

It’s Never Too Early: Pair Programming in CS1

Krissi Wood
School of ICT

Otago Polytechnic
Dunedin, New Zealand
Krissi.Wood@op.ac.nz

Dale Parsons
School of ICT

Otago Polytechnic
Dunedin, New Zealand
Dale.Parsons@op.ac.nz

Joy Gasson
School of ICT

Otago Polytechnic
Dunedin, New Zealand
Joy.Gasson@op.ac.nz

Patricia Haden
School of ICT

Otago Polytechnic
Dunedin, New Zealand

Patricia.Haden@op.ac.nz

Abstract
This paper describes the use of the Pair Programming
software development methodology in the earliest weeks
of a first programming course. Based on a broad,
subjective assessment of “programming confidence”,
instructors placed students in level-matched pairs for a
portion of their programming exercises. Students who
began at the lowest levels of confidence showed
significantly better exercise completion rates when paired
than when working individually. Student response to the
Pair Programming technique was uniformly positive, and
teaching staff report pedagogical, mechanical and social
benefits from the practice. These data indicate that
successful programming pairs can be constructed based
on tutors’ subjective judgements of student performance
very early in CS1, before exam scores or code quality
assessments are available. Thus Pair Programming can be
an effective classroom intervention even with extreme
novices..

Keywords: Programming education, Pair
Programming, Novice programmer.

1 Introduction
Failure rates in first computer programming papers
(usually called CS1) are alarmingly high, often greater
than 40% (Bennedsen and Caspersen, 2007). Recent work
(Robins, 2010) has identified student struggles in the first
days and weeks of CS1 as a significant contributing
factor to this high failure rate. Robins has demonstrated
mathematically that students who fail to acquire the core
concepts presented in first programming lessons are
frequently unable to recover, leading to high drop out and
failure rates. He maintains that this is largely due to the
scaffolded structure of computer programming, where
each skill builds upon, and requires mastery of, a set of
simpler skills. Thus it is essential that we find classroom
approaches and interventions that can support novice
programmers during their earliest teaching sessions. In
the current study, we explore the possibility of leveraging
a specific programming methodology – Pair
Programming – in the very first weeks of CS1. To do this,

.Copyright © 2013, Australian Computer Society, Inc. This

paper appeared at the 15th Australasian Computing Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

we introduce a protocol for assigning students to pairs
using holistic judgements made by in-class teaching staff.
These judgements were made after the second week of
CS1 before either exam marks or code quality
assessments were available. As detailed below, this
pairing protocol resulted in significantly better class
performance for those students who initially appeared to
be at greatest risk.

Pair Programming is a formal software development
protocol where two programmers work synchronously on
a single piece of code (Williams and Kessler, 1998). The
protocol includes detailed policies for participant roles
and procedures. One member of the pair is the Driver,
who controls the mouse and keyboard, physically creating
the code. The other member of the pair is the Navigator,
who oversees the construction process, watches for
errors, makes suggestions and locates resources. Partners
switch roles at regular intervals, usually every 15 to 20
minutes. Pair Programming originated in industry but has,
in the last decade, become increasingly common in the
classroom. An active research community is exploring the
potential benefits of Pair Programming to students and
teachers, while considering mechanical and procedural
issues in its use.

Studies have shown that Pair Programming can
contribute to an improvement in learning outcomes. In a
large longitudinal study involving several thousand
students, McDowell, Werner, Bullock, and Fernald
(2004) found that students in classes that used Pair
Programming were more likely to complete their classes
and to continue in a computer science major than were
students in comparable classes that used only solo
programming. Students from the Pair Programming
classes had equivalent exam performance to solo
students, addressing the concern of some educators that
Pair Programming permits one student to “freeload” on a
stronger partner.

Similarly, Mendes, Al-Fakhri and Luxton-Reilly (2005
and 2006) have performed two large-scale studies of Pair
Programming at the University of Auckland. In these
studies, students in Pair Programming classes performed
better on programming exercises, and earned higher exam
marks, than solo programming controls.

Williams (2007) describes the lessons learned in seven
years of using Pair Programming at a large university in a
variety of Computer Science papers at all academic
levels, including graduate. Williams details benefits of
the protocol for both teachers and students. For students,

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

13

Pair Programming supports the building of stronger social
relationships (through the need to work together),
increases retention, and reduces “waiting time” for
teacher feedback as two students working together can
often resolve a problem for which a student working
alone would require teacher assistance. For teachers, the
protocol reduces marking time (by halving the number of
submitted assignments), reduces student demand in
practical sessions, and improves general work ethic by,
they hypothesise, engendering a sense of mutual
responsibility between partners.

