Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

It's Never Too Early: Pair Programming in CS1

Krissi Wood Dale Parsons Joy Gasson Patricia Haden
School of ICT School of ICT School of ICT School of ICT
Otago Polytechnic Otago Polytechnic Otago Polytechnic Otago Polytechnic

Dunedin, New Zealand Dunedin, New Zealand Dunedin, New Zealand Dunedin, New Zealand
Krissi.Wood@op.ac.nz Dale.Parsons@op.ac.nz Joy.Gasson@op.ac.nz Patricia.Haden@op.ac.nz

Abstract we introduce a protocol for assigning students to pairs
This paper describes the use of the Pair Programmiugjng holistic judgements made by in-class teaching staff.
software development methodology in the earliest weeRdiese judgements were made after the second week of
of a first programming course. Based on a broafS1 before either exam marks or code quality
subjective assessment of “programming confidencedssessments were available. As detailed below, this
instructors placed students in level-matched pairs forpairing protocol resulted in significantly better class
portion of their programming exercises. Students wheerformance for those students who initially appeared to
began at the lowest levels of confidence showdte at greatest risk.

significantly better exercise completion rates when paired Pair Programming is a formal software development
than when working individually. Student response to thgrotocol where two programmers work synchronously on
Pair Programming technique was uniformly positive, and single piece of code (Williams and Kessler, 1998). The
teaching staff report pedagogical, mechanical and socibtocol includes detailed policies for participant roles
benefits from the practice. These data indicate thand procedures. One member of the pair is the Driver,
successful programming pairs can be constructed bagdap controls the mouse and keyboard, physically creating
on tutors’ subjective judgements of student performangiee code. The other member of the pair is the Navigator,
very early in CS1, before exam scores or code qualityho oversees the construction process, watches for
assessments are available. Thus Pair Programming caretsers, makes suggestions and locates resources. Partners
an effective classroom intervention even with extrengwitch roles at regular intervals, usually every 15 to 20

novices. minutes. Pair Programming originated in industry but has,
Keywords Programming education, Pairin the last decade, become increasingly common in the
Programming, Novice programmer. classroom. An active research community is exploring the
potential benefits of Pair Programming to students and

1 Introduction teachers, while considering mechanical and procedural

Failure rates in first computer programming paperssues in its use.

(usually called CS1) are alarmingly high, often greater Studies have shown that Pair Programming can
than 40% (Bennedsen and Caspersen, 2007). Recent wooktribute to an improvement in learning outcomes. In a
(Robins, 2010) has identified student struggles in the firirge longitudinal study involving several thousand
days and weeks of CS1 as a significant contributingtudents, McDowell, Werner, Bullock, and Fernald
factor to this high failure rate. Robins has demonstrat¢@004) found that students in classes that used Pair
mathematically that students who fail to acquire the corogramming were more likely to complete their classes
concepts presented in first programming lessons aa@d to continue in a computer science major than were
frequently unable to recover, leading to high drop out argtudents in comparable classes that used only solo
failure rates. He maintains that this is largely due to therogramming. Students from the Pair Programming
scaffolded structure of computer programming, wherelasses had equivalent exam performance to solo
each skill builds upon, and requires mastery of, a set sudents, addressing the concern of some educators that
simpler skills. Thus it is essential that we find classroomair Programming permits one student to “freeload” on a
approaches and interventions that can support novisgonger partner.

programmers during their earliest teaching sessions. In Similarly, Mendes, Al-Fakhri and Luxton-Reilly (2005
the current study, we explore the possibility of leveragingnd 2006) have performed two large-scale studies of Pair
a specific programming methodology - PailProgramming at the University of Auckland. In these
Programming — in the very first weeks of CS1. To do thistudies, students in Pair Programming classes performed
better on programming exercises, and earned higher exam
marks, than solo programming controls.

‘Copyright © 2013, Australian Computer Society, Inc. This e : :
paper appeared at the 15th Australasian Computing Education Williams (2007) describes the lessons learned in seven

Conference (ACE 2013), Adelaide, South Australia, Januar -e"’!rs of using Pair Progrqmmlng at a large university |n_a
February 2013. Conferences in Research and Practice Vfiriety of Computer Science papers at all academic

Information Technology (CRPIT), Vol. 136. A. Carbone and J€Vels, including graduate. Williams details benefits of
Whalley, Eds. Reproduction for academic, not-for profithe protocol for both teachers and students. For students,

purposes permitted provided this text is included.

