

Introductory Programming Courses in Australia and New Zealand in
2013 - trends and reasons

 Raina Mason Graham Cooper
 Southern Cross Business School Southern Cross Business School
 Southern Cross University Southern Cross University
 Coffs Harbour NSW Australia Coffs Harbour NSW Australia
 raina.mason@scu.edu.au graham.cooper@scu.edu.au

Abstract
This paper reports the results of a survey of 38
introductory programming courses in Australian and New
Zealand universities, conducted in the first half of 2013.
Results of this survey are compared with a survey
conducted in 2010 on Australian universities and two
other previous studies conducted in 2001 and 2003.
Trends in student numbers, programming paradigm,
programming languages and environment/tools used, as
well as the reasons for choice of such are reported. Other
aspects of first programming courses such as instructor
experience, external delivery of courses and resources
given to students are also examined.

The results indicate a trend towards the adoption of
Python for Introductory Computer Programming courses
and that this language is being used in a structured
approach for programming. Introductory computer
programming courses that focus upon an Object
Orientated approach predominantly use Java..
Keywords: introductory programming, programming
languages, programming environments, Australian
university courses, New Zealand university courses,
pedagogy, trends.

1 Introduction
Most Computer Science and Information Technology
degree programs include at least one compulsory
introductory programming course. Programming is
generally perceived to be complex and difficult and these
courses can suffer from high attrition rates and low levels
of competency (McCracken et al. 2001). Debate
continues on which languages, environments and
paradigms should be used in a first programming course
to maximise student success and motivation (Bloch 2000,
Jenkins 2002, Pears et al. 2007, Dale 2005, 2006).

To establish the (then) current state-of-play in
Australian and New Zealand universities, censuses were
conducted in 2001 and 2003 (de Raadt et al. 2002, 2004)
which reported on the languages, paradigms and
environments/tools being used, the reasons for choice of
language, student numbers (and the downwards trend) in
each course, texts employed, instructor experience and
the teaching of problem solving strategies.

Copyright © 2014, Australian Computer Society, Inc. This
paper appeared at the Sixteenth Australasian Computing
Education Conference (ACE2014), Auckland, New Zealand.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 148. Jacqueline Whalley and Daryl
D’Souza, Eds. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

In the latter months of 2010 a phone interview survey
which repeated the previous two surveys with minor
changes was performed with a large sample of 44
programming courses, across 28 Australian universities
(Mason et al. 2012). Longitudinal trends in languages,
tools and paradigms were identified, as well as reported
reasons for such changes over the 10 year period since the
survey was initially conducted. The 2010 survey showed
Java as the most popular language, followed by Python
and then C. “Pedagogical benefits” was the most common
reason for the choice of language, followed by
“Relevance to industry/marketability to students”. The
procedural paradigm was most often used for teaching,
and fewer participants (20% compared to 43% in 2003)
were choosing to use only text editors and command-line
compilers rather than IDEs or other tools.

In early 2013 the survey was repeated in an online
survey format, with Australian and New Zealand
universities invited to participate. Details about the
interview questions and the methodology of the study are
described in the next section, followed by results and
discussion of the implications for teaching introductory
programming.

2 Methodology

2.1 Recruitment of participants
The list of participants from the 2010 study was used as a
starting point for contacting potential participants. An
email was sent to each previous participant inviting
participation in the 2013 study. As the survey was to be
conducted online, rather than by telephone interview
which imposed cost and time-zone difference issues, New
Zealand universities were included in this study.
University websites were used to identify potential
participants from New Zealand and invitations were sent
either directly to potential participants, or to
administrative staff responsible for those programs. A
general invitation to participate was sent to the SIGCSE-
Australasian mailing list and the SIGCSE list for the
attention of the Australian and New Zealand members.

The online survey was open from mid-April to mid-
July 2013, when it was closed and the results were
downloaded and analysed.

2.2 Questions
For all questions, the terminology “course” was used for
the basic unit of study that is completed by students
towards a degree, usually studied over the period of a
semester or session in conjunction with other units of

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

139

study (“courses”). This terminology was used to maintain
consistency with the previous studies.

Large portions of the 2013 survey questionnaire were
drawn from the previous studies including questions
about language and paradigm choice, programming
environment/development tools, instructor experience,
reasons for choice of language, and perceived difficulty
of the language and environment (if one is used).