Braught, Wahls and Eby (2008) performed a tightly-
controlled study of Pair Programming. In a large
programming paper with multiple sections, they
randomly assigned some sections to use Pair
Programming and some to use solo programming.
Students enrolled in a section without knowing which
method would be used in that class, and were not allowed
to transfer between sections after the start of the paper.
Braught et al. compared code quality on individual
assignments, as well as exam marks and time to complete
assignments. They found an interaction between
programming protocol and scores on the Scholastic
Aptitude Test (a test of general academic level
administered prior to college or university entrance in the
United States) such that greatest benefit of Pair
Programming was seen for students with lower SAT
scores. This implies that Pair Programming might be
especially helpful for those students who would otherwise
struggle with a programming paper, which is in
accordance with the higher retention and completion rates
seen in many Pair Programming studies.

In all of the preceding studies, (and in others discussed
below) subjective student feedback was gathered, asking
students for their views of the Pair Programming
experience. Student feedback is nearly universally
positive, with students reporting that they enjoy working
in pairs, that they feel they can program more quickly
with a partner, that they are less likely to “get stuck”, and
that they appreciate the opportunity to get to know fellow
students through working together. Negative feedback
(and less positive performance outcomes) occurs
primarily in the case of dysfunctional pairings, that is,
when partners are unable to work effectively together.

Although some of the reported benefits of Pair
Programming can be obtained simply through random
pairing (e.g. McDowell et al., 2004 used only random
pairing) there is compelling evidence that careful
selection of pairs reduces the probability of dysfunctional
pairings. Specifically, both educational benefit and
student satisfaction appear to be maximised when the two
members of a pair have similar levels of programming
ability.

In the long-term study described by Williams (2007),
teachers experimented with a variety of metrics to
determine pairings, including standardised general exam
scores, grade point average, the results of personality and
self-esteem tests, learning style scores, and work ethic
(based on self-report). They paired students in various
combinations of these measures, using both similarity and
dissimilarity of scores. The most successful pairings were
those based on similar mid-term exam score, the most
direct measure of a student’s programming skill at the

time of the pairing. On self-report, Williams’ students
consistently request to work with a student of equal or
greater programming skill. Since it is not possible to give
one member a stronger partner without giving the other a
weaker partner, Williams recommends attempting to pair
students of equal skill levels.

Cliburn (2003) explored directly the effect of partner
similarity by constructing highly dissimilar pairs. He
originally paired students “from different cultural or
ethnic backgrounds [and]…upper with lower classmen”.
The result was poor collaboration and poor exam
performance. He then re-paired students based on their
project marks, matching students with similar results.
With these pairings he observed better project quality and
completion rates, and higher exam scores.

Direct inspection of students’ experience of Pair
Programming also shows the advantage of pairing
students of similar ability. Chaparro, Yuksel, Romero and
Bryant (2005) used a variety of metrics to explore
students’ qualitative views of Pair Programming.
Through the use of observation, questionnaires, semi-
structured interviews and field notes they determined that
students prefer, and find most effective, pairings of
similar skill levels. Katira, Williams and Osborne (2005)
queried students directly about the “compatibility” of
their Pair Programming partner. Students rated as more
compatible those partners whom they perceived to be of
similar skill. Students’ perception of the skill levels of
their partners was accurate, as measured by exam scores
and grade point average.

More recent studies (e.g. Radermacher and Walia,
2011 and 2012; Braught, Wahls and Eby, 2008) have
accepted pairing by skill level as the appropriate default,
citing the accumulating evidence in its favour.

While there is a growing consensus that pairing by
skill level produces the most successful Pair
Programming experience, the measurement of skill
remains problematic. As we are interested in the use of
Pair Programming very early in a first programming
course – ideally in the first weeks – we require a measure
of ability to be made before exam or major project scores
are available. We have thus used a subjective metric,
based on instructor observation of student performance,
which can be made in the first weeks of the semester.

Our observational assessment of ability is based on
what we call “programming confidence”. The term
“confidence” in this context is not a personality metric; it
does not, in our experience, correlate with self-esteem. It
is a description of the way in which students approach
programming exercises. The confident student
programmer approaches coding exercises boldly, is
willing to experiment with the techniques being learned,
is relatively unfazed by coding errors and seems to expect
to be able to solve the assigned problem. These students
may have prior programming experience in school or as a
hobby, or they may have a history of success in contexts
they perceive to be similar to programming (e.g. games or
puzzles), or they may simply feel comfortable with the
particular intellectual exercise involved. Student
programmers who lack confidence are less able to make
independent progress with coding exercises. They
frequently become “stuck”, and will wait for assistance
from the instructor, rather than try an alternative approach

CRPIT Volume 136 - Computing Education 2013

14

on their own. This slows their work pace, and often
makes it difficult for them to complete in-class
assignments in the allotted time. Programming
confidence, as we define it here, reflects current
programming ability, and can change rapidly as the
student gains experience. We have observed that students
who start out with little confidence can eventually
develop considerable programming skill, if they are able
to navigate successfully the difficult early stages of
learning. In section 2, we discuss further the process used
to make our assessments of student programming
confidence.

