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Abstract

This paper reports on an experiment to determine
the optimal parameters for a speech recogniser that
is part of a computer aided instruction system for as-
sisting learners of English as a Second Language. The
recogniser uses Hidden Markov Model (HMM) tech-
nology. To find the best choice of parameters for the
recogniser, an exhaustive experiment with 2370 com-
binations of parameters was performed on a data set
of 1119 different English utterances produced by 6 fe-
male adults. A server-client computer network was
used to carry out the experiment. The experimen-
tal results give a clear preference for certain sets of
parameters. An analysis of the results also identified
some of the causes of errors and the paper proposes
two approaches to reduce these errors.

Keywords: Signal processing, HMM design, speech
encoding, frame period, window size

1 Introduction

As English becomes more and more important as
a communication tool for people from all countries,
there is an ever increasing demand for good quality
teaching of English as a Second Language (ESL). New
Zealand is one of the destinations for foreign students
wanting to learn English from English speaking teach-
ers, and for political reasons is often perceived as a
desirable destination. Learning English well requires
lots of practice and a great deal of individualised feed-
back to identify and correct errors in students’ use of
English. Providing this individualised feedback from
ESL teachers is very expensive, and the shortage of
ESL teachers means that there is increasing demand
for computer software that can provide useful indi-
vidualised feedback to students on all aspects of their
English.

The ESL Software Tools research group at Victo-
ria University of Wellington is developing a software
system to provide individualised feedback to ESL stu-
dents on prosodic aspects of their speech production,
focusing particularly on the stress and rhythm of the
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speech. The overall design of the system involves
a pedagogic component that engages in simple dia-
logues with the student, and a speech analyser that
analyses the student’s speech, identifying the stress
pattern in the speech and comparing it with a target
pattern in order to provide useful feedback on stress
and rhythm errors.

The first stage of the speech analyser must per-
form phoneme level speech recognition on the stu-
dent’s speech to identify the start and end times of
all the segmental units. Later stages must further
analyse the speech to identify which elements would
be perceived as stressed, and to match the rhythm
pattern to the target pattern. These later stages de-
pend critically on the accuracy of the phoneme-level
speech recognition, particularly on the reliable recog-
nition of the vowel phonemes and the times of their
boundaries.

Our system uses a Hidden Markov Model (HMM)
speech recogniser with HMMs for each phoneme,
trained from a hand-annotated speech data set. The
use of the speech recogniser within our system is
rather different from the normal speech recognition
context — we know the sentence that the student is
trying to say, and the goal is to identify errors in the
stress and rhythm patterns. The system uses a dic-
tionary to translate the sentence into the expected
phoneme sequences. (There are multiple sequences
because the dictionary includes alternative pronun-
ciations.) The recognition system uses the phoneme
level HMMs to align the best of the expected phoneme
sequences with the speech signal. This is referred to
as “forced alignment”. Because of this different goal,
it is not necessarily the case that the HMM design
and training parameters commonly used for speech
recognition are appropriate for our task.

This paper reports on a set of experiments for iden-
tifying the optimal choice of parameters for the design
and training of these HMMs, given the context that
the speech recogniser will be used in. The experi-
ments sought to identify the appropriate size of the
statistical models in the HMM states and the best
combinations of features for encoding the speech in-
put to the HMMSs. An analysis of the results and the
recognition errors also suggests some techniques for
improving the performance in the future.

The paper is organised as follows: section 2 de-
scribes the design of the HMMs; section 3 describes
the speech encoding process and the choice of impor-
tant parameters and features; section 4 describes the
exhaustive experiment design, method and configura-
tions; section 5 presents the results; section 6 presents
two techniques for further development; section 7 con-
cludes the paper.



2 HMM Design

A phoneme-level HMM is a description of segments
of input speech signals that correspond to a partic-
ular phoneme. The HMM consists of a network of
states where each state describes subsegments of in-
put speech signals that correspond to a different sec-
tion of a phoneme (for example, the initial component
of the phoneme).

