
Issues Regarding Threshold Concepts in Computer Science

Janet Rountree Nathan Rountree

Department of Computer Science,
University of Otago,

Dunedin, New Zealand
Email: {janet,nathan}@cs.otago.ac.nz

Abstract

Threshold Concepts deserve discussion and reflec-
tion in Computer Science Education; they provide
a conceptual framework intended to re-empower ter-
tiary educators. At this stage, the idea of Thresh-
old Concepts raises plenty of questions, promises re-
newed learner and teacher engagement, and suggests
a means of focusing on the key aspects of a discipline
that will allow a learner to, for example, “think more
like a computer scientist.” But what precisely are
threshold concepts? Can we identify them? Can we
agree on which concepts are threshold concepts and
which are not? Can we validate them? If threshold
concepts do exist, and can be identified and agreed
upon, then how would they alter what we teach, how
we teach, and how we assess? Do threshold concepts
represent anything new or unexpected? The purpose
of this paper is to set out issues for the Threshold
Concepts model in Computer Science Education and
encourage on-going discussion.

Keywords: Threshold Concepts, Computer Science
Education, Liminal Space

1 The Notion of Threshold Concepts

The Threshold Concepts model is fashionable. The
notion has rapidly gained popularity since be-
ing first proposed in 2003 (Meyer and Land,
2003), with the second Threshold Concepts Con-
ference recently being held at Queen’s University
in Canada (http://thresholdconcepts.appsci.
queensu.ca), two books in print (Meyer and Land,
2006a; Land et al., 2008), as well as the publica-
tion of many topical articles across a variety of dis-
ciplines. The idea has struck a chord with many
academics interested in research into the teaching of
their discipline and its practice. Examples include
Biology (Taylor, 2006), Economics (Davies and Man-
gan, 2007; Shanahan and Meyer, 2006), Accounting
(Lucas and Mladenovic, 2007), Electrical Engineering
(Carstensen and Bernhard, 2008), Statistics (Dunne
et al., 2003), Geology (Stokes et al., 2007), and Mar-
keting (Lye, 2006). In Computer Science Education
(CSE) there is also a developing context for Threshold
Concepts (Eckerdal et al., 2006). The purpose of this
paper is to discuss work done on Threshold Concepts
in CSE, to consider notable issues, and reflect on the
usefulness of this conceptual framework to our disci-
pline. For example, we should ask ourselves whether

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Computing Educa-
tion Conference (ACE2009), Wellington, New Zealand, Jan-
uary 2009. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 95, Margaret Hamilton and
Tony Clear, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

it is possible to agree upon which concepts are thresh-
old concepts and which are not. Can threshold con-
cepts be validated, and how would they alter what we
teach, how we teach, and how we assess? We should
also consider whether they represent anything new or
unexpected.

We can view Threshold Concepts in two parts:
first, as a model or framework, and second, as “in-
stance” examples. (To distinguish between instances
of threshold concepts, and Threshold Concepts as a
model, we shall capitalise the latter.) In the first case,
Threshold Concepts provides a model for academics
in higher education to develop their teaching and sup-
port student learning. The conceptual framework is
intended to re-situate teaching and learning within
the context of its own discipline, in contrast to the
role learning outcomes have developed as a manage-
rial tool to audit and monitor “success” (Hussey and
Smith, 2003). To contrast the two models, learning
outcomes treat education as a set of activities de-
signed to achieve a set of pre-specified outcomes, with
success defined in terms of meeting those outcomes.
Typically, the outcomes are phrased, “by the end of
the course the learner will be able to. . . .” Threshold
concepts, on the other hand, state that learners go
through a transformation, after which they begin to
“think more like a computer scientist,” and that they
gradually acquire the identity of a community of prac-
tice. During this transformation, certain parts of the
curriculum are pivotal: they represent the “portals”
that learners must traverse in order to succeed. To
be considered a member of the community of practice,
mastery of these concepts is required, and the process
of mastery is seen as a sort of rite of passage.

Secondly, the term “threshold concept” is used to
refer to any part of the curriculum that should be
treated as one of these portals. They may be recog-
nised by (probably) being all five of: transformative;
irreversible, integrative, bounded, and troublesome
(Meyer and Land, 2006b, p7–8). Threshold concepts
are transformative in nature because their compre-
hension creates in the learner a new way of viewing
and describing the subject and may alter the learn-
ers’ perception of themselves and the world. Thresh-
old concepts are irreversible since the fundamental
qualitative change that occurs is unlikely to be un-
learnt. It follows that threshold concepts are also
integrative because learners make new connections,
perceive previously unknown relationships, and ac-
cordingly change their sense of the world. They are
described as bounded, or as boundary makers (Eck-
erdal et al., 2006, p103), since a threshold concept
“. . . helps to define the boundaries of a subject area
because it clarifies the scope of a subject community”
(Davies, 2006, p74). The final characteristic is that
threshold concepts embody knowledge that is trou-
blesome for learners to grasp—it is more than sim-
ply new subject matter, it is material that is diffi-

cult and possibly counter-intuitive, and accordingly
it cannot, as yet, integrate with the learner’s current
mental schema.

