al-
gorithm (GA) and Simulate Annealing (SA) algorith-
m. The HSAGA algorithm have multiple iterations,
in each iteration, we start from multiple instances,
i.e, solutions or partial solutions, and we apply SA
on these instances to produce the offsprings. The off-
springs will then be crossed over in the GA algorithm
and producing instances for next iteration. The key
idea is to balance the effort in local optimization and
multiple probing. The algorithm has demonstrated
its efficiency in several classical discrete optimization
problems, for more details on the HSAGA algorithm,
please see works by Tang et al. (2008).

We have applied the HSAGA algorithms in finding

CRPIT Volume 135 - Computer Science 2013

128

the minimum cover of the feature model. We have
modified the algorithm and the algorithm will start
from a random selected variable feature in the feature
model, since we know it is coverage, i.e. the set of
vertices covered by the vertex, so we can remove the
vertex and also the set of vertex it covers, and then we
randomly select another vertex and repeat the same
process. When this process finishes, we will have a
cover of the feature model. We will produce multiple
covers in the same way and then apply the HSAGA
algorithm on the instances. We would like to note
that the HSAGA do not out perform the standard
SA algorithm if the instance is small, for example, if
the graph has less than a few thousand nodes.

Algorithm
4.1: Simulated Annealing(G)

comment: T = 1.0, CR = 0.75, V Cmin(G) = {}
while No change in VCmin(G)

do



for i← 0 to Iteration-length

do


Generate a VC(G)
∆← |VC(G)| − |VCmin(G)|
if ∆ < 0
then VCmin(G)← VC(G)
else if random[0; 1) < e−∆/T

then VCmin(G)← VC(G)
T=T*CR;

return (VCmin(G))

• V C(G) - A vertex-cover of a directed graph G.

• V Cmin(G) - the minimum vertex-cover of a di-
rected graph G.

• T - Temperature, usual the initial value of Tem-
perature is 1.0.

• CR - Cooling-rate, typical values for Cooling-
rate are in the range from 0.75 to 0.98.

• Iteration-length - A limited number of iteration
is accepted at each Temperature level. For better
results, we use 100∗|V (G)| as the maximum num-
ber of iteration, where V (G) is the total number
of vertices in G.

In this paper, we use 100∗|V (G)| as the maximum
number of iteration. Once the maximum number of
iteration has been reached, the temperature is lowered
and a new iteration begins. If a more accurate solu-
tion is expected, then the number of iteration should
be increased.

5 Case Study

In this section, we will introduce a case study to illus-
trate how our approach works. In Fig. 4, we present
a modified version of a Library System feature model
based on our previous work (Lin et al. 2010), where
19 variant points are added to make the feature model
non-trivial. As we can see, there are over 60 variable
features under 42 VPs. Each variation point is repre-
sented by a name, such as VP1 and VP2. A hollow
circle indicates the variation point that is linked to
a set of variants. Features linked to a solid circle in
the figure are mandatory features. The dependencies
among the variants are presented in Table 1. Each
variant listed in the table is assigned with a Vari-
ant ID, called V ID. The “Requires” and “Excludes”
columns represent the dependencies among the vari-
ants. We use this dependency information to create

a directed graph shown in Fig. 3. In this directed
graph each variant is represented as a node labeled
by its V ID, dependencies among the variants are
represented as arcs among them. For example, the
“Requires” relationship between the variant “Reward
Point” (V ID =11) and the variant “Reward Policy”
(V ID=3) shown in Table 1 corresponds to an arc
from the node 11 to 3 in Fig. 3.

Using this directed graph, we calculate the
MAXCC for each variation point. Table 2 shows the
MAXCC of each variation point and the correspond-
ing MCS. The MCS column in the table means
the corresponding selection of variants that results in
MAXCC for the variation point. For example, for
V P7, the MCS is 4∪¬5, it means that if we include
variant 4 but do not include variant 5, this selection of
variants at V P7 will result in the inclusion/exclusion
of another 4 variants from other variation points as
shown in the table. This set of variants is MCS of
V P7.

Based on the MAXCC of each variation point, we
can find a set of variation points which covers the fea-
ture model, and the set is the smallest as possible. If
the MCS of each variation point in this set is select-
ed the whole feature model will be covered, i.e. we
do not need to go through other variation points for
the product configuration. If in the configuration pro-
cess, at a variation point, the selection is not the one
giving the MAXCC, then we will have to recalculate
the covering set.