13

CRPIT Volume 136 - Computing Education 2013

Pair Programming supports the building of stronger socitime of the pairing. On self-report, Williams’ students
relationships (through the need to work togetherkonsistently request to work with a student of equal or
increases retention, and reduces “waiting time” fogreater programming skill. Since it is not possible to give
teacher feedback as two students working together cane member a stronger partner without giving the other a
often resolve a problem for which a student workingveaker partner, Williams recommends attempting to pair
alone would require teacher assistance. For teachers, sedents of equal skill levels.
protocol reduces marking time (by halving the number of Cliburn (2003) explored directly the effect of partner
submitted assignments), reduces student demand similarity by constructing highly dissimilar pairs. He
practical sessions, and improves general work ethic bgriginally paired students “from different cultural or
they hypothesise, engendering a sense of mutugthnic backgrounds [and]...upper with lower classmen”.
responsibility between partners. The result was poor collaboration and poor exam
Braught, Wahls and Eby (2008) performed a tightlyperformance. He then re-paired students based on their
controlled study of Pair Programming. In a largeroject marks, matching students with similar results.
programming paper with multiple sections, theywVith these pairings he observed better project quality and
randomly assigned some sections to use Paiompletion rates, and higher exam scores.
Programming and some to use solo programming. Direct inspection of students’ experience of Pair
Students enrolled in a section without knowing whichProgramming also shows the advantage of pairing
method would be used in that class, and were not allowstlidents of similar ability. Chaparro, Yuksel, Romero and
to transfer between sections after the start of the papBryant (2005) used a variety of metrics to explore
Braught et al. compared code quality on individuastudents’ qualitative views of Pair Programming.
assignments, as well as exam marks and time to compld@terough the use of observation, questionnaires, semi-
assignments. They found an interaction betweestructured interviews and field notes they determined that
programming protocol and scores on the Scholastatudents prefer, and find most effective, pairings of
Aptitude Test (a test of general academic leveimilar skill levels. Katira, Williams and Osborne (2005)
administered prior to college or university entrance in thgueried students directly about the “compatibility” of
United States) such that greatest benefit of Pdiheir Pair Programming partner. Students rated as more
Programming was seen for students with lower SATompatible those partners whom they perceived to be of
scores. This implies that Pair Programming might bsimilar skill. Students’ perception of the skill levels of
especially helpful for those students who would otherwistheir partners was accurate, as measured by exam scores
struggle with a programming paper, which is inand grade point average.
accordance with the higher retention and completion rates More recent studies (e.g. Radermacher and Walia,
seen in many Pair Programming studies. 2011 and 2012; Braught, Wahls and Eby, 2008) have
In all of the preceding studies, (and in others discussedcepted pairing by skill level as the appropriate default,
below) subjective student feedback was gathered, askioiging the accumulating evidence in its favour.
students for their views of the Pair Programming While there is a growing consensus that pairing by
experience. Student feedback is nearly universaligkill level produces the most successful Pair
positive, with students reporting that they enjoy working’rogramming experience, the measurement of skill
in pairs, that they feel they can program more quicklgemains problematic. As we are interested in the use of
with a partner, that they are less likely to “get stuck”, anBair Programming very early in a first programming
that they appreciate the opportunity to get to know fellowourse — ideally in the first weeks — we require a measure
students through working together. Negative feedbaaK ability to be made before exam or major project scores
(and less positive performance outcomes) occuese available. We have thus used a subjective metric,
primarily in the case of dysfunctional pairings, that ishased on instructor observation of student performance,
when partners are unable to work effectively together. which can be made in the first weeks of the semester.
Although some of the reported benefits of Pair Our observational assessment of ability is based on
Programming can be obtained simply through randomhat we call “programming confidence”. The term
pairing (e.g. McDowell et al., 2004 used only randoniconfidence” in this context is not a personality metric; it
pairing) there is compelling evidence that carefulloes not, in our experience, correlate with self-esteem. It
selection of pairs reduces the probability of dysfunctionas a description of the way in which students approach
pairings. Specifically, both educational benefit angrogramming exercises. The confident student
student satisfaction appear to be maximised when the twoogrammer approaches coding exercises boldly, is
members of a pair have similar levels of programmingilling to experiment with the techniques being learned,
ability. is relatively unfazed by coding errors and seems to expect
In the long-term study described by Williams (2007)to be able to solve the assigned problem. These students
teachers experimented with a variety of metrics tmay have prior programming experience in school or as a
determine pairings, including standardised general exambby, or they may have a history of success in contexts
scores, grade point average, the results of personality ahey perceive to be similar to programming (e.g. games or
self-esteem tests, learning style scores, and work ethozzles), or they may simply feel comfortable with the
(based on self-report). They paired students in variogarticular intellectual exercise involved. Student
combinations of these measures, using both similarity apdogrammers who lack confidence are less able to make
dissimilarity of scores. The most successful pairings wersdependent progress with coding exercises. They
those based on similar mid-term exam score, the mdstquently become “stuck”, and will wait for assistance
direct measure of a student's programming skill at thieom the instructor, rather than try an alternative approach