The two most important of the five characteris-
tics of threshold concepts are the troublesome and
transformative nature of the knowledge. Troublesome
knowledge goes beyond knowledge that is difficult to
understand—it is tied up with incorrect or incom-
plete mental models, misconceptions, the inability to
transfer understanding from one context to another,
conflicts with current understanding or perspective,
emotional response, (e.g. being vexing), and tacit pre-
sumptions (Perkins, 2006). Working through prob-
lems and gaining understanding of troublesome as-
pects of the subject matter is interpretative: it ex-
tends the use of language; modifies ways of thinking
and practising; it is a process of “identity formation”
through which the learner gains entrance into the sub-
ject community (Davies, 2006). The Threshold Con-
cepts framework views “. . . learning as a form of jour-
ney, during which the student not only gains insights
great and small, but is also changed as an individual
by new knowledge” (Meyer and Land, 2007). In our
case, the learner begins to think and practice ‘more
like a computer scientist.’

All threshold concepts are also core concepts, but
not all core concepts are threshold concepts. For
example, the ACM “Curriculum Guidelines for Un-
dergraduate Degree Programs in Computer Science”
presents a body of knowledge including core topics.
Picking topics arbitrarily, “object-oriented program-
ming” may be a threshold concept, but the “history
of computing,” whilst recognised as a core topic, may
not be a threshold concept. The “history of comput-
ing” (in this argument) might be new knowledge, it
might be complex knowledge, it might require effort
to learn, but it is not troublesome or transformative
in nature for the learner.

Let us take recursion as a potential example of a
threshold concept in CS: does recursion meet the five
defining characteristics? We expect that many CS
educators would agree that recursion presents an ex-
ample of troublesome knowledge. When first seen the
notion of ‘self reference’ is alien and many novice pro-
grammers struggle to come to terms with this concept
in implementation and description. Once a learner
‘gets’ recursion she has a significant transformation
in her mental process. For example, she sees recur-
sive sets rather than the state a program gets into,
ways of describing program state change to include
base/stopping cases related to the atoms of a recur-
sive set. Elegance in program design is brought into
focus. She starts to make connections and see rela-
tionships with other material such as the fact that
all loops can be expressed as recursion. It is unlikely
that this new understanding will be unlearnt, so it
follows that recursion is irreversible as well as being
integrative. On the one hand recursion is useful in
the practice of programming, on the other hand it is a
theoretical construct that defines what is computable;
hence recursion is a boundary marker for both Soft-
ware Engineering and Theoretical Computer Science.

2 Liminal Space and Pre-liminal Variation

One of the most powerful inferences that can be
drawn from Threshold Concepts is that of liminal
space. Meyer and Land suggest that a threshold con-
cept is rarely mastered in a single “aha” moment, but
instead requires a period of time over which a student
makes the transition. The period of transition is re-
ferred to as “liminal space” (from the Latin limen,
meaning boundary or threshold). Students who are
in the period of transition may be characterised as un-

dergoing a “rite of passage,” at the end of which they
will have achieved new knowledge and status within
their community. The rites may be drawn-out, con-
fusing, and require that students begin to think and
act differently to be seen as having succeeded. (Suc-
cess here is defined as not “understanding how a prac-
titioner thinks,” but “beginning to think like a prac-
titioner.”)

The proponents of Threshold Concepts charac-
terise liminal spaces as the places where students “get
stuck” if they are going to get stuck at all. Stu-
dents show such a range of ability to traverse the
liminal space that it is natural to think of them as
being “effective” or “ineffective” at negotiating the
liminality. Meyer and Land suggest therefore that
pre-liminal variation is the key to understanding how
and why students might effectively negotiate liminal
space. What is there in each student’s background
that might help or hinder their liminal journey? In ex-
amining pre-liminal variation, we may need to attend
to more than just whether or not they have mastered
the academic material considered to be pre-requisite;
perhaps also we need to examine their epistemological
stance: are they ready to build knowledge in the way
we expect them to, and will they be able to tolerate
the (possibly quite long) period of uncertainty, con-
fusion, and even oscillation between seeming to have
“got it,” and feeling sure that “it” will remain forever
elusive?