Additional questions were added to ascertain the
relative importance of each reason given for language and
environment choice, It was anticipated that there may be
a relationship between the choice of language and
environments and the reasons for these choices.
Instructors were also asked how useful the language was
for teaching the fundamental concepts of programming.

A final section asked instructors to identify what he or
she considered to be the 3 most important aims of the
introductory programming course. Other general interest
questions were asked regarding whether the course was
offered in external mode, and what resources were
provided to students.

3 Results and Discussion
The results of this study are reported below, with
comparison to the previous three studies where
applicable.

3.1 Universities and Courses
The number of courses covered in the 2013 study was
fewer than each of the other three studies. Forty-eight
courses from twenty-nine Australian and New Zealand
universities participated, however eight participants failed
to progress through the study and these surveys were not
analysed. A further two participants gave details of the
course and student numbers but did not answer questions
on programming languages or environments. Some
participants answered most but not all questions. This has
been indicated in the results and discussion where
necessary. Participants were asked for their course codes
and universities, so matching could be performed with
previous surveys, where necessary.. This also eliminated
possible duplication.

3.2 Student Numbers
Comparison of the 2001, 2003, 2010 and 2013 course
participation and reported numbers of students are given
in Table 1.

 2001 2003 2010 2013

Courses in study 57 71 44 38
Total students
in study 19900 16300 7743 10454

students/course 349 229 176 264

Table 1: Course and Students summary

The decline in the numbers of students studying
programming was a serious concern in 2003 and 2010.
Average enrolments halved from 2001 to 2010, following
a general trend in declining student enrolments in all
areas of ICT education, as reported by the Australian
Computer Society (Australian Computer Society 2011).

From 2010 to 2013 there appeared to have been a 50%
increase in the average number of students per course,
bouncing back to pre-2003 levels. In case this was an
institution effect (i.e. larger institutions participating in
this survey than in 2010), where possible, courses that
participated in the 2010 study were directly compared
with the same courses in the 2013 study. Comparing
courses that participated in both studies gave an increase
from a 2010 mean of 198 students per course to a 2013
mean of 253 students per course - a 27.8% increase in
students over 4 years. The apparent increase in student
numbers is consistent with the trends in ACS data to 2010
(latest figures) which show a 4.5% increase in enrolments
across the sector from 2009 to 2010 (ACS, 2012).

This is good news for the ICT industry which is
predicting a significant shortfall of suitably educated and
skilled ICT professionals in the near future (DEEWR
2011).

3.3 Languages

3.3.1 Choice of Language(s)
One of the main areas of interest to this study was the
language(s) being used in these introductory
programming courses. Instructors were presented with a
choice of languages used in the previous three studies and
asked to indicate which they used in their courses, as well
as offered a space to indicate other languages.

In the 2013 study, a total of 12 languages were used in
first programming courses. The majority (33) of courses
used one language throughout the first programming
course (Table 2). When more than one language was
used, the generic approach adopted was for one language
to be used initially and then another language added
(while keeping the first). In only one case the course was
segmented into learning different languages
consecutively.

of languages 2010 courses 2013 courses

1 37 33
2 4 4
3-6 3 1

Table 2: Comparison of number of languages/course

Language Courses %age Weighted by

students
Java 12 27.3% 26.9%
Python 12 27.3% 33.7%
C# 4 9.1% 4.8%
C 3 6.8% 8.6%
Javascript 3 6.8% 10.3%
Visual Basic 3 6.8% 1.4%
C++ 2 4.5% 3.0%
Ada 1 2.3% 1.7%
Haskell 1 2.3% 1.7%
Matlab 1 2.3% 1.7%
Scribble 1 2.3% 5.6%
Alice 1 2.3% 0.5%

Table 3: 2013 Languages

The programming languages used by the participant
courses are shown in Table 3. Languages are presented by

CRPIT Volume 148 - Computing Education 2014

140

number of courses, percentage of courses, and weighted
by student numbers. Note that the “courses” column will
add to more than 38 courses, as some courses used more
than one language.

The top three languages in the first half of 2013 (in
order) were Java, Python and C# (by courses) and
Python, Java and Javascript weighted by students (Figure
1).

Figure 1: Programming Languages in 2013 by courses

and students.