14

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

on their own. This slows their work pace, and oftel®tago Polytechnic in New Zealand. “Programming 1" is
makes it difficult for them to complete in-classa required paper in the first semester of our Bachelor of
assignments in the allotted time. Programmingnformation Technology degree. For the majority of
confidence, as we define it here, reflects currerstudents it is their first exposure to formal computer
programming ability, and can change rapidly as thprogramming, although there are generally a small
student gains experience. We have observed that studemismber of students who have previously taken a
who start out with little confidence can eventuallyprogramming paper (some who have previously taken
develop considerable programming skill, if they are ablBrogramming 1 but not passed), and occasionally students
to navigate successfully the difficult early stages ofvith hobbyist coding experience. In this offering, 40
learning. In section 2, we discuss further the process usstddents started the paper, including 3 repeaters and 11
to make our assessments of student programmimgth some other prior programming experience.
confidence. The focus of Programming 1 is on programming

It is interesting to note that Thomas, Ratcliffe andundamentals, such as variable manipulation and flow of
Robertson (2003) attempted to place students on aantrol. The paper is taught in C# using Visual Studio,
equivalent continuum of programming confidence byut is taught exclusively on the console, and contains
self-report. Each student was asked to rate himself only minimal Object-Oriented theory (formal OO and
herself on a 10-point scale from “Code Warrior” toGUI work begins in our Programming 2 paper in second
“Code-Phobe”. Thomas et al.’s description of these ternsemester). Programming 1 comprises two two-hour
is extremely close to our conceptualisation ofessions each week. In a typical session, a new topic is
programming confidence. Based on the students’ owntroduced by the lecturer with discussion and code
rating, Thomas et al. compared the efficacy of same wxamples. Students are then given a set of practical
opposite pairings. That is, in one condition they pairedxercises to perform in class on the discussed topic.
two high scoring students or two low scoring students; iBracticals are designed to be completed during class by
the other condition, they paired a high-scoring studetite majority of students.
with a low-scoring student (middles were always paired In previous offerings of Programming 1, each student
with other middles). They report that Same pairingaorked individually on all practical sessions. In the
perform better than Opposite pairings on codingemester in which this study was conducted, Pair
exercises, and that students consistently prefer beiRgogramming was introduced in selected sessions. Our
paired with someone at their own level on the Warriogoal was to begin Pair Programming as early as possible,
Phobe scale. matching students at comparable levels of ability, as

Another factor that has been explored as a potentidictated by the current literature. While the common
determinant of the efficacy of Pair Programming is thguantitative metrics of ability — exam scores and code
time course of the pairing. McDowell et al. (2004) pairedjuality assessment — are not available in the first weeks of
students for an entire semester, and pairing was used @81, our experience as programming instructors
both in-class and out-of-class assignments. Radermackenvinced us that there were observable differences
and Walia (2011), in contrast, paired students only for lzetween students even in these early stages. These
single 50-minute class session. Based on their lengthifferences we have summarised as “programming
experience with Pair Programming, Williams (2007) andonfidence” (see discussion above). We hypothesised that
her colleagues (see for example, Nachiappan, Williamgrogramming confidence could be a criterion for the
Ferzli, Wiebe, Yang, Miller and Balik, 2003) recommenctonstruction of successful pairs. Further, we believed that
switching pairs often. They note that this reduces thedgements of programming confidence could be made
impact of any dysfunctional pairing and increases th&mply through observation of student behaviour by
social benefit which many students cite as an advantageperienced programming educators. This hypothesis was
of the method. They further advise that Pair Programmirgased on our conviction, developed over some 40 years of
be initially used only in-class, until students haveombined CS1 teaching experience, that “we know it
mastered the technique. This has the added benefit wiien we see it”. Thus we determined to assign students
eliminating scheduling difficulties, which are noted asubjectively to one of three levels of programming
problematic by many students in studies using out-otonfidence, and to use this assignment to construct
class exercises (cf. McDowell et al., 2004; Hanks, 2006)programming pairs.

Thus, following current best practice for the Teaching staff predicted that they needed at least four
implementation of Pair Programming in the classroomeaching sessions to identify accurately each student’s
we intend to pair students based on programmidgvel of programming confidence. Thus, for the first four
confidence (as defined above), to include a combinatiaessions (i.e. the first two weeks of the semester),
of paired and individual exercises during the semestestudents worked individually while teaching staff
and to change pairs for each Pair Programming sessicarefully observed their behaviour.

In this way we hope to be able to use Pair Programming
in the very earliest stages of programming education, The four session topics were:
where it is hypothesised that students are at greatest risk

of failure (cf. Robins, 2010). 1. Introduction to the IDE and writing to the
screen.

2 Method . 2. Introduction to variables and reading from user

The study was conducted during a one semester (16 input

teaching weeks) offering of a first programming course at

15

CRPIT Volume 136 - Computing Education 2013

3. Introduction to data types and computation. the class session and announced at the beginning of
4. Small interactive program combining reading ~ practical work time. In cases where an odd number of
user input, performing computation using students necessitated a cross-banding pairing, this was

arranged by the instructors based on their assessment of

the students’ suitability. Where an odd number of

After the fourth session, the two classroom tutorgtudents _requwed one student_to work alone, this role was
always given to a more experienced Level 3 student. For

made their initial confidence assignments individually.e ch session, instructors recorded exercise completions
Each student was assigned to a confidence band, with g ’ P

. . . . : d observed student behaviour.

being lowest confidence, 3 being highest confidence aft . .