A minimum covering set for the Library software
product line has been identified and sorted into a se-
quence in terms of the size of their CC which are
shown in Table 3. We can see that the variation
points V P35, V P9, V P2, V P8, V P11, V P10, V P30,
V P15, V P6, V P27, V P34, V P31, V P40, V P41 and
V P39 covers all the variants of the feature model. In
this particular feature model, some of V P s do not
have any dependency relationships with other vari-
ants except their own parent or children variants, such
as V P4, V P5, V P26, V P32 and V P42, which are not
listed in Table 2 and we will deal with these V P s after
we processed the others.

Since V P35 has the biggest coverage in the se-
quence, so software engineers should start the con-
figuration by examining the variants associated with
the V P35 and making selections. Assuming that the
selection of variants at V P35 is the same of its MCS,
the configuration will continue to select variants from
V P9 that is the second in the sequence. The con-
figuration process is going to continue until all the
variation points in the sequence have been visited, we
then get a product configuration. This is an ideal
situation where the MCS of each variation in the se-
quence is selected. However, if the selected variant
set at a variation point is not its MCS then the cov-
ering set should be recalculated. Suppose that the
selection of variants at V P8 is 6 that is not MCS of
V P8, in this case, we will first work out the coverage
of the new selection, which is {5, 46}, and remove this
set of variants from the directed graph we have gen-
erated at the beginning of this section. Then we will
recalculate the cover for the left over variant features.
This cover is shown in Table 4.

Using MAXCC of a variation point as its Config-
uration Coverage works for those large feature models
which contain dense dependency relationships. How-
ever, for small and simple feature models, we rec-
ommend to use the Average CC instead. The rea-
son is that, for small and simple feature model, very
often the MAXCC of a variation point significant-
ly larger than the CC of the other selections, giv-
ing somehow false indication of how important is

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

129

Table 1: The Dependency Relationships among Variants in Feature Model.
VID Variant Requires Excludes VID Variant Requires Excludes
0 Payment 31 Overdue Fee 0,2,12,17
1 eBook 41,51 48 32 Damage Cost 0,2
2 Fee Policy 33 Reserve Fee 0,2
3 Reward Policy 34 Online Reserve 51,57 48
4 Registration Fee 0,2 35 Online Cancel 51,57 48
5 Issue Library Card 46 36 Overdue Notification 12,17
6 Replace Library Card 5,46 37 Fee Notification 2,12,17
7 Renew Fee 0,2 38 Email 10
8 Phone Number 39 Post 9
9 Address 40 SMS 8
10 Email Address 41 Digital Library 51,53 48
11 Reward Point 3,12 42 On-site Explore 51,57 48
12 Borrowing History 43 Web Explore 51,57 48

13
Update Phone

8 44 On-site Print 50 48
Number

14 Update Address 9 45 Download 51,57 48
15 Update Email Address 10 46 Library Card Device
16 Loan Fee 0,2 47 Self-check Device

17 Record Check 12 48 Non-Network
1,22,24,25,26,

28,29,34,35,41,42,
43,44,45,49,57

18 Pops-up Reminder 12 49 Network Based 48
19 Loan Restriction 12,17 50 LAN Based
20 Front Desk 12,17,18 51 Internet Based 53
21 Self-check 12,17,18,47 52 Wireless Device
22 Web Search 51,57 48 53 Network Security
23 View Account 12 54 Message Encryption
24 Website 51,57 48 55 Use Library Card 5,46
25 On-site Computer 50 48 56 Use Digital Certificate 59
26 Inter-Library 48 57 User Web Interface 51,53 48
27 Onsite Loan 58 Credit Card 54
28 Web Request 51,57 48 59 Digital Device
29 InterLibrary Search 56 30,48 60 Firewall
30 External Database 29 61 Proxy Server

Table 2: Max Configuration Coverage of Each VP.