Eckerdal et al. (2007) present research to support
the notion that students in Computer Science can be
accurately characterised as spending time in liminal
space. Interviews with students regarding things that
they had previously identified as potential thresh-
old concepts established that all of the proposed fea-
tures of liminal spaces were evident: significant time
commitment, oscillation between states, emotional in-
volvement of anticipation and anxiety, and mimicry
of the new state.

The implications attendant upon liminal space
may well prove as significant as the Threshold Con-
cepts model itself. First, Eckerdal et al. note that,
contrary to popular conceptions of “levels” of under-
standing, students passing through liminal space cope
with different aspects of concepts (theoretical, prac-
tical, etc.) in parallel. Second, that the time required
to make the transitions is significant, and perhaps
unexpected to novice students (and perhaps to those
setting learning outcomes). Third, that there is a sig-
nificant emotional reaction to dealing with liminality,
and that such reaction is normal and should be man-
aged rather than ignored or dismissed. Finally, that
mimicry during the negotiation of liminal space may
not be undesirable, but may be a normal part of the
process of coming to terms with conceptual difficulty.

3 Identification of Threshold Concepts

Assuming that the Threshold Concepts model is
valid, what processes can we use to identify threshold
concept instances? Davies (2006) notes that thresh-
old concepts provide a method of describing the ‘way
of thinking’ distinctive to a discipline; a method that
is an alternative to the ‘key concepts’ idea or the
method of phenomenography. However, he also notes
that identification of threshold concepts may be dif-
ficult due to their being “taken for granted” within
a subject, and “therefore rarely made explicit.” He
goes on to suggest two methods for recognising the
threshold concepts within a discipline. (For conve-
nience we shall refer to them as the first approach
and the second approach.) The first approach argues
that we might recognise threshold concepts by ex-
amining the different ways in which two disciplines

analyse the same situation. For instance, if Social
Scientists analyse school choice as a zero-sum game,
but Economists as a problem of general equilibrium,
that might lead us to believe that equilibria represent
a threshold concept in Economics.

The second approach to identifying threshold con-
cepts described by Davies is to focus on the distinc-
tion between people inside and outside the commu-
nity of practice—specifically, on the differing ways in
which students and experts in the field analyse the
same problem, or group of problems. This, of course,
is empirically very convenient for educators in a given
field, as they have the best opportunities to conduct
research on their own students. Consequently, most
work on identifying threshold concepts within disci-
plines has focused on this approach. The advantage
is that it allows researchers to look at problems that
only exist within one field. The clear disadvantage
is that there is no equivalence between novice/expert
comparisons and expert/expert comparisons.

Most substantial work on identifying threshold
concepts in Computer Science has taken the sec-
ond approach, examining the responses of students in
Computer Science to questions about where they got
“stuck” while studying. (See the comments on stud-
ies in Computer Science in Section 5.) To date, the
first approach (examining the differences in method-
ology between related fields) has been largely ignored.
This seems a missed opportunity, since Computer Sci-
ence has a wealth of related fields, many of which
have shared interests. Examining the different ways
in which practitioners in Computer Science, Informa-
tion Systems, Mathematics, Physics, Electrical Engi-
neering, and Linguistics, tackle similar problems may
produce excellent candidates for threshold concepts
in each discipline, and opens up a research question
concerning whether threshold concepts are shared be-
tween disciplines (and thus whether there is a hier-
archy of threshold concepts), and whether threshold
concepts mutate as they cross between disciplines.

Work has already begun on validating the Thresh-
old Concepts model and on identifying instances of
threshold concepts in Computer Science, e.g. in Eck-
herdal et al.’s multi-national study. This research
has made it clear that students in Computer Sci-
ence encounter things that look much like threshold
concepts and liminal spaces, but that there are diffi-
culties in articulating the granularity of such things.
For instance, both lecturers and students referred to
“object-orientation” as a threshold concept, but the
authors note that this is almost certainly too broad
a term, when interviews reflected that the “stuck
places” were more at the level of polymorphism or
object cooperation. Work on curriculum design by
Mead et al. (2006) may provide a way of teasing apart
these hierarchical distinctions; they propose the idea
of an anchor concept (which is a concept that is ei-
ther foundational or transformative AND integrative)
and an associated anchor concept graph, which maps
the cognitive load shared by related anchor concepts.
This approach might allow us to specify concepts at
multiple levels of granularity, and in a logical order
that recognises the dependency of threshold concepts
on other foundational material.