2 being intermediate. These assignments were m rc?traxvri?nk ?] ' aﬁz(:r:atfr?ursevggi l;i CS’I dl:esr:?%eezzlgck
subjectively, reflecting the tutor's sense of ho 9 ng | ‘N9 1ons, St

confidently each student approached the programmi*ﬁ‘s collected. See below for details. Additionally,
|

multiple data types, and writing output.

exercises. Where there were disagreements between 3 sdrﬁ(r:]:zrswif d rﬁg?en dde?ha?t dgpflasrertllthtuJehlis Cf/)vl(jarfee
two tutor judgements, the final banding was mad

rogressing at different rates (as is generally true in

collaboratively through detailed discussion of eac rogramming 1) and some students who had initiall
student’s progress and consideration of the number ofi§%g 9 y

class exercises the student had been able to compl en placed in the same band were now working at

Prior to the banding, tutors had anticipated difficult ierent levels .Of confidence. The_ re_bandmg useq,_as
uch as possible, the same criteria as the original

assigning students who fell at the borders of the bandi nding. That is. students who were still obviousl
categories. In practice, while tutors had some uncertaint? 9- - y
ruggling were assigned to Level 1, and those who were

at the boundary between levels 2 and 3, they had working independently were assigned to Level 3. The
difficulty identifying those at level 1 and there were na 9 P Y 9 '

disagreements between the two teaching staff about Wﬁe \;vtivt()ea?c()jltnhge \rl\(laas? orllottheb?:faesds O'Phuas i?tl\j\?aimtgcrﬁ;:gﬁ]g
belonged in this category. : y

e o . ossible that the second banding would have no Level 1
Although no specific quantitative metrics were used tgéudents. In actual fact, the second banding produced 8

determine confidence bandings, the in-class tuto
. o . o vel 1 students (22%), 22 Level 2 students (61%) and 6
identified a number of behaviours which they both use vel 3 students (17%). See below for a more detailed

consistently to identify low confidence students. Thes iscussion of the changes in banding over time.

included: Weeks 7 to 9 of the paper were spent in revision and
preparation for the mid-term exam, so no formal practical

)) sessions were held. After the mid-term exam, students
and either switches to some non-related task or yere panded based on their exam score to provide an

» Getting stuck: The student simply stops working

waits passively for tutor assistance. external comparison for the instructors’ subjective
» Copy-coding: The student begins reproducing bandings. Students scoring 55% or lower were considered

code samples verbatim where they are not Level 1, students scoring 55% to 75% were considered

appropriate. Level 2, and students scoring more than 75% were

considered Level 3.

) } . _ The purpose of the second banding (and the banding
inserting and deleting code elements randomly inyased on exam score) was to prepare for pair assignments
the hopes that an error will be resolved, without in the remaining weeks of the semester, where we
any organised plan. intended to continue the alternation of individual and

paired practical sessions. However, students began to
The consistency of assignment to level 1 by botfXpress a preference for working in pairs rather than
tutors even in the absence of specific quantitative metrigdividually. In view of this attitude, and given the
is notable. The very low confidence student seems almd¥isitive impact of Pair Programming that was observed
qualitatively different from his peers, at least in théluring the first experimental weeks (see below) the
perception of an experienced programming teacher. ipstructors decided that educational efficacy took
future semesters, we intend to analyse formally the initi@fecedence over data collection, and did not require
judgements of the two classroom staff to obtain gtudents to perform any practicals individually after week
statistical measure of inter-rater reliability. 11. The instructors continued to place students into pairs
For the next four weeks of the semester, the twi®r the planned Paired sessions if they had not self-paired,
classroom sessions each week were handled dif‘feren[w!t students were also allowed to construct their own

In the first session students worked individually; in th@airs. Thus only weeks 3 to 6 (inclusive), 10 and 11 are

second session, students were assigned to pairs and usé¢lgded in the analysis.

formal Pair Programming code development

methodology. (The technique was explained prior to the

first Paired session.) Students were paired based on

banding such that each student worked with a student at

the same confidence level. Each student was assigned a

different partner for each of the four paired sessions. The

pairing assignment was made by the instructors prior to

e Frantic random changes: The student begins

16

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

3 Resultd judgment (as the Week 2 and Week 6 bandings were) but
on exam score, it is not possible to determine whether this
3.1 Practical Lab Completions shows an actual continuation of the trend of increasing

During the six experimental weeks, there were sigonfidence, or is just a reflection of a comparatively easy
individual and six paired practicals. The mean number ekam.
individual practicals completed on time per student was
4.58; the mean number of paired practicals completed on

Confidence Banding Level Proportions

time was 4.97 (Fz4 = 2.489; p<.05). 0.70
The distribution of the difference between numbers of 0.60 /\
paired and individual lab completions across students is

- ’>/ \ —
0.40 o 1

\ —— 2
0.30

0.20

shown in Figure 1. Of the 14 students who completed
equal numbers of individual and paired practicals, 8
(57%) completed all twelve labs. This apparent ceiling
effect compromises our ability to sensitively observe the
impact of Pair Programming for students at the top end. 0.10
0.00

Proportion of Students

Week 2 Banding Week 6 Banding ~ Mid-term exam Banding

Distribution of (Paired Completions - Individual Completions)
Figure 2: Proportion of students at each level for
each banding.