VPID MCS MAXCC VPID MCS MAXCC

VP1 ¬0 {4,7,16,31,32,33} VP22 35 {48,51,57}
VP2 ¬2 ∪ ¬3 {4,7,11,16,31,32,33,37} VP23 36 ∪ 37 {2,12,17}
VP3 1 {41,48,51} VP24 38 ∪ 39 ∪ 40 {8,9,10}
VP6 11 {3,12} VP25 23 {12}
VP7 4 ∪ ¬5 {0,2,6,55} VP27 24 ∪ 25 {48,50,51,57}
VP8 6 ∪ 7 {0,2,5,46} VP28 26 {48}

VP9 ¬12 {11,17,18,19,20,
VP29 28 {48,51,57}

21,23,31,36,37}
VP10 ¬8 ∪ ¬9 ∪ ¬10 {13,14,15,38,39,40} VP30 29 {30,48,56}
VP11 13 ∪ 14 ∪ 15 {8,9,10} VP31 41 {48,51,53}
VP12 16 {0,2} VP33 42 ∪ 43 ∪ 44 ∪ 45 {48,50,51,57}
VP13 ¬17 {19,20,21,31,36,37} VP34 ¬46 ∪ ¬47 ∪ ¬52 {5,6,21,52,55}

VP14 19 {12,17} VP35 48
{1,22,24,25,26,28,29,34,
35,41,42,43,44,45,49,57}

VP15 21 {12,17,18,47} VP36 50 ∪ ¬51 {1,22,24,28,34,35,
41,42,43,45,57}

VP16 ¬18 {20,21} VP37 ¬57 {22,24,28,34,35,42,43,45}
VP17 22 {48,51,57} VP38 ¬53 {41,51,57}
VP18 31 {0,2,12,17} VP39 ¬54 {58}
VP19 32 {0,2} VP40 55 ∪ 56 {5,46,59}
VP20 33 {0,2} VP41 58 {54}
VP21 34 {48,51,57}

the variation point to the configuration process. So
the Average CC gives better guide in the process.
Average CC is defined as the set which includes the
variants that appear more than once in the CC of
all the valid selections at the variation point. For
example, there are four possible selections at V P2,
¬2 ∪ ¬3 = {4, 7, 11, 16, 31, 32, 33, 37}, 2 ∪ 3 = ∅,
¬2 ∪ 3 = {4, 7, 16, 31, 32, 33, 37}, 2 ∪ ¬3 = {11}. So
the average CC is {4, 7, 16, 31, 32, 33, 37}.

We have tested our approach on this specific li-
brary system feature model. We also conducted ex-

Table 3: A Sequence of VPs which covers Feature
Model.

VP MCS MAXCC

VP35 48
{1,22,24,25,26,28,29,34,
35,41,42,43,44,45,49,57}

VP9 ¬12 {11,17,18,19,20,21,23,31,36,37}
VP2 ¬2 ∪ ¬3 {4,7,11,16,31,32,33,37}
VP8 6 ∪ 7 {0,2,5,46}
VP11 13 ∪ 14 ∪ 15 {8,9,10}
VP10 ¬8 ∪ ¬9 ∪ ¬10 {13,14,15,38,39,40}
VP30 29 {30,48,56}
VP15 21 {12,17,18,47}
VP6 11 {3,12}
VP27 24 ∪ 25 {48,50,51,57}
VP34 ¬46 ∪ ¬47 ∪ ¬52 {5,6,21,52,55}
VP31 41 {48,51,53}
VP40 55 ∪ 56 {5,46,59}
VP41 58 {54}
VP39 ¬54 {58}

periments on several random generated feature mod-
els. All experiments generated good results on cor-
responding feature models. According to the results,
our approach reduces the configuration efforts spent
on feature decisions significantly. In next two section-
s, we will introduce the processes of our experiments
and explain the related results.

CRPIT Volume 135 - Computer Science 2013

130

20

373332311674

17 12 18

11 19 20 21 23 36

473

48 49

35 22 24 25 26 28 29 34 1 41 42 43 44

5751

53

50

45

30 56

8 9 10

13 14 15

38 39 40

59

46

6 5 55

54 58

Figure 3: Dependencies among Variants in Library Systems.

Table 4: A Sequence of VPs after Decision made at
VP8.