 2001 2003 2010 2013 change
Java 40.4% 40.8% 36.4% 27.3% -9.1%
Python 0% 0% 13.6% 27.3% 13.7%
C# 0% 0% 9.1% 9.1% 0%
C 7% 12.7% 11.4% 6.8% -4.6%
VB/VB.NET 24.6% 26.8% 9.1% 6.8% -2.3%
Javascript 0% 0% 2.3% 6.8% 4.5%
C++ 14% 11.3% 7% 4.5% -2.5%
Matlab 0% 1.4% 2.3% 2.3% 0%
Alice 0% 0% 2.3% 2.3% 0%
Haskell 5.3% 4.2% 0% 2.3% 2.3%
Ada 1.8% 0% 0% 2.3% 2.3%
Processing 0% 0% 4.5% 0% -4.5%
Fortran 0% 1.4% 2.3% 0% -2.3%

Table 4: Longitudinal language comparison – courses

The percentages of introductory programming courses
exposed to various languages across all four studies is
shown in Table 4, with the percentage change in 2013
from 2010.

Similarly, the percentages of students exposed to
various languages in introductory programming courses
across all four studies is shown in Table 5, with the
percentage change in 2013 from 2010.

For the first time in (at least) 13 years, Java has lost
the top language crown. In 2010 Java was used by nearly
40% of students, with Python trailing as second most
popular language at nearly 20%. In 2013 the positions
have reversed, with Python being used by nearly 34% of
students, and Java 27%. Note that these two languages
represent more than 54% of courses in this study, and
more than 60% of the students.

 2001 2003 2010 2013 change
Python 0% 0% 19.5% 33.7% 14.2%
Java 43.9% 44.4% 39% 26.9% -12.1%
Javascript 0% 0% 1.5% 10.3% 8.8%
C 5.5% 10.6% 11.9% 8.6% -3.3%
C# 0% 0% 8.2% 4.8% -3.4%
C++ 15.2% 18.7% 4.9% 3% -1.9%
Matlab 0% 1% 1.3% 1.7% 0.4%
Haskell 8.8% 6% 0% 1.7% 1.7%
Ada 1.7% 0% 0% 1.7% 1.7%
VB/VB.NET 18.9% 16.4% 5.2% 1.4% -3.8%
Alice 0% 0% 0.9% 0.5% -0.4%
Processing 0% 0% 5.3% 0% -5.3%
Fortran 0% 0.7% 3.9% 0% -3.9%

Table 5: Longitudinal language comparison – students

Javascript is now the third most popular language,
displacing C. Visual Basic has continued its downwards
slide to just 1.4% of students. The trends in popularity of
the top 3 languages of each year are visually depicted in
Figure 2 (by courses) and Figure 3 (by students).

Figure 2: Longitudinal trends – top 3 languages of

each year by courses.

Figure 3: Longitudinal trends – top 3 languages of

each year by students.

3.3.2 Reasons for choice of language
In the previous studies instructors were asked about the
reasons for their choice of language. The two most
common reasons given in both the 2001 and 2010 studies
were “industry relevance/marketability to students” and
“pedagogical benefits”. The 2010 study saw shifts in the
frequency of some of the reasons given, with, for

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

141

example, industry relevance/marketability declined from
56.1% to 48.8% and pedagogical benefits increased from
33.3% to 53.5%.

The 2001 and 2010 surveys identified the reasons for
the choice of language, but did not distinguish between
the importance of these reasons. For example, an
instructor may have indicated that “structure of
degree/department politics” and “platform independence”
were two reasons for their choice of language. One of
these reasons may have been very important in their
choice, and the other only slightly important. The 2001
and 2010 studies did not distinguish between the
importance of these reasons and only counted frequencies
of given reasons.

Figure 4: Frequency of reasons given for choice of

languages.

To address this issue, the 2013 survey asked
participants to rate each reason as not applicable, slightly
important, important or very important.

Figure 5: “Very important” reasons for language

choice in 2013.

The reasons offered for choices were those offered by
the participants in the 2010 survey as well as a space for
‘Other’. Figure 4 shows the frequency for reasons given
for choice of programming language - not weighted by
importance of the reason.

Figure 5 presents the frequencies for identifying a
reason for choice of language as “very important”.

The first three ranks for “very important” reasons are:
46% for “Pedagogical benefits of the language”, 44% for
“Platform independence”, and 36% for “Relevant to
industry”. A second analysis was conducted whereby the
frequencies for identifying a reason as either “important
or very important” was considered. The rank order of
reasons between these two methods of analysing
importance are not the same. In this case the first three
ranks (noting that there was a tied first rank and tied third
rank) for “important or very important” reasons are: 79%
for “Pedagogical benefits of the language”, 79% for
“Relevant to industry”, 67% for “Platform independence
and 67% for “Availability/ cost to students”.