=
o

NN
[NIS

-
o

As discussed above, students initially placed in
confidence Level 1 turned in significantly more practical
labs from paired than from individual sessions, while
students initially placed in confidence Levels 2 and 3 did
not. This indicates that the instructors’ subjective ratings
of programming confidence do correspond to some
student quality relevant to performance in Programming
1. To interpret this pattern fully, it will help to explore
Figure 1: Distribution of Completions precisely what is being measured in the instructors’

To observe more closely the differential impact ofonfidence judgements. The difficulty of accurately
pairing on students of different initial confidence, we Cag‘r?edlctlng, or even measuring, programming skill has

Frequency

o N B~ O

-4 -3 -2 -1 0 1 2 3 4

Paired - Individual

compare completion rates for students based on their fi ego%lscussded W'dﬁly (see,”for examhp_le, McCracken et
bandings. Due to the low number of students initiall-» 2001) and complicates all research into programming

banded at Level 3 who did not withdraw from the p‘,leeq.ducation. It would be useful to discover that something
prior to the midterm exam, we combine Levels 2 and as simple as tutor observation could be used to make such

for this analysis. Students who had initially been bandeyPrediction.

at Level 1 completed on average .84 more paired Iab? If early programming confidence is a useful predictor

than individual; students initially banded in Levels 2 or o eventual programming perfof”?f?‘”ce’ we Woyld expect
completed on average .12 fewer paired labs th R see a correlation between initial banding judgement

individual (F s, = 4.11; p=.05). This pattern does notand final course mark. This was not observed (Spearman-

seem to be attributable entirely to a ceiling effect, as tHe :d -0.17; ?S)' However, It is mtere?tmg_ to cc;n_s@_erl
total mean labs (out of 12) completed for initial Level tUdent performance not just as a function of initia

students is 9.05, and for initial Level 2/3 students igonfidence, butas a function of thkangein confidence
10.11. This difference is not significant,(f = 2.53; S€€N between Week 2 and Week 6. Since confidence

p=.12). Thus the benefit of Pair Programming aQanding judgements were absolute,' not .relative, we
measured by practical lab completion rates appears to W@md _have hoped to see all studer_ns confidence scores
primarily for those students who initially exhibited the!MProving with experience, and th!s pattern was seen
greatest difficulty with programming. generally in the summary of proportions shown in Figure
2, where many students moved from Level 1 at Week 2 to
3.2 Programming Confidence Bandings Level 2 at Week 6. However, not all students’ banding
The proportion of students at each Level for each of trggores did increase. In fact, of the 36 students who earned
bandings is shown in Figure 2. The proportion of student§?@l marks in the paper, 20 (56%) actually maintained
at Level 1 decreased between week 2 and 6, while tHi¢ same confidence banding from Week 2 to Week 6
proportion at Level 2 increased. Assuming that33% went up; 11% went down). Perhaps when
programming confidence increases with experience, tH}edicting eventual programming skill it is useful to look
pattern is as expected. The mid-term banding showsngt only at where the student starts, but how rapidly he or
steep increase in the proportion of students placed $t€ 9ains programming confidence. To assess this, we

Level 3. Since this banding was based not on instructéfn 0ok at the relationship between students’ change in
confidence in the early weeks of the paper, and their

egﬁventual final course mark. For this analysis, we omit the

! To allow comparisons between analyses, four students who - . . .
withdrew from the paper prior to the midterm exam have be students orlglnally at Lev_el 3 since it was not possible
omitted from all results summaries. or them to increase their confidence band. Of the

17

CRPIT Volume 136 - Computing Education 2013

remaining students, one student’s banding dropped from
Week 2 to Week 6, 14 stayed the same, and 11 improved.
The mean final course marks for the three groups are
shown in Figure 3. Those who improved their confidence
rankings from Week 2 to Week 6 earned significantly
higher final course marks, on average 4= 3.4; p=.05).