VP MCS MAXCC

VP35 48
{1,22,24,25,26,28,29,34,
35,41,42,43,44,45,49,57}

VP9 ¬12 {11,17,18,19,20,21,23,31,36,37}
VP2 ¬2 ∪ ¬3 {4,7,11,16,31,32,33,37}
VP11 13 ∪ 14 ∪ 15 {8,9,10}
VP10 ¬8 ∪ ¬9 ∪ ¬10 {13,14,15,38,39,40}
VP30 29 {30,48,56}
VP15 21 {12,17,18,47}
VP6 11 {3,12}
VP27 24 ∪ 25 {48,50,51,57}
VP34 ¬46 ∪ ¬47 ∪ ¬52 {5,6,21,52,55}
VP31 41 {48,51,53}
VP40 55 ∪ 56 {5,46,59}
VP12 16 {0,2}
VP41 58 {54}
VP39 ¬54 {58}

6 Experiment Results

We had conducted an experiment by using the Li-
brary System feature model. Firstly, we developed
the requirement documents for two library systems
based on the feature model. One with our universi-
ty library in mind, the library is not only available
for students and staff, but also available for public
access. The other library system is a medium sized
community library for local residents. The university
library is more complex than the community library,
for example, the digital library access is part of the
university library but not for the community library.

The requirement documents of two systems serve
two purposes, 1) to give users some general ideas of
what features the library system might include, 2) to
control the scope of the final product. Because the
final products are configured using the same feature
model, we presume that, for a given library require-
ment, the products will be similar, i.e. with minor
differences in terms of features included. If one of
the final products been configured in the experiment

is significantly different from other products, for in-
stance, contains a lot more features than the average
case, then it is not a valid sample and we will reject
the product. The reason to do so is to have some con-
sistency among the configured products so we could
compare the result. Furthermore, as the economical
concerns, such as software development cost, are not
included in the feature model, the configured product
could be unrealistic and having too many or too little
features, thus we have reject these products in our ex-
periment. To better simulate the real world situation,
where the requirements are very often not clear and
exact, some vague descriptions and even misleading
information are introduced to the requirement docu-
ments.

The experiment consisted of two focus groups with
20 university students. Users were picked random-
ly without SPL experience to make sure they are on
the same level of background. The basic idea of S-
PL and purpose of experiment were explained to all
the users in two groups. One group used tradition-
al configuration method (depth-first traversal to get
through each variant) and the other group used our
approach based on variant points sequence generated
from Average CC. The experiment was carried out
in pairs, i.e. one user from each group. Based on
the functional and non-functional requirements listed
in the requirement document, users made their se-
lections on the feature model. Each user is given a
computer program that could record all the decisions
he/she have made, when the computer program iden-
tified the conflicts among the selected features, the
computer program will remind the experiment con-
ductor who then explains the conflict and help user
to change their selections. If there was anything user
feels unclear about, then he/she could ask questions
during the experiments, the information was shared
with the peer in the experiments. This parallel pro-
cess was able to provide a direct comparison of two
methods. For each group, 50% of users configured
the university library system and the other half con-
figured the community library.

Several key data sets were collected during exper-
iment process. Including the number of Decisions
(users’ selection of variants), the number of Rollback-
s (users has realized that they had made a mistake
and modified their previous selection) and Time con-

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

131

sumed for configuration. The number of Decisions
would be the most important figure to demonstrate
the efficiency of our approach.

Considering the variant features involved in the
dependency relationships, they form trees/chains. In
our approach, configuration decision is always made
at the root of the tree/chain, thus, less number of
Rollbacks. Rollback represents errors in the config-
uration, where the impact of one improper selection
does not reflect immediately but afterwards. It seems
little happened in our approach. Time is a parameter
to support configuration procedure somehow. It only
reflects the process to some extent because there are
so many factors may influence the time consumed.
For instance, users’ understanding of the features.

Table 5 shows critical parameters collected for ran-
domly selected 10 pairs of users in our experiment.
Data for each pair is included in a row in Table 5 for
comparison. Rollbacks did not happen at all for the
user using our approach. Time consumed by user-
s using our approach is much less than group using
traditional approach when configuring the same prod-
uct. From the “Decision” column of two groups, we
can see the gaps between this two approaches are ob-
vious even for this simple feature model. Figures in
this experiment may vary slightly but we can still see
the tendency. Our approach definitely has advantage
in terms of the number of decision to make and the
number of Rollbacks. Table 6 shows average value
comparison of two approaches.

Table 5: Tradition Configure Group(left) and Opti-
mization Configure Group(right).

User No. Decision Rollback Time(mins) User No. Decision Rollback Time(mins)
1 42 0 30 2 34 0 23
3 43 1 25 4 34 0 21
5 42 0 23 6 34 0 20
7 42 0 28 8 33 0 22
9 43 1 30 10 34 0 26
11 42 0 28 12 32 0 24
13 42 0 24 14 33 0 16
15 42 1 20 16 33 0 15
17 44 2 28 18 32 0 22
19 42 0 30 20 33 0 24

Table 6: Average Figures Comparison.