Before the HMMs for each phoneme can be
trained, their architecture needs to be specified. This
involves three key decisions: the number of states
needed in each phoneme level HMM, the connec-
tion mode of the phoneme states, and the size of
the mixture-of-Gaussian models in each state of the
HMMs.

2.1 Architecture of the HMMs

The dynamic nature of speech entails that with fewer
states an HMM will be a less precise model be-
cause each state must describe a larger section of a
phoneme. It will also be less accurate at identifying
the start and end times of the phoneme. With more
states, the HMM may have greater accuracy, but will
require a higher computation cost when recognising
the speech input. It will also require more training
data in order to determine all the values in the state
descriptions.

To balance the need for accuracy against the com-
putation time and size of training data, we chose to
follow standard practice, using a three state model
for each phoneme HMM. The first state describes the
transition from the previous phoneme into the cur-
rent phoneme, the second state describes the middle
section of the phoneme, and the third state describes
the transition out of the current phoneme to the next
phoneme.

The states can be connected in many ways. We
chose the commonly used connection mode of a
chained connection (Young, Evermann, Kershaw,
Moore, Odell, Ollason, Valtchev & Woodland 2002),
where each state is connected to itself (since each
state may cover a number of samples from the in-
put signal) and to the next state. This mode does
not allow connections that skip over a state or con-
nect back to a previous state. An example of this
connection mode is shown in figure 1.

Figure 1: A chained connection mode HMM.

(Adapted from (Young et al. 2002))

In addition to the phonemes, there are also a num-
ber of silences and short pauses in each speech sig-
nal. /sil/ indicates a measurable silent pause in the
speech file before or after the utterance itself, while
/sp/ indicates a short pause within the utterance.
Because silences and pauses do not have the same reg-
ular structure as phonemes, we allowed more flexible
structures for the silence and short pause HMMs: we
used a modified three-state HMM with backward and
forward skipping connections to model the silences
and a tied one-state connection to model the short
pauses, as shown in figure 2.

shared
state

Figure 2: HMMs for silences and short pauses.
(Adapted from (Young et al. 2002))

2.2 Stochastic Models: Mixture-of-

Gaussians

An HMM state describes segments of speech signals
using Gaussian models of each of the features used
to encode the signal. If all speakers always pro-
nounced a given phoneme in very similar ways, then
there would be little variability in the signal and sim-
ple Gaussian models (mean and variance) would be
sufficient. However, there is considerable variabil-
ity, and a mixture-of-Gaussians model may provide
a more accurate description. The design issue is to
determine an appropriate number of Gaussians in the
mixture-of-Gaussian models. The greater the size
of the mixture-of-Gaussian model, the more training
data is required to learn the parameters of the model.
We explored a range of possible sizes of the models
from 1 to 16.

3 Input Representation: Speech Encoding

The input speech signal consists of a time sequence
of values of the raw analog speech data, sampled at
16KHz. The HMM speech recogniser requires these
values to be encoded into a sequence of feature vec-
tors, where each feature vector encodes the essential
features of a short “frame” or “window” of the in-
put signal. The encoding requires several parameters
to be determined: the size of each window, the in-
terval (“frame period”) between each two adjacent
frames, and the set of features to be extracted from
each frame. The encoding process is shown in figure 3.
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Figure 3: Speech encoding process. (Adapted from
(Young et al. 2002))



3.1 Window Size and Frame Period

The window size and frame period are important pa-
rameters for the speech recogniser.

If the window size is too small, the window will not
contain enough of the signal to be able to measure the
desired features; if the window size is too large, the
feature values will be averaged over too much of the
input signal, and will lose precision. We explored a
range of window sizes, from 10ms to 30ms, with the
lower limit being chosen to be large enough to include
at least two complete cycles of the fundamental fre-
quency of the speech signal for the female speakers
being analysed, and the upper limit chosen to ensure
that a window seldom spanned more than a single
phoneme.