It is interesting to note that Thomas, Ratcliffe and
Robertson (2003) attempted to place students on an
equivalent continuum of programming confidence by
self-report. Each student was asked to rate himself or
herself on a 10-point scale from “Code Warrior” to
“Code-Phobe”. Thomas et al.’s description of these terms
is extremely close to our conceptualisation of
programming confidence. Based on the students’ own
rating, Thomas et al. compared the efficacy of same vs.
opposite pairings. That is, in one condition they paired
two high scoring students or two low scoring students; in
the other condition, they paired a high-scoring student
with a low-scoring student (middles were always paired
with other middles). They report that Same pairings
perform better than Opposite pairings on coding
exercises, and that students consistently prefer being
paired with someone at their own level on the Warrior-
Phobe scale.

Another factor that has been explored as a potential
determinant of the efficacy of Pair Programming is the
time course of the pairing. McDowell et al. (2004) paired
students for an entire semester, and pairing was used on
both in-class and out-of-class assignments. Radermacher
and Walia (2011), in contrast, paired students only for a
single 50-minute class session. Based on their lengthy
experience with Pair Programming, Williams (2007) and
her colleagues (see for example, Nachiappan, Williams,
Ferzli, Wiebe, Yang, Miller and Balik, 2003) recommend
switching pairs often. They note that this reduces the
impact of any dysfunctional pairing and increases the
social benefit which many students cite as an advantage
of the method. They further advise that Pair Programming
be initially used only in-class, until students have
mastered the technique. This has the added benefit of
eliminating scheduling difficulties, which are noted as
problematic by many students in studies using out-of-
class exercises (cf. McDowell et al., 2004; Hanks, 2006).

Thus, following current best practice for the
implementation of Pair Programming in the classroom,
we intend to pair students based on programming
confidence (as defined above), to include a combination
of paired and individual exercises during the semester,
and to change pairs for each Pair Programming session.
In this way we hope to be able to use Pair Programming
in the very earliest stages of programming education,
where it is hypothesised that students are at greatest risk
of failure (cf. Robins, 2010).

2 Method
The study was conducted during a one semester (16
teaching weeks) offering of a first programming course at

Otago Polytechnic in New Zealand. “Programming 1” is
a required paper in the first semester of our Bachelor of
Information Technology degree. For the majority of
students it is their first exposure to formal computer
programming, although there are generally a small
number of students who have previously taken a
programming paper (some who have previously taken
Programming 1 but not passed), and occasionally students
with hobbyist coding experience. In this offering, 40
students started the paper, including 3 repeaters and 11
with some other prior programming experience.

The focus of Programming 1 is on programming
fundamentals, such as variable manipulation and flow of
control. The paper is taught in C# using Visual Studio,
but is taught exclusively on the console, and contains
only minimal Object-Oriented theory (formal OO and
GUI work begins in our Programming 2 paper in second
semester). Programming 1 comprises two two-hour
sessions each week. In a typical session, a new topic is
introduced by the lecturer with discussion and code
examples. Students are then given a set of practical
exercises to perform in class on the discussed topic.
Practicals are designed to be completed during class by
the majority of students.

In previous offerings of Programming 1, each student
worked individually on all practical sessions. In the
semester in which this study was conducted, Pair
Programming was introduced in selected sessions. Our
goal was to begin Pair Programming as early as possible,
matching students at comparable levels of ability, as
dictated by the current literature. While the common
quantitative metrics of ability – exam scores and code
quality assessment – are not available in the first weeks of
CS1, our experience as programming instructors
convinced us that there were observable differences
between students even in these early stages. These
differences we have summarised as “programming
confidence” (see discussion above). We hypothesised that
programming confidence could be a criterion for the
construction of successful pairs. Further, we believed that
judgements of programming confidence could be made
simply through observation of student behaviour by
experienced programming educators. This hypothesis was
based on our conviction, developed over some 40 years of
combined CS1 teaching experience, that “we know it
when we see it”. Thus we determined to assign students
subjectively to one of three levels of programming
confidence, and to use this assignment to construct
programming pairs.

Teaching staff predicted that they needed at least four
teaching sessions to identify accurately each student’s
level of programming confidence. Thus, for the first four
sessions (i.e. the first two weeks of the semester),
students worked individually while teaching staff
carefully observed their behaviour.

The four session topics were:

1. Introduction to the IDE and writing to the
screen.

2. Introduction to variables and reading from user
input.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

15

3. Introduction to data types and computation.
4. Small interactive program combining reading

user input, performing computation using
multiple data types, and writing output.