Which Do You Enjoy More?

o
=

o
o

o
IS

u Week 6

Relative Frequency
o
&

02 = Week 12
Mean Final Mark by Confidence Band Change Week 2 to Week 6
0.1
n=11
90.00 32,26 o
n=1 n=14 -
80.00 65.20 67.57 Individual Paired No Preference
&3 70.00 Student Response
% 60.00
s
50.00
z 40.00
3 ! 1 .
e Figure 4: Student preference
= 30.00
£ 2000
10.00
0.00 T T In Which Do You Program Better?
Down Same Up
0.7
Week 2 to Week 6 Change
0.6

o
wn

Figure 3: Mean final mark by confidence band
change.

o
IS

B Week 6

e
w

Relative Frequency

e
N

B Week 12

3.3 Student Feedback

After the first four weeks of alternating individual and
Pair Programming sessions (at Week 6), students
completed a brief questionnaire covering their attitudes
toward the Pair Programming techniques. The
guestionnaires were submitted anonymously, and were
administered by a non-teaching member of the research Figure 5: Student judgement of quality
team. The questions asked are shown in Table 1.

o
-

o

Individual Paired No Preference

Student Response

Continue to Use Pair Programming?
1. Which do you enjoy more: pair programming or working 08
alone? Why? 0'7
2. Do you feel you program better in a pair or on your z 0:6
own? Why? 3 o5
3. What did you like about the pair programming 5‘:’ 0.4
sessions? 203 = Week 6
4. What did you dislike about the pair programming ﬁo.z 1 " Week12
sessions? 01
5. Would you like to continue to use pair programming 0 -
during the remainder of the semester? Yes No Indifferent
6. Which best describes your programming education Student Response
experience prior to this paper? 1) No prior experience
2) Hobbyist or self-taught 3) Have taken one or more . . .
previous programming papers. Figure 6: Student willingness to continue
? A .
7. Any other comments? There are no significant differences between the

patterns of responses to these questions at Weeks 6 and
12 (byx2). The main effect of response collapsed across
Weeks is significant for all questions (§%; p<.002).

After Week 12 of the paper, feedback was again |n week 6, a greater proportion of students preferred
collected. Since prior experience was not expected to Rgyrking individually to working in pairs than at Week 12
as relevant, given that even complete novices had begiyo, to 41% at Week 6; 35% to 50% at Week 12).
through 12 weeks of programming education, Question fthough this effect is not statistically significant, the
was replaced with a question designed to elicit studenigend corresponds to the classroom instructors’
opinions about how best to construct a paifhifhk about gpservation that students became more comfortable with
the most effective pairings that you have been in thifie protocol over time. Based on students’ free comments
term. What do you think makes a Pair Programmingsee below) this appears to be due both to a reduction in
partnership successful?” _ social awkwardness as students get to know each other,

Figures 4 to 6 show summaries of responses to tAd increased value of the protocol as the programming
three binary questions (numbers 1, 2, and 5 in Table fhsks become more challenging.
comparing Week 6 and Week 12. In both Week 6 and Week 12, a greater proportion of
students felt they “programmed better” in a pair (58% to

Table 1: Feedback questionnaire Week 6

18

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

27% collapsed across weeks). Student free commentsStudents identified themselves as Experienced (n=12),
identify a number of possible rationales for this, includingelf-taught (n=3) or Novice (n=19). Students who
the sharing of ideas, greater opportunity for codelassified themselves as Experienced were significantly
checking and increased motivation to do well. In botmore likely to prefer working alone than were their less
weeks the majority of students stated that they wished éxperienced classmates (®%; p<.02). A similar trend of
continue to use Pair Programming during the remaindegluctance of the Experienced students to work in pairs
of the semester (74% to 16% collapsed across weekahs seen in the questions about programming quality and
Student free comments show a number of caveatesire to continue using Pair Programming, but these
however, primarily an unwillingness to work with effects were not statistically significant (gg).
partners who were perceived as weaker programmers. |n the remaining survey questions students were asked
The reluctance of students to work with a weakeo identify specific things that they liked and disliked
partner can also be seen by looking at the pattern ghout Pair Programming, and to provide any further
responses in Week 6 to the three binary questions ag@mments they wished to make. There was good
function of self-reported experience level (Question 6 iBonsistency among student comments, and we were able
the Week 6 survey). Figures 7 to 9 show these results. to identify a small number of comment categories. The
complete comment coding for Week 2 and Week 6 is
Which Do You Enjoy More? given in Table 2. For each general class of comment,
09 Table 2 shows the proportion of students who made the

038 - comment in each week, and the change in proportion
0.7 A

oo | from Week 6 to Week 12.

0.5

04 " Experienced Week 6 | Week 12

03 4 Self-Taught n=33 n=27

0.2 1 Novice Type Comment Pr (Wk 6) | Pr(Wk 12) | Change
0.; E — Adv. Can work at