Some logical difficulties in identifying threshold
concepts have been identified. Rowbottom (2007)
raises several general caveats, all of which apply to
threshold concepts in Computer Science (and, indeed,
any other subject). His notes of caution are as follows:

1. The features attributed to threshold concepts are
insufficiently precise to distinguish them from
any other concept. They are described by their
originators as probably and not necessarily trans-
formative, irreversible, troublesome, etc. Thus,

any concept you care to mention might be a
threshold concept, even though it has none of
the features, and any concept that has all of the
features may not in fact be a threshold concept.
Thus, I may argue that “scope” is a threshold
concept in Computer Science, and you may argue
that it is not, but neither of us can properly ap-
peal to the definitions to support our argument.
Without those definitions, it is not logically fea-
sible even to use empirical research to support
or refute a claim that something is or is not a
threshold concept.

2. There are at least three accounts of what con-
stitutes a concept, from Cognitive Science (men-
tal models functionally equivalent to symbols or
words, complete with combinatorial syntax and
semantics), to competing views in Philosophy
(the concept of X is reducible to the ability to
think of Xs or classify things as Xs; or concepts
as abstract entities of thought associated with
names). Possibly these views are not contradic-
tory, and possibly we are meant to default to
the view of Cognitive Science. But which view
we hold will profoundly affect our method of de-
termining whether a particular concept has been
mastered. Rowbottom presents “playing tennis”
as an example of an activity where there is a dis-
tinction between knowing that and knowing how;
we might just as readily suggest that program-
ming is an activity where changes in concept do
not necessarily result in changes of practice, nor
that changes in practice are guaranteed to be a
result of a change in concept.

3. Not only are the qualifiers attached to each fea-
ture a problem, but so too are the features them-
selves. Take “transformative” as an example.
What may be transformative for me, may not be
transformative for you. For instance, if I learned
Pascal as my first programming language, then
the notion of generics would tend to have all the
features of a threshold concept—in particular,
troublesome, transformative, and integrative—
because Pascal does not have the features nec-
essary to support truly generic container types
(specifically, untyped pointers, or the ability to
specify that all the objects in the container will
be the same size if not the same type). 1 In con-
trast, a student who has Java as a first language
is likely to have no difficulty at all with the idea
that a container can store things of many types,
since containers can always be defined as stor-
ing things of type “Object.” Thus, genericity
is unlikely to have any of the connotations of a
threshold concept to a student who has Java as
her first programming language.

These caveats are not necessarily enough to dis-
miss the Threshold Concepts model, nor the possibil-
ity of identifying good candidates for threshold con-
cept instances. Even though our definitions of thresh-
old concepts may not be perfectly precise, we can de-
feasibly posit their existence, and agree upon their
most distinctive features, until such time as we find
evidence to suggest that we should retract our asser-
tion. Imprecise definitions are insufficient evidence
for retraction; “four-legged mammals” might be an
imprecise definition for “cats”, but that does not im-
ply that cats do not exist. However, these problems

1Variant records will allow a programmer to contain a set of
specified types, but will not allow the containment of any new
type without modification of the record. Furthermore, if one record
holds things of type A or type B, code that processes the record has
to deal with the possibility that type A processing can be invoked
on type B objects.

with the identification of threshold concepts do in-
dicate that there is only a limited amount of utility
in trying to determine threshold concepts by empiri-
cal means. Science, along with its attendant methods
and expectations, is a social construction: if there
are threshold concepts, and they are really as critical
as the model claims, it is because we have put them
in place and made them so. Studying our students
for signs of threshold concepts may help to make our
tacit assumptions explicit; but studying differences in
practice between experts in related fields should pro-
vide a broader set of concepts that act as boundary
markers for a subject.

4 Consequences of Threshold Concepts

Land et al. (2006) state that the Threshold Concepts
idea “presents important challenges for curriculum
design and for learning and teaching.” Specifically,
they draw attention to nine considerations that they
feel are important with respect to the design and eval-
uation of curricula. These are:

1. that threshold concepts are the “jewels in the
curricula,” demanding longer and sharper focus
than other concepts;

2. that they emphasise the “importance of engage-
ment” by stressing the transformation of the stu-
dent into someone who thinks like a computer
scientist, rather than someone who understands
how computer scientists think;

3. that they emphasise listening for understanding
on the part of the teacher—in particular, listen-
ing for the signs of pre-liminal variation among
students;

4. that they emphasise the reconstitution of self on
the part of the student, and imply the design of
an environment supportive to the discomfort of
repositioning oneself in relation to the subject;