It should be noted that both methods of analysis return
“Pedagogical benefits of the language” as a first rank.
Comparison of Python and Java

Given that Python has had a large increase in
popularity, with a corresponding drop in popularity for
Java, and given that these two languages represent over
60% of students in the survey, it was decided to make
direct comparisons between the reasons for choice of
Python and Java. Note that not all participants who use
Python and Java have given reasons for their choice.

The first method of analysis for this purpose was to
identify the reasons which all participants identified as a
reason for the choice of language (varying importance
being either slightly important, important or very
important).

Python: All of the Python-using participants gave the

following reasons for their choice (varying importance):
 Availability/Cost to students
 Easy to find texts
 Extensions/Libraries available
 Platform independence

Java: In contrast, all of the Java-using participants

gave the following reasons for their choice (varying
importance):

 Object-Oriented Language
 Online community/Help available
 Relevant to industry

It is interesting to note that there is an absence of

overlap between these two sets of reasons. That is, the set
of reasons which all instructors using Python offered for
their choosing of Python is mutually exclusive to the set
of reasons which all instructors using Java offered for
their choosing of Java. Although Java is free for students
and platform independent, these reasons appear to be
more important to those choosing Python. Although
Python is an object-oriented language, those looking for
an object-oriented language are tending to choose Java.
See Section 3.4 for more information about paradigm
choices and the relation to language choice.

CRPIT Volume 148 - Computing Education 2014

142

Note, however, that this analysis includes
identification of reasons that are ‘slightly important’.
Excluding the ‘slightly important’ reasons to focus upon
the combined set of important / very important reasons
yields the data presented in Figure 6 showing the set of
important/very important reasons given for choice of
either Java or Python.

Figure 6: Important/V.Important reasons for choice

of Python or Java

From Figure 6, the important/very important reasons that
return at least an 80% selection rate for choice of Python
are:
 91% Availability / Cost to students [Java 50%]
 91% Pedagogical benefits [Java 75%]
 82% Platform Independence [Java 75%]
 82% Easy to find texts [Java 58%]
The important/very important reasons that return at least
an 80% selection rate for choice of Java are:
 92% Object-oriented language [Python 18%]
 92% Relevant to industry [Python 73%]

It should be noted that Python is an object oriented

language but can be used in a structured way with no
necessity to discuss objects (at an introductory level). In
comparison, Java is difficult to teach without providing
some class structure, either by using an environment such
as BlueJ or Greenfoot or by providing students with
skeleton code and getting them to fill in the blanks.

The choice of language appears to have not been done
at a mere surface level, but rather, with deep
consideration as to how the language is to be used
strategically with respect to presenting programming
activities to students.

3.3.3 Perceived difficulty and usefulness to
teach fundamental concepts

Participants were asked to indicate how difficult they
believed their chosen language was for novice students,
on a Likert scale of 1 - 7 where 1 was ‘very easy’ and 7
was ‘very difficult’. The medians of the results are given

below in Figure 7. Note only languages where answers
have been given by at least 2 participants have been
included.

From these results, Java is perceived as more difficult
for novices than Python. C is considered the most
difficult for novices.

Figure 7: Perceived difficulty of language for novices

Figure 8: Perceived usefulness of language for

teaching fundamental concepts of programming.

Regardless of whether or not the various languages really
do exhibit these relative levels of difficulty, instructors
are indicating that they perceive these relative levels of
difficulty to exist, and this may be a factor of
consideration in their choice of language.

Participants were also asked about the perceived
usefulness of their language for teaching the fundamental
concepts of programming, on a 7-point Likert scale where
1 was ‘very useless’ and 7 was ‘very useful’. The
medians of their answers are given below in Figure 8. All
languages, other than Javascript, are reported at about ‘6’
on the 7 point Likert scale. Javascript is reported at ‘4’.

3.3.4 Reasons for changing language
Respondents were also asked to rank reasons for which
they might consider changing language in their course.
Figure 9 presents the frequencies for identifying the first
rank reason for which participants might consider
changing language. ‘Pedagogical benefits’ accounts for
close to half of all first rank preferences (47%) and
attracts about 3 times as many nominations as the next
most common factor, which is ‘Relevant to industry’
(15%).