Group Average steps Average time Average decision reduced(%)
Traditional 42.4 26.6

21.7%
Optimization 33.2 21.3

7 Experiment on Random graphs

In the literature (Segura et al. 2010), there are some
works using random generated feature model as the
testing environment. Here we have also conducted an
experiment on random generated feature model. The
random feature model is generated in three steps, first
a random graphs is generated based on the simple ran-
dom graph model by Erdos and Renyi (Erdos et al.
1959), where we start with a fixed set of vertices and
add edges to the graph based on a edge probabili-
ty parameter. In here, a vertex represents a variable
feature, an edge represents a dependency relationship
in a graph. In the second step, we randomly gener-
ated the relationships between the features. Excep-
t “Requires” and “Excludes” relationships, we also
included parent-children relationships and the mul-
tiplicity constraints between variants in the random

feature models. Of cause, it is easy to see that here,
very likely, large number of conflicts will be generat-
ed, so we have to run through the third step, where
we go through all the cycles in the generated graphs
to check for inconsistency. As explained before, a cy-
cle possibly represents a conflict, therefore, we have
to randomly remove an edge a cycle to destroy the
cycle, thus to remove the conflict. Once we complete
these three steps, we then have a valid feature model
for configuration.

The configuration process is automated as well,
a computer program randomly selects a feature and
then check if the selection conflicts with previous de-
cisions, if yes, then the program will make a different
selection or randomly change the previous decision-
s to remove the conflicts. The program repeats the
process until all the features are visited. When using
our proposed approach, there will be no rollbacks.

Obviously, the final products generated by the ran-
dom configuration can be quite different. i.e. a prod-
uct could contain large number of features while the
others might contain significantly less number of fea-
tures. To maintain the similarity of the final products,
we reject those products (i.e. invalid products) which
contain more than 85% of features or less than 50%
of features of the feature model.

We have conducted our experiments on a series of
random systems. We have generated three random
systems of 800 nodes, 2000 nodes and 3000 nodes of
different edge probabilities. We then configure 1000
valid products using each of the configuration meth-
ods on the three random systems. And we include the
exact numbers of the decisions of our approach/the
traditional approach in Table 7 below.

Table 7: Experiment Results of Random Systems.

Edge Random graph Random graph Random graph
Probability with 800 nodes with 2000 nodes with 3000 nodes

0.01 264/413 330/473 361/498
0.02 219/307 255/374 298/411
0.1 124/169 145/186 167/199
0.2 91/112 122/157 133/145

The result is displayed in Table 7. Columns rep-
resent three random systems of 800, 2000 and 3000
nodes. Rows indicate edge probability when creating
the random graph and corresponding cells represen-
t the exact decision numbers of both approaches (i.e
our approach vs traditional). With the growth of the
edge probability, we can see that the decisions made
between two approaches becoming closer. This is be-
cause that the number of edges is growing, and the de-
pendencies relationships among the variation points
become dense, thus more likely the random selection
has large coverage, and the gaps decrease. From Ta-
ble 7, it is quite clear that using our approach is more
efficient in the product configuration.

8 Conclusions and Future Works

In this paper, we have presented an approach to im-
prove the efficiency of product configuration in soft-
ware product line. Using this approach, a set of vari-
ant points (VPs) is identified from the feature model.
This set only contains small number of VPs but the
union of CC of these VPs will cover all the variants of
the feature model. To configure a product, instead of
making configuration decision at every VP of the fea-
ture model, we only go through small number of VPs

CRPIT Volume 135 - Computer Science 2013

132

to make configuration decisions. In this way, the num-
ber of decisions is reduced, thus the effort of decision
making is saved. Furthermore, using this approach,
it is less likely to make mistakes in the configuration,
as the we have already incorporated the dependency
relationships among the variants in our approach.

However, as we have pointed out, that our ap-
proach only considers two simple relationships among
the variable features, therefore, how to extend our ap-
proach to cover other types of relationships is a chal-
lenge and we would like to consider this in our fu-
ture works. Meanwhile, we would like to perform our
experiments on some publicly available and complex
feature models to further evaluate our approach, we
believe that the results must be interesting to many
researchers.