5. that they provide good reasons for tolerating un-
certainty both on the part of students and teach-
ers, due to the time it takes to negotiate the lim-
inal space of a Threshold Concept;

6. that they promote recursiveness and excursive-
ness of learning—that troublesome knowledge of-
ten requires re-visiting, and that the “outcome”
of learning is not just a set of “the learner will
be able to. . . ” statements, but that the learner
will have been transformed by the journey into
one who thinks differently;

7. that understanding pre-liminal variation among
students will help us to understand why some
students negotiate the curriculum effectively,
while others have more difficulty;

8. that they may expose the unintended conse-
quences of generic ‘good pedagogy,’ in that they
provide examples where standard methods (such
as simplifying the concept to begin with) prove
dysfunctional;

9. that they highlight an aspect of the underlying
game—that is, that students will only become
members of the community of practice if they
master the authorised understanding of threshold
concepts, and that alternative versions (based on
personal experience or common-sense) will place
them in unwitting opposition to the community.

At first glance, it is easy to dismiss these consid-
erations as “nothing new here.” After all, in Com-
puter Science, we are only too well aware that some
topics need longer and greater emphasis than oth-
ers, that student engagement is paramount to success,
that student variation is immense and requires signif-
icant adaptability on the part of teachers. We know
all of these things, and using the language of Thresh-
old Concepts to express them is unlikely to affect our
understanding of them, nor provoke a radical shift in
our strategies for dealing with them.

However, there remains the possibility that the
Threshold Concepts model may provide unexpected
consequences. For instance, we can reason as fol-
lows: threshold concepts are integrative; they allow
the practitioner to combine other fundamental con-
cepts in ways unique to the discipline. If we believe
object-orientation to be a threshold concept, what
other fundamental concepts are being integrated? A
strong implication of the Threshold Concepts model
is that those concepts that are to be integrated should
be grasped first by learners, before attempting to
traverse the liminal space where they will learn to
integrate them. If, for instance, we view the en-
capsulation of state and behaviour as a key part of
object-orientation, the implication is that state and
behaviour should be mastered first. This suggests
that an objects-first approach to CS1 is incompatible
with the Threshold Concepts model. To date, there
has been little or no work on exploring the conse-
quences of Threshold Concepts in this fashion: what
teaching practices would we adopt, and what should
we reject if the Threshold Concepts model is valid?

At a higher level of abstraction, is it possible—or
even necessary—that we can ever come to a general
agreement on what constitute threshold concepts in
Computer Science? It could be argued both ways:
that we can and should, and that we cannot and
that it does not matter. For the latter argument,
we need only point to the ACM curriculum and state
that some topics will be troublesome for some learn-
ers, and different topics will be troublesome for other
learners. We adapt as necessary, listening carefully to
our classes for signs of difficulty and for indications
of dawning mastery. In adopting that attitude, the
Threshold Concepts model tells us nothing new, leads
to no insights, and has no implications. On the other
hand, what happens to an academic subject when the
underlying game (a phrase used often in Threshold
Concepts literature) remains implicit, and is never
made explicit? Even in Economics, where different
schools of thought (such as the Austrian School, or
Keynsian Economics) provide very different analyses
of the same events, they all agree that they are do-
ing economics, based on a shared set of underlying,
unifying concepts.

Those concepts can be identified by focusing on
what we do that is peculiar to our discipline, and by
making explicit those things that we think everybody
agrees on. Some of that identification can no doubt be
achieved by observing students making the transition
from not thinking like a practitioner to doing so, and
some can be achieved by observing how practitioners
in different but related fields practice differently. It
seems reasonable that the two different methods will
highlight different concepts.

5 Studies in Computer Science

Shinners-Kennedy (2008) proposed state as a thresh-
old concept in Computer Science, showing that it
meets all five threshold concept criteria. Vagianou
(2006) considers program-memory interaction as a
possible example of a threshold concept in Computer

Science. The author argues that research shows a vi-
able computer model must be present before program-
ming is engaged, and that an introductory program-
ming course needs to shift each student’s viewpoint
from that of a non-expert, “end-user” stance toward a
“programmer stance” with an awareness of being di-
rectly responsible for the computing process. Discus-
sion suggests that Program/memory interaction dis-
plays the characteristics of a threshold concept. The
notion is troublesome, since beginning students do
not realise how the use of memory takes place, or their
role in that process. It acts as a boundary marker be-
cause our biological concept of short and long term
memory differs from computing memory. It is inte-
grative, showing otherwise hidden relationships be-
tween hardware and software. Program/memory in-
teraction is transformative, since once understood it
will significantly shift the student’s perspective and
it follows that the notion should be irreversible since
the knowledge is very unlikely to be unlearnt.