A second analysis was conducted whereby the
frequencies for identifying a reason in any of the top three

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

143

reasons for considering a change of language was
considered.

While there were some slight variations to the rank
order listings of some of the less common reasons, the
first rank remained as ‘Pedagogical benefits’ (68%) and
the next most common factor was again ‘Relevant to
Industry’ (44%).

Figure 9: Reasons ranked in top 3 for considering

change of language in their course.

3.4 Paradigm taught
Figure 10 presents trends for use of each paradigm over
the set of four studies from 2001 to the current. Three
aspects are apparent. The continuing dominance, and
increasing rise of a procedural approach, the moderately
low use of an object orientated approach, and the very
low frequency use of a functional approach.

Although not reflected in Figure 6, in 2013, as in
2010, some instructors commented that they had chosen
‘procedural’ but introduced some aspects of object-
oriented programming at the end of the course.

Figure 10: Trends in paradigms taught (4 studies)

Java vs Python: what paradigm is being used? Table 6
shows language (Java or Python) vs. paradigm chosen.

Language Procedural Object-Oriented
Java 2 10
Python 10 1

Table 6: Paradigm by Language – Java and Python

An analysis was conducted comparing the language
chosen (Python versus Java) by the preferred paradigm
used for teaching (Procedural versus Object Oriented).
This returned a statistically significant difference (Fisher

exact test: p < 0.001). Instructors who reported object
oriented approaches to their introductory programming
courses were predominantly using Java. Conversely,
instructors who reported procedural approaches to their
introductory programming courses were predominantly
using Python.

Despite Python being an object orientated language,
instructors are choosing it and then using it in a
procedural/ structured way. Java can also be used in this
way but it is more difficult unless some additional
strategies are included (such as using the BlueJ
environment). It appears that the objects-first instructors,
also influenced by industry-relevance, are drawn towards
Java and the procedural-first instructors (who may also
wish to introduce objects later in the course, in the same
programming language) are selecting Python.

3.5 Instructor Experience
Participants were asked to indicate their level of
experience in teaching introductory programming, and as
with the other studies in 2003 and 2010, there was a large
range of experience. Four participants had less than 2
years, while two others reported over 30 years of
experience. The majority had between 10 and 20 years of
experience. This is consistent with the 2010 survey,
where participants had a mean of 12.3 years of experience
with standard deviation of 7.3 years.

3.6 IDEs and Tools

3.6.1 Choice of IDE/tools
An environment is used in most courses (77.8%) and by
most students (69.7%). A significant proportion (22.2%)
of the courses surveyed did not use any environment
apart from text editors and command-line compilers. This
is a similar figure to the 2010 results, and much fewer
courses with no environment than in 2001 and 2003.

Of the courses that did use environments, Visual
Studio was the most popular IDE at 15.6% of courses.
Eclipse was used with 11.1% of courses. Idle and BlueJ
followed with 8.9% each, and Netbeans at 6.7%. The
remainder of the courses used Alice, Greenfoot and
Quincy (all at 2.2% of courses), one ‘in house web-based
environment”, and various other tools. Figure 11
indicates the percentage of students exposed to each of
the major environments.

Figure 11: Environments by percentage of students

CRPIT Volume 148 - Computing Education 2014

144

There are specific relationships between languages and
environments, so comparison between different
environments is awkward. For example Idle is an IDE
with Python which comes bundled with the language,
while Netbeans and BlueJ are used with Java. Several
environments, such as Visual Studio can be used with
multiple languages. Nevertheless, an approach that
focuses upon why any specific environment was selected
may provide insight into the dynamics and attributes of
an environment that motivate their selection and use.

3.6.2 Reasons for choice of environment
The details of which IDE has been used in which
language and for which reason is omitted due to space
restrictions, but the primary reasons (and motivations) for
selection and use of an IDE are presented.

The five most frequent reasons provided for selecting
an IDE (not weighted by importance) which each scored
at least 80% were: 88% pedagogical reasons, 88% visual
cues/debugger, 85% uncomplicated/ease of use, 82%
availability/cost to students, 82% student motivation (see
Figure 12).

Analysing on the basis of reasons that have been
identified as ‘very important’ yields the four most
frequent responses where each scored at least 30%: 33%
graphical user interface, 30% visual cues/debugger, 30%
supports OO paradigm, and 30% pedagogical benefits.