Relative Frequency

—) Indiv. own pace 0.12 0.11 -0.01
Individual Paired No pref "
More effective
Student Response learning 0.30 0.11 -0.19
Can use own
Figure 7: Student preference by previous mlfthOdS 0.09 0.15 0.06
; Allows
experience Adv. Pair |discussion 0.06 | 0.04 -0.02
Builds sense of
community 0.39 0.26 -0.13
In Which Do You Program Better Faster 0.42 0.33 -0.09
. More fun 0.03 0.04 0.01
09 Can get help
. 08 when stuck 0.52 0.44 -0.07
£ 07 Can learn from
g 06 explaining 0.06 0.07 0.01
% 0.5 m Experienced More code
200 B Seff-Taught checking 0.15 0.15 0.00
e Novice Motivating 0.03 0.04 0.01
A l | Can get other
0.1
0 - . . . viewpoints 0.27 0.59 0.32
Individual Paired No pref Disadv. Boring for
Student Response Pair navigator 0.06 0.07 0.01
Enforced social
interaction 0.24 0.15 -0.09
Figure 8: Student judgement of quality by previous Evaluation
experience apprehension 0.06 0.15 0.09
Partners can be
incompatible 0.06 0.15 0.09
Don't like
Continue to Use Pair Programming? WOI’king with
1- stronger partner 0.06 0.04 -0.02
0.9 - Classroom is
7 08 1 too noisy 0.03 0.00 -0.03
g g; T Don't like
EO'S : M Experienced WOI’kIng with
2 07 weaker partner 0.21 0.07 -0.14
'(_r; 0:3 | m Self-Taught
g g, | Novice Table 2;: Summary of student comments
0.1 + ————
0 . . . In Week 6, the most commonly mentioned advantage
ves No Maybe of Pair Programming was that one could get help from the
Student Response partner when stuck (mentioned by 52% of respondents).
Often the note “instead of having to wait for the lecturer”
Figure 9: Student willingness to continue by was added. Novice programmers traditionally need a
previous experience great deal of assistance, and in large classes it can be

difficult for an instructor to respond to all requests in a

19

CRPIT Volume 136 - Computing Education 2013

short time. While one might expect that two noviceslifficult to catch up if you fall behind in the first six
working together would not be able to provide usefulveeks of CS1. This finding is in concert with the
support to each other, this does not seem to be the cas#thematical model of Robins (2010) which
based on this feedback. demonstrates that failure to thrive in the earliest weeks

In Week 12, the “able to get help” comment was stilkan be a significant contributor to low pass rates in CS1.
often made (mentioned by 44% of respondents) but at thi® identify students at risk, perhaps with an eye to
point the most frequently cited advantage of Paproviding additional support, it seems productive to
Programming was the ability to get another personwatch carefully for students who do not gain confidence
viewpoint and suggestions (this was often phrased asth programming even very early in their first course.
“two heads are better than one”). This shift seems f{bhis identification can possibly be made by careful
reflect students’ increasing independence from thiastructor observation — no elaborate assessment metric is
lecturer between Weeks 6 and 12. required.

In both weeks, students often noted that working as a Student feedback regarding the wuse of Pair
pair was faster (42% and 33% in Weeks 6 and 1Rrogramming was generally positive, with respondents
respectively), and that it built a sense of communitidentifying advantages mechanical (not having to wait so
among the students (39% and 26%) as it required themlémg for instructor attention), intellectual (the value of a
meet and get to know their classmates. This impact on thecond viewpoint) and social (an effective way to get to
social dynamics of the classroom was among the featudesow other class members). Students expressed concern
that the instructors found most salient during thigbout uneven or incompatible pairings, and the classroom
semester (see further discussion below). instructors report that it is necessary to watch closely for

The most frequently cited disadvantage of Paidysfunctional pairings (for example, where one member
Programming in Week 6 was the difficulty of workingof the pair is being too dominant) and intervene when
with a weaker partner (mentioned by 21% ofequired.
respondents). By Week 12, this had fallen to only 7%, In addition to the observed advantages accruing to
perhaps indicating that some of the novice programmestudents, the classroom teaching staff reported a number
had “caught up” quickly to the more experiencedf positive consequences of using Pair Programming.
members of the class. These included:

A commonly cited advantage of individual e Shorter waiting times:Our Programming 1
programming, especially early in the semester, was thagaper is taught in groups of up to 23 students at a time.
students felt they learned more effectively when they hdduring practical work time, classroom instructors move
to work everything out on their own (30% in Week 6about the room answering questions or offering assistance
11% in Week 12). This illustrates the value of includingvhen students are not progressing. In the first weeks of

both individual and Pair Programming sessions. CS1 when most students have very little idea of how to
_) program, this can be a taxing process for instructors. At
4 General Discussion our institution we have recently begun assigning two