A paper by Khalife (2006) aims to identify po-
tential Threshold Concepts in introductory program-
ming courses and propose solutions to help students
surpass thresholds. The author presents some com-
monly accepted novice programmer difficulties (such
as lack of problem solving strategies), and then sug-
gests that the first threshold a student needs to pass
is “. . . to develop a simple but yet concrete mental
model of the computer internals and how it operates
during program execution” (Khalife, 2006, p246). A
computer model for teaching purposes is then set out
along with results of an empirical evaluation of that
model.

To date, the most systematic and in-depth ap-
proach to studying Threshold Concepts in Comput-
ing is an on-going multi-institutional, multi-national
series of projects underway in the UK, USA, and
Sweden (Zander et al., 2008; Eckerdal et al., 2006;
Boustedt et al., 2007; Eckerdal et al., 2007; Moström
et al., 2008). Discussions by members of this group
have been underway since (at least) early 2005 when,
at the Conference on Innovation and Technology
in Computer Science Education in Portugal, they
“. . . interviewed 36 Computer Science educators from
nine countries and asked for suggestions about con-
cepts that met the criteria for a threshold concept”
(Zander et al., 2008). There was no universal consen-
sus of concepts amongst academics, but the most pop-
ular are listed as: levels of abstraction; pointers; the
distinction between classes, objects, and instances; re-
cursion and induction; procedural abstraction; and
polymorphism. At the 5th Koli Calling conference
in Finland, McCartney and Sanders (2005) presented
a poster on Threshold Concepts in CSE and col-
lected opinions from delegates on potential Threshold
Concepts through questionnaires and interviews. At
ITiCSE’06, the authors provided a helpful discussion
of related areas of research in CSE, namely: construc-
tivism; mental models; misconceptions; breadth-first
approach to teaching; and, ideas fundamental to the
discipline (Eckerdal et al., 2006). The paper contin-
ues by proposing, with support from literature, two
candidates for threshold concepts—abstraction and
object-orientation. A paper presented at SIGCSE’07
answers yes and yes to the title “Threshold Con-
cepts in Computer Science: Do they exist and are
they useful?” (Boustedt et al., 2007). The principal
contribution of this paper is to describe their empiri-
cal approach of using structured interview techniques
to identify candidate threshold concepts in Computer
Science. From 33 concepts mentioned by students and
educators, they examine two in detail to establish that
they have the required features: object-orientation
and pointers. Here, they make the point that what
they might have uncovered are “. . . perhaps broad ar-

eas in which thresholds exist.” Interview subjects
were inclined to use the broad terms to identify the
concepts, but then spoke in much more specific terms
about problems they encountered within those areas.

What the on-going multi-national study provides
is validation of the Threshold Concepts model for
CSE. Possible “instance” examples of threshold con-
cepts (which display the five threshold criteria), have
been identified by practitioners from different coun-
tries. CS students were interviewed regarding topics
they had found troublesome and “got stuck” on, and
an intersection of topics identified by both (object-
oriented programming and pointers) have been inves-
tigated in greater detail for evidence that they satisfy
the threshold concept criteria. The multi-national
study has also looked at the idea of liminal space as an
appropriate description of the transitional space CS
students negotiate as they develop ways of thinking
and practising.

6 Concluding Comments

The Threshold Concept Model presents a disciplinary
situated learning framework for higher education
which is a welcome shift in perspective away from
the checkbox flavour of learning outcomes. “In-
stance” examples of threshold concepts are core cur-
riculum concepts with the particular properties of be-
ing transformative, irreversible, integrative, bound-
ary markers, and troublesome. In Computer Science,
proposed threshold concept examples include: state;
program-memory interaction; levels of abstraction;
pointers; the distinction between classes, objects, and
instances; recursion and induction; procedural ab-
straction; and polymorphism. With further work, is
it likely that academics in CSE would agree on a set
of threshold concept topics? Perhaps! We think it
likely that there will be agreement for some threshold
concepts and not others. In the empirical sense, it
is not possible to validate threshold concepts because
what is a threshold concept for one person, may not
be for another. The best we can achieve is a sense of
“many” or “most” learners finding a particular topic
meets the requirements of a threshold. Does this lack
of validation matter for CSE? No, we think not, be-
cause practitioners define the subject; we define the
curriculum (not the students), and so empirical val-
idation using students may be something of a “red
herring.” If threshold concepts define the boundaries
of how practitioners perceive a subject, then surely
we need to study practitioners if we wish to define
the threshold concepts.