Figure 12: Reasons for choosing environments

3.6.3 Difficulty of environment
Instructors were asked to indicate how difficult they
believed the environment was to use for themselves, and
for novice students. The results indicate explicitly that
instructors perceive students to have more difficulty with
an environment than the instructors. This is consistent
with the 2010 study indicating the same effect for
language. Comparative difficulty is shown below in
Figure 13, where 1 is “very easy” and 7 is “very
difficult”.

Note that if a student is finding the use of an
environment “somewhat difficult” and the language
“somewhat difficult”, they may not have the cognitive

resources available to problem solve, or develop
algorithmic thinking (see Section 3.8)

Figure 13: Difficulty of environment (medians)

3.7 Other Aspects of the course

3.7.1 External delivery
Of the 34 courses that answered this part of the survey,
the majority (65%) indicated that they do not offer their
course via distance or external mode, i.e. a mode where
students are not required to attend regular lectures,
workshops, labs or tutorials.

3.7.2 Resources given to students
Courses, whether offered externally or not, have various
resources provided to students. Below in Figure 14 are
the frequencies of resources reported by participants:

Figure 14: Resources offered to students

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

145

3.8 Aims of an introductory programming
course

3.8.1 Aim of the course – all languages
Participants were asked what they considered were the
three most important aims of an introductory
programming course. Answers varied but some themes
became apparent. Around half of the participants
indicated that nurturing algorithmic thinking was one of
the main aims of the introductory course, closely
followed by giving student an introductory experience of
what it was like to program, and ‘learning fundamental
concepts’. Interestingly, problem-solving and learning
syntax did not appear in the top 3 aims. The themes for
which at least two instructors agree are given below in
Figure 15.

There were numerous other themes with only one
instructor identifying each: basic writing skills,
programming proficiency, teaching students to program,
basic tools of programming, breadth of paradigms,
computing literacy, conceptual models, differentiation of
students, real industry-type experience, planning skills,
see results, attention to detail, clarity of expression,
modification of code, and programming achievement.

3.8.2 Aims of the course – Java vs Python
The reasons given for the choice of environment were
compared for courses using Java and courses using
Python and the results are presented in Figure 16. Visual
inspection indicates that ‘algorithmic thinking’ was the
most important reason for selection of an environment for
use with Python, but this had relatively little influence in
the selection of an environment for use with Java.

Figure 15: Aims of the introductory course

There were several factors that contributed relatively
higher for the selection of an environment for use with
Java compared to Python, including:
 fundamental OO concepts,
 fundamental concepts,
 fundamental constructs and
 confidence building.

Figure 16: Aims – Java vs Python

4 General Discussion
Two languages currently dominate use in introductory
programming courses in Australia and New Zealand. Java
has been the most popular language for this purpose since
at least 2001 until the present, where it has now fallen to
second most frequently used language (as measured by
number of students receiving the language). The majority
of instructors who use Java have indicated that the
primary reasons for their choice of Java have been for its
industry relevance and object oriented paradigm.

The language that is now presented to the highest
number of students in Australasia (based upon this study)
is Python. Python is a relatively new language, and did
not even appear in the 2001 and 2003 censuses of
introductory programming courses in Australasia, which
the current study seeks to broadly repeat. Python has
delivered a substantial and sustained impact upon
university delivered courses in introductory
programming, with Python rising from nothing to top
rank in ten years.

The majority of instructors who use Python have
indicated that the primary reasons for their choice have
been student focussed. This includes pedagogical benefit
to facilitate student learning but also other aspects to
make life easy for students, through minimising cost and
maximising platform independence and access to learning
support in the form of textbooks.

The two factors that have been of primary importance
for language selection since the 2001 study (de Raadt et
al. 2002) have been industry relevance and pedagogical
benefits. This is still the case, but whereas in 2001 the
reason ‘pedagogical benefits’ was second to industry
relevance, it has now risen in relative importance to be
the most common reason for language selection.
Instructors, when queried about what would motivate
them in the future to change language, have indicated a
weighting towards pedagogical benefits 3 times more
commonly than the second most important
factor...industry relevance.

The two factors of pedagogical benefit and industry
relevance do not necessarily work together in harmony. A
language that is “ideal to industry” will not necessarily be
a language that also offers “pedagogical benefits”. The
vice versa is also true; a language that offers high

CRPIT Volume 148 - Computing Education 2014

146

“pedagogical benefits” will not necessarily be highly
relevant to industry. While it may be logically possible
for a language to score highly on both of these attributes,
it does not appear to be reflected in the reasons currently
offered for selection of a language for introductory
programming. There is an apparent tension in a
dichotomy of Java being selected for OOP and industry
relevance, while Python is being selected for ease of
student learning and overall uncomplicated experience.