In the interest of finding teaching interventions that camstructors to Programming 1 simply to reduce student
be used successfully in the earliest weeks of a firgfait times. This unfortunately imposes a staffing burden
programming course, we introduced the Paithat can be very difficult to manage. With the
Programming methodology into our CS1 paper. Based @ftroduction of Pair Programming, instructors notice a
previous explorations of the pedagogical use of Pagignificant reduction in “students waiting with their hands
Programming, we intended to construct pairs on abilityp”. Partially, this is because each instructor intervention
level, but wished to do so before any exam or significamow covers two students, but more positively, even
project marks would be available. We thus used govice students, when working with a partner, seem to be
holistic, subjective judgement made by classroomable to progress more consistently. As the students
instructors based on task performance and work style tifeéquently observed, two heads are indeed better than
reflects an attribute we call “programming confidence”gne.
Results of the first semester show that Pair Programming « Increased Engagement®n historical problem
increases practical lab completion rate significantly fofor more experienced students in Programming 1 has
those students who were initially judged as having thgeen lack of engagement. This is a particular issue for
lowest confidence. those students who have previously failed the paper, and
Initial confidence judgements were not correlated withre repeating it. For these students, the earliest weeks can
final course mark. Some (but not all) students who haskem rather pointless. Instructors noted, however, that
started with low confidence performed very well in thevhen working with another more experienced student,
paper; some (but not all) students who started with higlepeaters and students with some other prior experience
confidence levels failed to achieve a high final markyere much more engaged than in previous years. The
Thus low initial confidence in isolation is not anopportunity to discuss the work with a student of similar
indication of future poor performance. Howeverjevel and to perhaps share interesting approaches or
inspection of change in confidence during the early weelg®ssible extensions of the exercises, made the early
does seem to give a better insight into eventual outcom@eeks much more rewarding for students at the top end.
Specifically, students whose confidence level improved . Increased Motivation and Performancé&ach
between Weeks 2 and 6 of the paper earned higher firglt of practical tasks contains one or more “challenge
marks, on average, than those whose confidengeoblems”, optional exercises of greater difficulty. The
remained at the same absolute level. Thus, it is apparerifigtructors note that students are more likely to attempt

20

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

the optional challenge exercises during the Pair classroom. Proceedings of the 8th annual conference
Programming practicals than during the individual on Innovation and technology in computer science
practicals. This may be a reflection of the confidence education,Thessaloniki, Greece, pp. 60-64.

obtained from knowing one has a partner to help out onMendes, E., Al-Fakhri, L., and Luxton-Reilly, A. (2005):
difficult problem, and/or the desire to perform well when Investigating pair-programming in a 2nd-year software
working with another student. Interestingly, the same development and design computer science course.
“striving for excellence” was observed in the major Proceedings of the 8th annual conference on
individual project assignment where an unusually high Innovation and technology in computer science
number of students attempted extra credit work, in education,Thessaloniki, Greece, pp. 296-300.

contrast to previous years. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,

. Social Dynamic: The change which the Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
instructors find the most compelling argument for 1., and Wilusz, T. (2001): A multi-national, multi-
continuing to use Pair Programming is not directly related institutional study of assessment of programming skills
to programming performance, but is a generally increasedof first-year CS studentsACM SIGCSE Bulletin,
sense of community among the students. Compared ta33(4):125-180.
previous years, students are more likely to offer help tdcDowell, C., Werner, L., Bullock, H., and Fernald, J.
each other even in individual labs. Students are more(2006): Pair programming improves student retention,
likely to discuss individual assignments and ask for confidence, and program qualitCommunications of
feedback. The general sense of camaraderie and inclusiothe ACM49(8):90-95.
is higher. Radermacher, A. and Walia, G. (2011): Investigating the

It should be noted that our department has recentlyeffective implementation of pair programming: An
introduced a number of other policies that might have empirical investigationProceedings of the 42nd ACM
contributed to this increased sense of community. In 2012technical symposium on Computer science education,
we have appointed a dedicated first year coordinatorDallas, Texas, USA, pp. 655-660.
responsible for pastoral care of new students, we haRebins, A. (2010): Learning edge momentum: a new
established a student common room, built a schoolaccount of outcomes in CS1Computer Science
Facebook page and increased orientation activities forEducation 20(1): 37-71.
first year students. All of these probably contribute to th€homas, L., Ratcliffe, M., and Robertson, A. (2003):
social cohesion seen in Programming 1. However, Code warriors and code-aphobes: a study in attitude
classroom instructors note that in the specific context ofand pair programming,ACM SIGCSE Bulletin
their classroom, they saw social relationships develop 35(1):363-367.
during Pair Programming which then grew to includ&Villiams, L. (2007): Lessons learned from seven years of
other classroom activities. pair programming at North Carolina State University.

In summary, we have found Pair Programming to be a SIGSCE Bulletin39(4):79-83.
valuable technique from the earliest days of CS1 when
students at the same level of programming confidence, as
judged by in-class teaching staff, work together. In
coming semesters we will continue to introduce Pair
Programming early in CS1, and also to incorporate it into
our more senior programming papers. With wide-ranging
benefits to both students and teaching staff, we see Pair
Programming as an essential tool in successful
programming education.

5 References

Bennedsen, J. and Caspersen, M.E. (2007): Failure rates
in introductory programmingACM SIGSCE Bulletin
39(2):32-36.

Cliburn, D. (2003): Experiences with pair programming
at a small collegeJournal of Computing Sciences in
Colleges,19(1):20-29.

Hanks, B. (2005): Student performance in CS1 with
distributed pair programmingACM SIGSCE Bulletin
37(3):316-320.

Katira, N., Williams, L. and Osborne, J. (2005): Towards
increasing the compatibility of student pair
programmers,Proceedings of the 27th International
Conference on Software Engineerirgt. Louis, MO,
USA, pp. 625-626.

McDowell, C., Hanks, B., and Werner, L. (2003)
Experimenting with pair programming in the

21