If practitioners have differing perspectives then
you simply get different schools of thought. Will
threshold concepts alter what and how we teach and
how we assess Computer Science? Yes and No. On
one hand, for example, object-orientation is trou-
blesome and counter-intuitive (we already know this
and give it extra teaching emphasis) so labelling it
a threshold concept provides no additional enlight-
enment. On the other hand, investigating students’
liminal space as they come to terms with object-
orientation will provide valuable insight into what
makes an effective novice. Knowing what makes a
novice effective in traversing liminal space allows par-
ticular skills and ways of thinking to be targeted. Dis-
covering an unexpected threshold concept would be
of much interest. The implications of threshold con-
cepts are also of interest for CSE; for example, is an
objects-first approach in teaching incompatible with
Threshold Concept theory? Threshold Concepts lit-
erature strongly suggests that the integrative nature
of thresholds requires students to first have mastered
some fundamental concepts before embarking on the

threshold concept itself. Simplification of a threshold
concept to make it easier has been shown (in Eco-
nomics at least) to lead students to settle for a naive
version of that knowledge (Land et al., 2006, p333).
An implication for CSE could be seen as avoiding
teaching “objects-first” in CS1.

From a philosophical viewpoint the difficulty with
Threshold Concepts is the lack of a formal definition
which would allow specification of what is, and what
is not a threshold concept. The model needs to be-
come more precise because, as it stands, no threshold
concept candidate can be verified—it is only possible
to make an assertion that it exists. We suggest that
one small step to help clarify the model is to view
Threshold Concepts in two parts: first, as a model or
framework, and second, as “instance” examples. Both
need to be validated separately—are there subjects
for which the Threshold Concepts model is completely
invalid? Or does it work for every tertiary subject? If
you have a subject for which Threshold Concepts is a
valid model, what are the threshold concepts within
it? How can you tell for sure? How can you tell if you
have identified all of them? Is it possible to distin-
guish those things that look like threshold concepts
but are not?

Although we have titled this paper “Issues with
Threshold Concepts in Computer Science,” and have
noted some difficulties, we do not think that the no-
tion of Threshold Concepts should be dismissed. As
educators in Computer Science there are essential
questions which we continually ask: When do we con-
sider a student has been successful? Why are some
students successful, whilst others are not? And how
do we support students through their learning pro-
cess? In relation to these questions, there are three
aspects of particular value that Threshold Concepts
contribute. Threshold Concepts provide:

1. an apt description for what it means for a student
to have been successful in our discipline;

2. the addition of epistemological concepts of limi-
nal and pre-liminal space, which gives direction
for future research into what makes an effective
novice programmer;

3. a focus on our community of practice, giving def-
erence to the disciplinary knowledge of the aca-
demic, so that concerns are “. . . always analysed
and resolved from, and within, specific and sit-
uated disciplinary contexts” (Meyer and Land
2007, p14).

Where should the Threshold Concept discussion
for CS education go next? We suggest that Davies’
first approach to identifying threshold concepts—
examining the ways in which practitioners in related
disciplines solve similar problems—provides the best
avenue for further research. If the goal is to identify
“how to think like a Computer Scientist” then we
must first study the practitioners, not their students.
In CS the first challenge is to specify what consti-
tutes our subject. If we ask our colleagues what it
means to be a Computer Scientist, how much agree-
ment will there be? For example, how much overlap
will there be between groups with a software engineer-
ing flavour, or theoretical, or electrical engineering ap-
proach? The immediate value of Threshold Concepts
in CS Education is to require us to address what it
means to be a Computer Scientist.

References

Boustedt, J., Eckerdal, A., McCartney, R., Moström,
J. E., Ratcliffe, M., Sanders, K., and Zander, C.

(2007). Threshold concepts in computer science:
do they exist and are they useful? SIGCSE Bull.,
39(1):504–508.

Carstensen, A.-K. and Bernhard, J. (2008). Threshold
Concepts and Keys to the Portal of Understanding:
Some Examples from Electrical Engineering, pages
143–154. In (Land et al., 2008).

Davies, P. (2006). Threshold concepts: How can we
recognise them? In (Meyer and Land, 2006a),
pages 70–84.

Davies, P. and Mangan, J. (2007). Threshold concepts
and the integration of understanding in economics.
Studies in Higher Education, 32(6):711–726.

Dunne, T., Low, T., and Ardington, C. (2003). Ex-
ploring threshold concepts in basic statistics, using
the internet. In AISE/ISI Satellite, Berlin.