The heightened emphasis given to pedagogical
benefits is also demonstrated in instructors’ responses
regarding selection and use of environments. Although
there is a relatively wide range of environments, with
sometimes complex relations to a range of languages, the
motivations and reasons for selection align broadly to
those identified for language selection.

Some of the primary reasons for adopting an IDE are
again associated with pedagogical benefits. Indeed,
several of the reasons that were highly rated, such as
‘GUI’ and ‘uncomplicated/ease of use’ have, for
theoretical reasons, been identified through Cognitive
Load Theory (Sweller, 1999) to be likely mechanisms to
reduce a student's cognitive load, and thus facilitate
learning.

There is a clear and continuing trend for instructors of
introductory programming courses to be mindful of
aspects of their student’s experiences in the context of
learning computer programming. This always involves
aspects of sitting at a computer, using an interface to
navigate and operate upon elements of code, syntax and
structure.

As a more complete understand of the dynamics of
student learning, thinking and program construction is
obtained, and as these feed into future computer program
interfaces and architectures, it is anticipated that
instructors may continue to enhance their focus upon
consideration of student (learner) focussed aspects of
introductory programming. These may continue to play
an important role in the selection of languages and
environments for introductory programming and
represent areas for further research.

5 Acknowledgements
The authors would like to thank the participants in this
study for their involvement.

6 References
Australian Computer Society. (2011). Australian ICT

Statistical Compendium 2011. [Online]. Available at:
http://www.acs.org.au/2011compendium/ [Accessed:
16 February 2012].

Bloch, S. A. (2000). Scheme and Java in the first year.
Journal of Computing Sciences in Colleges, 15 (5),
p.157–165. [Accessed: 9 May 2011].

Dale, N. (2005). Content and emphasis in CS1. ACM
SIGCSE Bulletin, 37 (4), p.69–73.

Dale, N. B. (2006). Most difficult topics in CS1: results
of an online survey of educators. ACM SIGCSE
Bulletin, 38 (2), p.49–53. [Online]. Available at:
doi:Reviewed paper.

DEEWR. (2011). Australian Jobs 2011. [Online].
Available at:
http://www.deewr.gov.au/Employment/ResearchStatist
ics/Pages/AustralianJobs.aspx [Accessed: 22 August
2011].

Jenkins, T. (2002). On the difficulty of learning to
program. In: Proceedings of the 3rd annual conference
of the LTSN-ICS, 2002, Loughborough, Ireland, p.53–
58.

Mason, R., Cooper, G. and de Raadt, M. (2012). Trends
in Introductory Programming Courses in Australian
Universities – Languages, Environments and
Pedagogy. In: de Raadt, M. and Carbone, A. (eds.),
Proceedings of the Fourteenth Australasian Computing
Education Conference (ACE2012), 123, January 2012,
Melbourne, Australia: Australian Computer Society,
Inc., p.33–42. [Online]. Available at:
http://crpit.com/confpapers/CRPITV123Mason.pdf.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L.,
Utting, I. and Wilusz, T. (2001). A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin,
33 (4), p.125–180. [Online]. Available at: doi:Working
group report.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams,
E., Bennedsen, J., Devlin, M. and Paterson, J. (2007).
A survey of literature on the teaching of introductory
programming. ACM SIGCSE Bulletin, 39 (4), p.204–
223. [Online]. Available at:
doi:10.1145/1345375.1345441.

de Raadt, M., Watson, R. and Toleman, M. (2002).
Language trends in introductory programming courses.
Informing Science + IT Education Conference.
[Online]. Available at:
http://proceedings.informingscience.org/IS2002Procee
dings/papers/deRaa136Langu.pdf.

de Raadt, M., Watson, R. and Toleman, M. (2004).
Introductory programming: what’s happening today
and will there be any students to teach tomorrow? In:
ACE’04 Proceedings of the Sixth Conference on
Australasian Computing Education, 30, 2004,
Australian Computer Society, Inc., p.277–282.

Sweller, J. (1999). Instructional design in technical
areas. Camberwell, VIC: The Australian Council for
Educational Research Ltd.

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

147