After the fourth session, the two classroom tutors
made their initial confidence assignments individually.
Each student was assigned to a confidence band, with 1
being lowest confidence, 3 being highest confidence and
2 being intermediate. These assignments were made
subjectively, reflecting the tutor’s sense of how
confidently each student approached the programming
exercises. Where there were disagreements between the
two tutor judgements, the final banding was made
collaboratively through detailed discussion of each
student’s progress and consideration of the number of in-
class exercises the student had been able to complete.
Prior to the banding, tutors had anticipated difficulty
assigning students who fell at the borders of the banding
categories. In practice, while tutors had some uncertainty
at the boundary between levels 2 and 3, they had no
difficulty identifying those at level 1 and there were no
disagreements between the two teaching staff about who
belonged in this category.

Although no specific quantitative metrics were used to
determine confidence bandings, the in-class tutors
identified a number of behaviours which they both used
consistently to identify low confidence students. These
included:

• Getting stuck: The student simply stops working

and either switches to some non-related task or
waits passively for tutor assistance.

• Copy-coding: The student begins reproducing
code samples verbatim where they are not
appropriate.

• Frantic random changes: The student begins
inserting and deleting code elements randomly in
the hopes that an error will be resolved, without
any organised plan.

The consistency of assignment to level 1 by both
tutors even in the absence of specific quantitative metrics
is notable. The very low confidence student seems almost
qualitatively different from his peers, at least in the
perception of an experienced programming teacher. In
future semesters, we intend to analyse formally the initial
judgements of the two classroom staff to obtain a
statistical measure of inter-rater reliability.

For the next four weeks of the semester, the two
classroom sessions each week were handled differently.
In the first session students worked individually; in the
second session, students were assigned to pairs and used a
formal Pair Programming code development
methodology. (The technique was explained prior to the
first Paired session.) Students were paired based on
banding such that each student worked with a student at
the same confidence level. Each student was assigned a
different partner for each of the four paired sessions. The
pairing assignment was made by the instructors prior to

the class session and announced at the beginning of
practical work time. In cases where an odd number of
students necessitated a cross-banding pairing, this was
arranged by the instructors based on their assessment of
the students’ suitability. Where an odd number of
students required one student to work alone, this role was
always given to a more experienced Level 3 student. For
each session, instructors recorded exercise completions
and observed student behaviour.

At Week 6, after four weeks of using Pair
Programming in alternating sessions, student feedback
was collected. See below for details. Additionally,
students were rebanded at this time. The course
instructors had noted that different students were
progressing at different rates (as is generally true in
Programming 1) and some students who had initially
been placed in the same band were now working at
different levels of confidence. The rebanding used, as
much as possible, the same criteria as the original
banding. That is, students who were still obviously
struggling were assigned to Level 1, and those who were
working independently were assigned to Level 3. The
new banding was not based on a student’s ranking
relative to the rest of the class. Thus it was technically
possible that the second banding would have no Level 1
students. In actual fact, the second banding produced 8
Level 1 students (22%), 22 Level 2 students (61%) and 6
Level 3 students (17%). See below for a more detailed
discussion of the changes in banding over time.

Weeks 7 to 9 of the paper were spent in revision and
preparation for the mid-term exam, so no formal practical
sessions were held. After the mid-term exam, students
were banded based on their exam score to provide an
external comparison for the instructors’ subjective
bandings. Students scoring 55% or lower were considered
Level 1, students scoring 55% to 75% were considered
Level 2, and students scoring more than 75% were
considered Level 3.

The purpose of the second banding (and the banding
based on exam score) was to prepare for pair assignments
in the remaining weeks of the semester, where we
intended to continue the alternation of individual and
paired practical sessions. However, students began to
express a preference for working in pairs rather than
individually. In view of this attitude, and given the
positive impact of Pair Programming that was observed
during the first experimental weeks (see below) the
instructors decided that educational efficacy took
precedence over data collection, and did not require
students to perform any practicals individually after week
11. The instructors continued to place students into pairs
for the planned Paired sessions if they had not self-paired,
but students were also allowed to construct their own
pairs. Thus only weeks 3 to 6 (inclusive), 10 and 11 are
included in the analysis.

CRPIT Volume 136 - Computing Education 2013

16

3 Results1

3.1 Practical Lab Completions
During the six experimental weeks, there were six
individual and six paired practicals. The mean number of
individual practicals completed on time per student was
4.58; the mean number of paired practicals completed on
time was 4.97 (F1,34 = 2.489; p<.05).

The distribution of the difference between numbers of
paired and individual lab completions across students is
shown in Figure 1. Of the 14 students who completed
equal numbers of individual and paired practicals, 8
(57%) completed all twelve labs. This apparent ceiling
effect compromises our ability to sensitively observe the
impact of Pair Programming for students at the top end.