If the frame period is too long, there will be insuf-
ficient feature vectors for each phoneme, which will
prevent the HMMs from recognising the speech. If
the frame period is longer than the window size, then
some parts of the speech signal will not be encoded
at all. If the frame period is too short, then there
will be too many feature vectors, which will increase
the computational cost. The absolute lower limit on
the frame period is governed by the sample rate of
the raw speech signal. We explored a range of frame
periods, from 4ms to 12ms, subject to the constraint
that the frame period was not larger than the window
size.

3.2 Feature Extraction and Selection

There are many possible classes of features that could
be used to encode a speech signal. We have fol-
lowed common practice in using Mel-Frequency Cep-
strum Coefficients (MFCCs) on a Hamming window.
MFCCs use a mathematical transformation called the
cepstrum which computes the inverse Fourier trans-
form of the log-spectrum of the speech signal (Young
et al. 2002). Within this class of features, there is
still considerable choice about which MFCC features
to use. In addition to the 12 basic MFCC transfor-
mation coefficients (1st—12th), there are also the en-
ergy (E), the 0th cepstral coefficient (0), and the first
and second order derivatives (D and A) of those co-
efficients. Not all combinations of these features are
sensible. For example, it makes little sense to use
the second order derivatives without the first order
derivatives, and the HTK toolkit (Young et al. 2002)
will not use both the energy and the Oth cepstral co-
efficient simultaneously. We have identified six com-
binations to explore in our experiments, as shown in
table 1.

Table 1: Six feature combinations and the number of
features in each set.

No | Combination | No. of Features
1 | MFCC-E 13
2 | MFCC-E-D 26
3 | MFCC-E-D-A 39
4 | MFCC-0 13
5 | MFCC-0-D 26
6 | MFCC-0-D-A 39

4 Experiment Design and Method

For our experiments, we trained a collection of
phoneme level HMM models on a training set of an-
notated speech samples with each combination of pa-

rameters. We then evaluated the quality of the HMM
models by using them to recognise and label speech
samples in a separate test set. This section describes
the data sets used in the experiment, the parameter
combinations we explored, the training and testing
process, the experiment configuration, and the per-
formance evaluation.

4.1 Data Set

The experiments used a speech data set col-
lected by the School of Linguistics and Applied
Language Studies at Victoria University, as part
of the New Zealand Spoken English Database
(www.vuw.ac.nz/lals/nzsed). This data set contains
1119 utterances of 200 distinct English sentences pro-
duced by six female native speakers. The utterances
were recorded at a 16kHz sampling rate, which allows
accurate analysis of all frequencies up to 8kHz (the
Nyqvist frequency for this sampling rate). The range
to 8kHz includes all perceptually relevant information
in human speech.

The utterances were labelled at the phoneme level,
specifying the name and the start and end times of
each phoneme. The labelling was at a coarse level,
with 44 different English phonemes and two labels for
silences and short pauses. The first half of the 1119
utterances were hand-labelled at the phoneme level
by trained linguists; the second half were automati-
cally labelled by a computer program (based on the
labelling of the first half) then checked by a trained
linguist. Each utterance was also identified with the
text of the sentence it represented.

For our experiments, the labelled utterances were
split into a training set with 544 utterances and their
labels and a test set of the remaining 575 utterances.
The split preserved an even distribution of speakers
in both sets, but was otherwise random.

4.2 Design of Case Combinations

The goal of the experiment was to explore the per-
formance of different choices of feature sets, win-
dow sizes, frame periods, and sizes of the mixture-
of-Gaussian models. As described in the previous
section, we have 6 combinations of feature sets to ex-
plore.

Since the average fundamental frequency of female
speech is around 220 HZ, the period of the voiced
sounds is approximately 4.5 ms. We therefore chose
a set of nine frame periods from 4ms to 12ms in steps
of 1ms. The smallest frame period was chosen to be
only marginally smaller than the average period of the
fundamental frequency. The largest frame period was
chosen to be above the default frame period suggested
by the HTK toolkit.