References

Benavides, D., Segura, S. & Ruiz-Cortes, A. (2010),
Automated Anslysis of Feature Models 20 Years
Later: A Literature Review, Information Systems,
35(6), 625–636.

Czarnecki, K., Helsen, S. & Eisenecker, U. (2005),
Formalizing Cardinality-based Feature Models and
Their Staged Configuration, Software Process: Im-
provement and Practice, 10(1), 7–29.

Czarneck, K. & Kim, P. (2005), Cardinality-basd Fea-
ture Modeling and Constraints: A Progress Report,
in ‘International Workshop on Software Factories
at OOPSLA 2005’, San Diego, California, USA.

Erdos, P. & Renyi, A. (1959), On Random Graphs,
Publicationes Mathematicae, 6, 290–297.

Kang, K., Cohen, S., Hess, J., Nowak, W. & Peterson,
S. (1990), Feature-Oriented Domain Analysis (FO-
DA) Feasibility Study. Technical Report, Software
Engineering Institute, Carnegie Mellon University.

Lee, K., Kang, K. & Lee, J. (2002), Concepts and
Guidelines of Feature Modeling for Product Line
Software Engineering, in ‘7th International Con-
ference on Software Reuse: Methods, Techniques,
and Tools’, pp. 62–77.

Lin, Y. Q., Ye, H. L. & Tang, T. M. (2010), An Ap-
proach to Efficient Product Configuration in Soft-
ware Product Lines, in ‘14th International Confer-
ence on Software Product Lines’, Jeju Island, South
Korea, pp. 435–439.

Loesch, F. & Ploedereder, E. (2007), Optimization
of Variability in Software Produce Lines, in ‘11th
International Software Product Line Conference’,
pp. 151–162.

Mannion, M. (2002), Using First-Order Logic for
Product Line Model Validation, in ‘2nd Interna-
tional Conference on Software Product Lines’, p-
p. 149–202.

Mendonca, M. Cowan, D. Malyk, W. & Oliveira, T.
(2008), Collaborative Product Configuration: For-
malization and Efficient Algorithms for Dependen-
cy Analysis, Journal of Software, 3(2), 69–82.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M.
N., Teller, A. H. & Teller, E. (1958), Equations of
State Calculations by Fast Computing Machines,
Journal of Chemical Physics, 21, pp. 1087–1092.

Pincus, M. (1970), A Monte Carlo Mehtod for the
Approximate Solution of Certian Types of Con-
strained Optimization Problems, Operations Re-
search, 18(6), 1225–1228.

Pohl, K., Böckle, G. & van der Linden, F. (2005),
Software Product Line Engineering: Foudations,
Principles, and Techniques, Springer, Heidelberg,
(2005).

Segura, S., Hierons, R. M., Benavides, D. & Ruiz-
Cortes, A. (2010), Automated Test Data Gneration
on the Analyses of Feature Models: A Metamorphic
Testing Approach, in ‘3rd International Conference
on Software Testing, Verification and Validation’,
Paris, France, pp. 35–44.

Tang, J. M., Miller, M. & Lin, Y. Q. (2008), HSAGA
and its application for the construction of near-
Moore digraphs, Journal of Discrete Algorithms,
6(1), 73–84.

Trinidad, P., Benavides, D., Duran, A., Ruiz-Cortes,
A. & Toro, M. (2008), Automated Error Analysis
for Agilization of Feature Modeling, Jouranl of Sys-
tems and Software, 81(6), 883–896.

White, J., Dougherty, B., Schmide, D. C. & Bena-
vides, D. (2009), Automated Reasoning for Multi-
step Feature Model Configuration Problems, in
‘13th International Software Product Line Confer-
ence’, San Francisco, USA, pp. 11–20.

Ye, H. L. & Zhang, W. (2008), Formal Definition of
Feature Models to Support Software Product Line
Evolutions, in ‘2008 International Conference on
Software Engineering Research Practice’, Las Ve-
gas, Nevada, pp. 349–355.

Zhang, W., Zhao, H. Y. & Mei, H. (2004), A Proposi-
tional Logic-based Method for Verification of Fea-
ture Models, Formal Methods and Software Engi-
neering, 3308, 115–130.