Figure 1: Distribution of Completions

To observe more closely the differential impact of
pairing on students of different initial confidence, we can
compare completion rates for students based on their first
bandings. Due to the low number of students initially
banded at Level 3 who did not withdraw from the paper
prior to the midterm exam, we combine Levels 2 and 3
for this analysis. Students who had initially been banded
at Level 1 completed on average .84 more paired labs
than individual; students initially banded in Levels 2 or 3
completed on average .12 fewer paired labs than
individual (F1,34 = 4.11; p=.05). This pattern does not
seem to be attributable entirely to a ceiling effect, as the
total mean labs (out of 12) completed for initial Level 1
students is 9.05, and for initial Level 2/3 students is
10.11. This difference is not significant (F1,34 = 2.53;
p=.12). Thus the benefit of Pair Programming as
measured by practical lab completion rates appears to be
primarily for those students who initially exhibited the
greatest difficulty with programming.

3.2 Programming Confidence Bandings
The proportion of students at each Level for each of the
bandings is shown in Figure 2. The proportion of students
at Level 1 decreased between week 2 and 6, while the
proportion at Level 2 increased. Assuming that
programming confidence increases with experience, this
pattern is as expected. The mid-term banding shows a
steep increase in the proportion of students placed at
Level 3. Since this banding was based not on instructor

1 To allow comparisons between analyses, four students who

withdrew from the paper prior to the midterm exam have been
omitted from all results summaries.

judgment (as the Week 2 and Week 6 bandings were) but
on exam score, it is not possible to determine whether this
shows an actual continuation of the trend of increasing
confidence, or is just a reflection of a comparatively easy
exam.

Figure 2: Proportion of students at each level for
each banding.

As discussed above, students initially placed in

confidence Level 1 turned in significantly more practical
labs from paired than from individual sessions, while
students initially placed in confidence Levels 2 and 3 did
not. This indicates that the instructors’ subjective ratings
of programming confidence do correspond to some
student quality relevant to performance in Programming
1. To interpret this pattern fully, it will help to explore
precisely what is being measured in the instructors’
confidence judgements. The difficulty of accurately
predicting, or even measuring, programming skill has
been discussed widely (see, for example, McCracken et
al., 2001) and complicates all research into programming
education. It would be useful to discover that something
as simple as tutor observation could be used to make such
a prediction.

If early programming confidence is a useful predictor
of eventual programming performance, we would expect
to see a correlation between initial banding judgement
and final course mark. This was not observed (Spearman-
r = -0.17; ns). However, it is interesting to consider
student performance not just as a function of initial
confidence, but as a function of the change in confidence
seen between Week 2 and Week 6. Since confidence
banding judgements were absolute, not relative, we
would have hoped to see all students’ confidence scores
improving with experience, and this pattern was seen
generally in the summary of proportions shown in Figure
2, where many students moved from Level 1 at Week 2 to
Level 2 at Week 6. However, not all students’ banding
scores did increase. In fact, of the 36 students who earned
final marks in the paper, 20 (56%) actually maintained
the same confidence banding from Week 2 to Week 6
(33% went up; 11% went down). Perhaps when
predicting eventual programming skill it is useful to look
not only at where the student starts, but how rapidly he or
she gains programming confidence. To assess this, we
can look at the relationship between students’ change in
confidence in the early weeks of the paper, and their
eventual final course mark. For this analysis, we omit the
6 students originally at Level 3 since it was not possible
for them to increase their confidence band. Of the

0

2

4

6

8

10

12

14

16

-4 -3 -2 -1 0 1 2 3 4

F
re

q
u

e
n

cy

Paired - Individual

Distribution of (Paired Completions - Individual Completions)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Week 2 Banding Week 6 Banding Mid-term exam Banding

P
ro

p
o

rt
io

n
 o

f
S

tu
d

e
n

ts

Confidence Banding Level Proportions

1

2

3

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

17

remaining students, one student’s banding dropped from
Week 2 to Week 6, 14 stayed the same, and 11 improved.
The mean final course marks for the three groups are
shown in Figure 3. Those who improved their confidence
rankings from Week 2 to Week 6 earned significantly
higher final course marks, on average (F2,23 = 3.4; p=.05).

Figure 3: Mean final mark by confidence band
change.

3.3 Student Feedback
After the first four weeks of alternating individual and
Pair Programming sessions (at Week 6), students
completed a brief questionnaire covering their attitudes
toward the Pair Programming techniques. The
questionnaires were submitted anonymously, and were
administered by a non-teaching member of the research
team. The questions asked are shown in Table 1.

1. Which do you enjoy more: pair programming or working

alone? Why?

2. Do you feel you program better in a pair or on your
own? Why?

3. What did you like about the pair programming
sessions?

4. What did you dislike about the pair programming
sessions?

5. Would you like to continue to use pair programming
during the remainder of the semester?

6. Which best describes your programming education
experience prior to this paper? 1) No prior experience
2) Hobbyist or self-taught 3) Have taken one or more
previous programming papers.