We chose a set of nine possible window sizes from
10ms to 30ms in steps of 2.5ms. With the constraint
that the window size should be at least as long as the
frame period, there are just 79 possible combinations
of window size and frame period and therefore 474
combinations of the speech encoding parameters.

We also explored five different sizes for the
mixture-of-Gaussian models: 1, 2, 4, 8, and 16. There
were therefore a total of 2370 different possible com-
binations of parameters to evaluate.

We refer to the different sets of parameters by hy-
phenated codes such as “9-10-E-D-A-4” where the
first number is the frame period, the second num-
ber is the window size, the letters specify which of
the MFCC features were used, and the final number
is the size of the mixture-of-Gaussian models.



4.3 Training and Testing Process

For each combination of parameters, a set of phoneme
level HMMs was trained on the utterances (and their
labels) in the training set. During the training pro-
cess, each utterance was encoded and the relevant fea-
tures were extracted based on the choice of features,
window size, and frame period. Each HMM state was
modeled initially by a mixture-of-Gaussians of size
1 and trained using four cycles of the Baum-Welch
training algorithm (Young et al. 2002). The maxi-
mum size of the mixture-of-Gaussians was then dou-
bled and two cycles of the Baum-Welch re-estimation
were applied. This was repeated until the maximum
size of 16 was reached.

After obtaining the phoneme level HMMs, the
testing process was conducted by applying these
HMMs to the utterances in the test set using
forced alignment and the Viterbi algorithm (Young
et al. 2002). The testing process generated a set
of auto-labelled phonemes (phoneme name, start,
and end time) for each utterance. These auto-
labelled phonemes were then be compared to the
hand-labelled phonemes to measure the accuracy of
the HMMs.

4.4 Experiment Configuration

Since training and testing a set of HMM models is
a computationally intensive task, it would not have
been feasible to run this exhaustive experiment on a
single computer. Instead, we constructed a server-
client computer network to run the experiment. The
system consisted of one Sun Fire 280R, Server and 22
1.8GHZ Pentium 4 workstations with 128MB RAM
running NetBSD, as shown in figure 4. Even with
these 22 computers, the experiment took more than
48 hours to complete.

Trained

Testing
HMMs

Results
Training
Case List

Server

N

Figure 4: Experiment configuration.

There are two central synchronised lists on the
server, one containing all training cases (one case for
each combination of speech encoding parameters) and
the other for testing cases. To reduce the network
traffic, the utterances in the training and test data
sets were pre-distributed to each client (workstation).
The training time varies with different training cases.
Therefore, instead of pre-assigning a fixed number
of training cases to each client, we created connec-
tions between the server and the 22 clients so that
the clients can train or test any case. Clients repeat-
edly request a training case (a combination of param-
eters) from the server, perform the training process,
then send the trained HMMs back to the server to
be added to the list of testing cases. Once the list of
training cases is empty, each client starts requesting

testing cases from the server, performing the testing
and sending the resulting set of auto-labelled utter-
ances back to the server. The effect of this distributed
process is that no clients are idle until the very end
of the experiment.

4.5 Performance evaluation

To measure the recognition performance of a case, the
system compares the auto-labelled phonemes in each
utterance of the test set against the hand-labelled
phonemes.

In the context of our speech analyser system, the
most important requirement on the recognition sys-
tem is the accuracy of the time boundaries of the
auto-labelled phonemes. The simplest way of mea-
suring this accuracy would be to measure the average
error, where the error is the time difference between
the boundary of the auto-labelled phoneme and the
hand-labelled phoneme. However, we suspect that
large errors will be much more significant for the rest
of the speech analyser than small errors. Also, the
nature of continuous speech is such that determin-
ing hand-labelled phoneme boundaries necessarily in-
volves a subjective judgement. This means that small
errors should not affect the accuracy measure. We
therefore set a threshold and counted the percent-
age of phonemes for which the difference between the
auto-labelled boundary and the hand-labelled bound-
ary is less than the threshold.