Eckerdal, A., McCartney, R., Moström, J. E., Rat-
cliffe, M., Sanders, K., and Zander, C. (2006).
Putting threshold concepts into context in com-
puter science education. SIGCSE Bull., 38(3):103–
107.

Eckerdal, A., McCartney, R., Moström, J. E.,
Sanders, K., Thomas, L., and Zander, C. (2007).
From limen to lumen: Computing students in lim-
inal spaces. In ICER ’07: Proceedings of the Third
International Workshop on Computing Education
Research, pages 123–132, New York.

Hussey, T. and Smith, P. (2003). The uses of learning
outcomes. Teaching in Higher Education, 8(3):357–
368.

Khalife, J. T. (2006). Threshold for the introduction
of programming: Providing learners with a simple
computer model. In Romero, P., Good, J., Acosta,
E., and Bryant, S., editors, Proceedings of the 18th
Workshop of the Psychology of Programming Inter-
est Group, pages 244–254.

Land, R., Cousin, G., Meyer, J. H., and Davies,
P. (2006). Implications of threshold concepts for
course design and evaluation. In (Meyer and Land,
2006a), pages 195–206.

Land, R., Meyer, J. H., and Smith, J., editors (2008).
Threshold Concepts Within the Disciplines. Sense
Publishers.

Lucas, U. and Mladenovic, R. (2007). The potential
of threshold concepts: An emerging framework for
educational research and practice. London Review
of Education, 5(3):237–248.

Lye, A. (2006). Threshold concepts: Reflections on
marketing education. In Proceedings of the 2006
ANZMAC Conference, Brisbane.

McCartney, R. and Sanders, K. (2005). What are the
“threshold concepts” in computer science? In Pro-
ceedings of the 5th Baltic Sea Conference on Com-
puting Education Research (Koli Calling 2005),
page 185.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J.,
Clair, C. S., and Thomas, L. (2006). A cogni-
tive approach to identifying measurable milestones
for programming skill acquisition. SIGCSE Bull.,
38(4):182–194.

Meyer, J. H. and Land, R. (2003). Threshold concepts
and troublesome knowledge – linkages to ways of
thinking and practising. In Rust, C., editor, Im-
proving Student Learning Theory and Practice –
Ten Years On, pages 412–424. OCSLD, Oxford.

Meyer, J. H. and Land, R., editors (2006a). Overcom-
ing Barriers to Student Understanding: Threshold
Concepts and Troublesome Knowledge. Routledge.

Meyer, J. H. and Land, R. (2006b). Threshold con-
cepts and troublesome knowledge: An introduc-
tion. In (Meyer and Land, 2006a), pages 3–18.

Meyer, J. H. and Land, R. (2007). Stop the conveyer
belt, I want to get off. Times Higher Education
Supplement, page 14. Issue 1807, 17 August 2007.

Moström, J. E., Boustedt, J., Eckerdal, A., McCart-
ney, R., kate Sanders, Thomas, L., and Zander,
C. (2008). A multi-national, multi-institutional
project on threshold concepts in computer science:
Results and implications. In Threshold Concepts
Conference 2008, Queen’s University, Kingston,
Canada.

Perkins, D. (2006). Constructivism and troublesome
knowledge. In (Meyer and Land, 2006a), pages 33–
47.

Rowbottom, D. P. (2007). Demystifying threshold
concepts. Journal of Philosophy of Education,
41(2):263–270.

Shanahan, M. and Meyer, J. H. (2006). The trouble-
some nature of a threshold concepts in economics.
In (Meyer and Land, 2006a), pages 100–114.

Shinners-Kennedy, D. (2008). The everydayness of
threshold concepts: ‘State’ as an example from
computer science. In (Land et al., 2008), pages
119–128.

Stokes, A., King, H., and Libarkin, J. (2007). Re-
search in science education: Threshold concepts.
Journal of Geoscience Education, 55(5):434–438.

Taylor, C. (2006). Threshold concepts in biology:
Do they fit the definition? In (Meyer and Land,
2006a), pages 87–99.

Vagianou, E. (2006). Program working storage: A be-
ginner’s model. In Berglund, A. and Wiggberg, M.,
editors, Proceedings of the 6th Baltic Sea Confer-
ence on Computing Education Research (Koli Call-
ing 2006), pages 69–76.

Zander, C., Boustedt, J., Eckerdal, A., McCartney,
R., Moström, J. E., Ratcliffe, M., and Sanders, K.
(2008). Threshold concepts in computer science:
A multi-national empirical investigation. In (Land
et al., 2008), pages 105–118.