7. Any other comments?

Table 1: Feedback questionnaire Week 6

After Week 12 of the paper, feedback was again

collected. Since prior experience was not expected to be
as relevant, given that even complete novices had been
through 12 weeks of programming education, Question 6
was replaced with a question designed to elicit students’
opinions about how best to construct a pair: “Think about
the most effective pairings that you have been in this
term. What do you think makes a Pair Programming
partnership successful?”

Figures 4 to 6 show summaries of responses to the
three binary questions (numbers 1, 2, and 5 in Table 1)
comparing Week 6 and Week 12.

Figure 4: Student preference

Figure 5: Student judgement of quality

Figure 6: Student willingness to continue

There are no significant differences between the
patterns of responses to these questions at Weeks 6 and
12 (by χ2). The main effect of response collapsed across
Weeks is significant for all questions (by χ2; p<.002).

In Week 6, a greater proportion of students preferred
working individually to working in pairs than at Week 12
(47% to 41% at Week 6; 35% to 50% at Week 12).
Although this effect is not statistically significant, the
trend corresponds to the classroom instructors’
observation that students became more comfortable with
the protocol over time. Based on students’ free comments
(see below) this appears to be due both to a reduction in
social awkwardness as students get to know each other,
and increased value of the protocol as the programming
tasks become more challenging.

In both Week 6 and Week 12, a greater proportion of
students felt they “programmed better” in a pair (58% to

0

0.1

0.2

0.3

0.4

0.5

0.6

Individual Paired No Preference

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Which Do You Enjoy More?

Week 6

Week 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Individual Paired No Preference

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

In Which Do You Program Better?

Week 6

Week 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Yes No Indifferent

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Continue to Use Pair Programming?

Week 6

Week 12

65.20 67.57

82.26

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Down Same Up

F
in

a
l

C
o

u
rs

e
 M

a
rk

 (
%

)

Week 2 to Week 6 Change

Mean Final Mark by Confidence Band Change Week 2 to Week 6

n=1 n=14

n=11

CRPIT Volume 136 - Computing Education 2013

18

27% collapsed across weeks). Student free comments
identify a number of possible rationales for this, including
the sharing of ideas, greater opportunity for code
checking and increased motivation to do well. In both
weeks the majority of students stated that they wished to
continue to use Pair Programming during the remainder
of the semester (74% to 16% collapsed across weeks).
Student free comments show a number of caveats,
however, primarily an unwillingness to work with
partners who were perceived as weaker programmers.

The reluctance of students to work with a weaker
partner can also be seen by looking at the pattern of
responses in Week 6 to the three binary questions as a
function of self-reported experience level (Question 6 in
the Week 6 survey). Figures 7 to 9 show these results.

Figure 7: Student preference by previous
experience

Figure 8: Student judgement of quality by previous
experience

Figure 9: Student willingness to continue by
previous experience

Students identified themselves as Experienced (n=12),
Self-taught (n=3) or Novice (n=19). Students who
classified themselves as Experienced were significantly
more likely to prefer working alone than were their less
experienced classmates (by χ2; p<.02). A similar trend of
reluctance of the Experienced students to work in pairs
was seen in the questions about programming quality and
desire to continue using Pair Programming, but these
effects were not statistically significant (by χ2).

In the remaining survey questions students were asked
to identify specific things that they liked and disliked
about Pair Programming, and to provide any further
comments they wished to make. There was good
consistency among student comments, and we were able
to identify a small number of comment categories. The
complete comment coding for Week 2 and Week 6 is
given in Table 2. For each general class of comment,
Table 2 shows the proportion of students who made the
comment in each week, and the change in proportion
from Week 6 to Week 12.

Week 6

n=33
Week 12

n=27
Type Comment Pr (Wk 6) Pr(Wk 12) Change

Adv.
Indiv.

Can work at
own pace 0.12 0.11 -0.01

More effective
learning 0.30 0.11 -0.19

Can use own
methods 0.09 0.15 0.06

Adv. Pair
Allows
discussion 0.06 0.04 -0.02

Builds sense of
community 0.39 0.26 -0.13

 Faster 0.42 0.33 -0.09
 More fun 0.03 0.04 0.01

Can get help
when stuck 0.52 0.44 -0.07

Can learn from
explaining 0.06 0.07 0.01

More code
checking 0.15 0.15 0.00

 Motivating 0.03 0.04 0.01

Can get other
viewpoints 0.27 0.59 0.32

Disadv.
Pair

Boring for
navigator 0.06 0.07 0.01

Enforced social
interaction 0.24 0.15 -0.09

Evaluation
apprehension 0.06 0.15 0.09

Partners can be
incompatible 0.06 0.15 0.09

Don’t like
working with
stronger partner 0.06 0.04 -0.02

Classroom is
too noisy 0.03 0.00 -0.03

Don’t like
working with
weaker partner 0.21 0.07 -0.14

Table 2: Summary of student comments

In Week 6, the most commonly mentioned advantage
of Pair Programming was that one could get help from the
partner when stuck (mentioned by 52% of respondents).
Often the note “instead of having to wait for the lecturer”
was added. Novice programmers traditionally need a
great deal of assistance, and in large classes it can be
difficult for an instructor to respond to all requests in a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Individual Paired No pref

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Which Do You Enjoy More?