Zhang, G. H., Ye, H. L. & Lin, Y. Q. (2011), Feature
Model Validation: A Constraint Propoagation-
based Approach, in ‘10th International Conference
on Software Engineering Reaserch and Practice’,
Las Vegas, Nevada.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

133

L
ibrary

Policy
M

anagem
ent

Item

M
anagem

ent
C

ustom
er

M
anagem

ent
Service

O
perating

E
nvironm

ent
Security

Paym
ent

0..2

A
dd Item

Setup
Policy

U
pdate

Policy
Search
Policy

R
eserve

Policy
B

orrow

Policy
M

em
bers

hip

Fee
Policy

R
ew

ard
Policy

R
em

ove
Item

C
atalog

U
pdate
Item

Stock
O

rganize

0..1

M
onogra
ph

Periodial
C

D
 &

V

ideo
eB

ook

1..4
C

lassificatio
n D

efinition
K

eyw
ord

D
efinition

D
escriptor

D
efinition

1..3

R
egister

R
enew

M

em
bership

U
pdate

R
egistration

U
nregiste

r
R

ew
ard

Point

0..1

R
egistration

Fee
Issue L

ibrary
C

ard

Personal
Inform

ation
R

eplace
L

ibrary C
ard

R
enew

Fee

U
pdate

D
etails

B
orrow

ing
H

istory

N
am

e
Phone

N
um

ber
A

ddress
E

m
ail

A
ddress

U
pdate

Phone N
o.

U
pdate

A
ddress

U
pdate

E
m

ail
A

ddress

0..2

0..2

0..3

0..3

L
oan

Item
Search
Item

R
eturn
Item

R
eserve
Item

N
otificati

on

V
iew

A

ccount

Feedback
B

oard

D
igital

L
ibrary

InL
ibrary

L
oan

L
oan

R
estriction

L
oan Fee

R
ecord

C
heck

FrontD
es

k
Self-
check

1..2
0..1

0..1
0..1

0..1

W
eb

Search
O

nsite
Search

0..1

O
verdue

D
am

age
or L

oss

O
verdue
Fee

D
am

age
C

ost
Pops-up

R
em

inder

0..1
0..1

0..1

0..1

Place
R

eserve
C

ancel
R

eserve

R
eserve
Fee

0..1

E
m

ail
O

n-
Screen

Post

M
obile

W
ebsite

O
n-site

C
om

puter

1..3

SM
S

0..1

ScienceD
irect

A
cadem

ic
R

esearch
L

ibrary
C

SIR
O

O
vid

E
uropa

W
orld O

n-site
E

xplore
W

eb
E

xplore
O

n-site
Print

D
ow

nloa
d

1..5

D
evice

System

L
ibrary C

ard
D

eviceSelf-check
D

evice

0..4

N
on-

N
etw

ork
N

etw
ork

B
asedL

A
N

B

ased
Internet
B

ased

1..2

N
etw

ork
Security

A
uthentic
ation

Firew
all

M
essage

E
ncryption

Proxy
Server

0..1

1..3U
se L

ibrary
C

ard
U

se
Passw

ord
U

se D
igital

C
ertificate

1..3

D
ebit

C
ard

C
heque

C
ash

C
redit

C
ard

0..1

1..4

V
isa

M
aster

A
m

erican
E

xpress

1..3

V
P1

V
P2

V
P4

V
P3

V
P5

V
P6

V
P7

V
P8

V
P9

V
P10

V
P11

V
P12

V
P13

V
P14

V
P15

V
P16

V
P17

V
P18

V
P19

V
P20

V
P24

V
P25

V
P26

V
P31

V
P27

V
P32

V
P33

V
P34

V
P35

V
P36

V
P38

V
P39

V
P40

V
P41

V
P42

O
nline

R
eserve

O
nline

C
ancel

0..1
0..1

V
P21

V
P22

N
otification
M

ethods1..4

N
otification
C

ontent

O
verdue

N
otification

R
eserve

N
otification

N
ew

 A
rrival

Fee
N

otification

V
P23

1..4

0..1

1..4

1..1

U
ser

Interface

U
ser W

eb
Interface

Inter-
L

ibrary

W
eb

R
equest

E
xternal

D
atabase

InterL
ibra

ry Search
O

nsite
L

oan

0..1

1..2

1..1

V
P28

V
P29

V
P30

V
P37

W
ireless

D
evice

D
igital

D
evice

0..1

Figure 4: A Feature Model for SPL of Library Systems.

CRPIT Volume 135 - Computer Science 2013

134