Experienced

Self-Taught

Novice

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Individual Paired No pref

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

In Which Do You Program Better

Experienced

Self-Taught

Novice

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Yes No Maybe

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Continue to Use Pair Programming?

Experienced

Self-Taught

Novice

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

19

short time. While one might expect that two novices
working together would not be able to provide useful
support to each other, this does not seem to be the case
based on this feedback.

In Week 12, the “able to get help” comment was still
often made (mentioned by 44% of respondents) but at this
point the most frequently cited advantage of Pair
Programming was the ability to get another person’s
viewpoint and suggestions (this was often phrased as
“two heads are better than one”). This shift seems to
reflect students’ increasing independence from the
lecturer between Weeks 6 and 12.

In both weeks, students often noted that working as a
pair was faster (42% and 33% in Weeks 6 and 12
respectively), and that it built a sense of community
among the students (39% and 26%) as it required them to
meet and get to know their classmates. This impact on the
social dynamics of the classroom was among the features
that the instructors found most salient during this
semester (see further discussion below).

The most frequently cited disadvantage of Pair
Programming in Week 6 was the difficulty of working
with a weaker partner (mentioned by 21% of
respondents). By Week 12, this had fallen to only 7%,
perhaps indicating that some of the novice programmers
had “caught up” quickly to the more experienced
members of the class.

A commonly cited advantage of individual
programming, especially early in the semester, was that
students felt they learned more effectively when they had
to work everything out on their own (30% in Week 6;
11% in Week 12). This illustrates the value of including
both individual and Pair Programming sessions.

4 General Discussion
In the interest of finding teaching interventions that can
be used successfully in the earliest weeks of a first
programming course, we introduced the Pair
Programming methodology into our CS1 paper. Based on
previous explorations of the pedagogical use of Pair
Programming, we intended to construct pairs on ability
level, but wished to do so before any exam or significant
project marks would be available. We thus used a
holistic, subjective judgement made by classroom
instructors based on task performance and work style that
reflects an attribute we call “programming confidence”.
Results of the first semester show that Pair Programming
increases practical lab completion rate significantly for
those students who were initially judged as having the
lowest confidence.

Initial confidence judgements were not correlated with
final course mark. Some (but not all) students who had
started with low confidence performed very well in the
paper; some (but not all) students who started with high
confidence levels failed to achieve a high final mark.
Thus low initial confidence in isolation is not an
indication of future poor performance. However,
inspection of change in confidence during the early weeks
does seem to give a better insight into eventual outcome.
Specifically, students whose confidence level improved
between Weeks 2 and 6 of the paper earned higher final
marks, on average, than those whose confidence
remained at the same absolute level. Thus, it is apparently

difficult to catch up if you fall behind in the first six
weeks of CS1. This finding is in concert with the
mathematical model of Robins (2010) which
demonstrates that failure to thrive in the earliest weeks
can be a significant contributor to low pass rates in CS1.
To identify students at risk, perhaps with an eye to
providing additional support, it seems productive to
watch carefully for students who do not gain confidence
with programming even very early in their first course.
This identification can possibly be made by careful
instructor observation – no elaborate assessment metric is
required.

Student feedback regarding the use of Pair
Programming was generally positive, with respondents
identifying advantages mechanical (not having to wait so
long for instructor attention), intellectual (the value of a
second viewpoint) and social (an effective way to get to
know other class members). Students expressed concern
about uneven or incompatible pairings, and the classroom
instructors report that it is necessary to watch closely for
dysfunctional pairings (for example, where one member
of the pair is being too dominant) and intervene when
required.

In addition to the observed advantages accruing to
students, the classroom teaching staff reported a number
of positive consequences of using Pair Programming.
These included:

• Shorter waiting times: Our Programming 1
paper is taught in groups of up to 23 students at a time.
During practical work time, classroom instructors move
about the room answering questions or offering assistance
when students are not progressing. In the first weeks of
CS1 when most students have very little idea of how to
program, this can be a taxing process for instructors. At
our institution we have recently begun assigning two
instructors to Programming 1 simply to reduce student
wait times. This unfortunately imposes a staffing burden
that can be very difficult to manage. With the
introduction of Pair Programming, instructors notice a
significant reduction in “students waiting with their hands
up”. Partially, this is because each instructor intervention
now covers two students, but more positively, even
novice students, when working with a partner, seem to be
able to progress more consistently. As the students
frequently observed, two heads are indeed better than
one.

• Increased Engagement: An historical problem
for more experienced students in Programming 1 has
been lack of engagement. This is a particular issue for
those students who have previously failed the paper, and
are repeating it. For these students, the earliest weeks can
seem rather pointless. Instructors noted, however, that
when working with another more experienced student,
repeaters and students with some other prior experience
were much more engaged than in previous years. The
opportunity to discuss the work with a student of similar
level and to perhaps share interesting approaches or
possible extensions of the exercises, made the early
weeks much more rewarding for students at the top end.

• Increased Motivation and Performance: Each
set of practical tasks contains one or more “challenge
problems”, optional exercises of greater difficulty. The
instructors note that students are more likely to attempt

CRPIT Volume 136 - Computing Education 2013

20

the optional challenge exercises during the Pair
Programming practicals than during the individual
practicals. This may be a reflection of the confidence
obtained from knowing one has a partner to help out on a
difficult problem, and/or the desire to perform well when
working with another student. Interestingly, the same
“striving for excellence” was observed in the major
individual project assignment where an unusually high
number of students attempted extra credit work, in
contrast to previous years.

• Social Dynamic: The change which the
instructors find the most compelling argument for
continuing to use Pair Programming is not directly related
to programming performance, but is a generally increased
sense of community among the students. Compared to
previous years, students are more likely to offer help to
each other even in individual labs. Students are more
likely to discuss individual assignments and ask for
feedback. The general sense of camaraderie and inclusion
is higher.

It should be noted that our department has recently
introduced a number of other policies that might have
contributed to this increased sense of community. In 2012
we have appointed a dedicated first year coordinator
responsible for pastoral care of new students, we have
established a student common room, built a school
Facebook page and increased orientation activities for
first year students. All of these probably contribute to the
social cohesion seen in Programming 1. However,
classroom instructors note that in the specific context of
their classroom, they saw social relationships develop
during Pair Programming which then grew to include
other classroom activities.

In summary, we have found Pair Programming to be a
valuable technique from the earliest days of CS1 when
students at the same level of programming confidence, as
judged by in-class teaching staff, work together. In
coming semesters we will continue to introduce Pair
Programming early in CS1, and also to incorporate it into
our more senior programming papers. With wide-ranging
benefits to both students and teaching staff, we see Pair
Programming as an essential tool in successful
programming education.

5 References

Bennedsen, J. and Caspersen, M.E. (2007): Failure rates
in introductory programming. ACM SIGSCE Bulletin,
39(2):32-36.

Cliburn, D. (2003): Experiences with pair programming
at a small college. Journal of Computing Sciences in
Colleges, 19(1):20-29.

Hanks, B. (2005): Student performance in CS1 with
distributed pair programming. ACM SIGSCE Bulletin,
37(3):316-320.

Katira, N., Williams, L. and Osborne, J. (2005): Towards
increasing the compatibility of student pair
programmers, Proceedings of the 27th International
Conference on Software Engineering, St. Louis, MO,
USA, pp. 625-626.

McDowell, C., Hanks, B., and Werner, L. (2003)
Experimenting with pair programming in the

classroom. Proceedings of the 8th annual conference
on Innovation and technology in computer science
education, Thessaloniki, Greece, pp. 60-64.

Mendes, E., Al-Fakhri, L., and Luxton-Reilly, A. (2005):
Investigating pair-programming in a 2nd-year software
development and design computer science course.
Proceedings of the 8th annual conference on
Innovation and technology in computer science
education, Thessaloniki, Greece, pp. 296-300.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I., and Wilusz, T. (2001): A multi-national, multi-
institutional study of assessment of programming skills
of first-year CS students, ACM SIGCSE Bulletin,
33(4):125-180.

McDowell, C., Werner, L., Bullock, H., and Fernald, J.
(2006): Pair programming improves student retention,
confidence, and program quality. Communications of
the ACM 49(8):90-95.

Radermacher, A. and Walia, G. (2011): Investigating the
effective implementation of pair programming: An
empirical investigation, Proceedings of the 42nd ACM
technical symposium on Computer science education,
Dallas, Texas, USA, pp. 655-660.

Robins, A. (2010): Learning edge momentum: a new
account of outcomes in CS1. Computer Science
Education, 20(1): 37-71.

Thomas, L., Ratcliffe, M., and Robertson, A. (2003):
Code warriors and code-aphobes: a study in attitude
and pair programming, ACM SIGCSE Bulletin,
35(1):363-367.

Williams, L. (2007): Lessons learned from seven years of
pair programming at North Carolina State University.
SIGSCE Bulletin, 39(4):79-83.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

21