Obviously, the actual accuracy measure will vary
with different thresholds — with a sufficiently high
threshold, all the cases would have a 100% accuracy.
However, the purpose of the accuracy measure is to
compare the performance of different cases, so only
the relative value of the accuracy measure is impor-
tant, and the threshold value is not too critical. Ac-
cording to the literature (Boeffard, Miclet & White
1992, Grayden & Scordilis 1994, Ljolje, Hirschberg
& van Santen 1997, Vonwiller, Cleirigh, Garsden,
Kumpf, Mountstephens & Rogers 1997, Wightman
& Talkin 1997), a match distance between an auto-
labelled phoneme and its corresponding hand-labelled
phonemes within 2-4 cycles of the fundamental fre-
quency would be considered a very close match. Since
the average fundamental frequency for adult female
speakers is about 220HZ, we chose 16 milliseconds for
the threshold in our measure. We also looked at the
effect on the results of changing this threshold in ei-
ther direction.

We were also interested in the sources of bound-
ary time errors. We hypothesised that some of the
errors might be due to the recogniser misclassifying
phonemes during the recognition process. We there-
fore performed a more standard recognition accuracy
evaluation on the best performing HMM, measuring
the percentage of phonemes in the test set that were
misclassified by the HMM.

5 Results and Discussion

This section presents the relative recognition perfor-
mance of the cases and gives some further analysis of
the results.

5.1 Best Parameter Combinations

Using the measure described in the previous section,
we calculated the relative phoneme boundary accu-
racy of the HMM speech recogniser with 2370 dif-
ferent combinations of parameters. Since the vowels
play a more important role in the later stages of the



speech analyser, we also calculated the relative accu-
racy results for vowels only (measuring just the end
boundary of the vowel). The best ten and the worst
results are given in tables 2 and 3.

Table 2: Best and worst parameter choices by bound-
ary timing accuracy.

rank Case Boundary

Accuracy
1 9-15-0-D-A-8 81.47%
2 9-15-0-D-A-4 81.38%
3 10-12.5-0-D-A-1 | 81.24%
4 10-15-E-D-A-4 81.23%
5 10-12.5-0-D-A-4 | 81.23%
6 9-17.5-0-D-A-4 81.23%
7 9-17.5-E-D-A-4 | 81.21%
8 11-15-0-D-A-4 81.21%
9 10-17.5-0-D-A-4 | 81.20%
10 | 9-12.5-0-D-A-4 81.19%
2370 4-30-0-16 57.66%

Table 3: Best and worst parameter choices by bound-
ary timing accuracy of vowels only.

rank Case Boundary
Accuracy
1 11-15-0-D-A-4 82.49%
2 12-17.5-0-D-A-4 | 82.45%
3 12-15-0-D-A-4 82.42%
4 11-17.5-0-D-A-4 | 82.36%
5 12-20-0-D-A-2 82.22%
6 11-12.5-0-D-A-4 | 82.21%
7 12-12.5-0-D-A-4 | 82.19%
8 12-20-0-D-A-4 82.17%
9 11-17.5-0-D-A-8 | 82.16%
10 12-15-0-D-A-2 82.13%
2370 4-30-0-16 61.17%

There are several observations that can be made
from the results.

e The best performance (81.47% accuracy for 9-15-
0-D-A-8) is considerably better than the worst
performance (58% accuracy for 4-30-0-16), so
that the choice of parameters is important.

e There is a clear advantage in using the deriva-
tive (D) and acceleration (A) features. All of the
top 13% of the cases have the acceleration fea-
tures, and all of the top 46% of the cases have
the derivative features.

e A frame period around 9ms to 10ms and a win-
dow size around 15ms appear to give the best
performance over all phonemes, but a larger
frame period around 11ms to 12ms and a larger
window size around 17.5ms is better for perfor-
mance on vowels alone.

e There appears to be just a slight advantage of
the Oth Cepstral (0) feature over Energy (E) for
the full set of phonemes, but the Oth Cepstral
feature is clearly better on vowels alone. (Only
three of the top 50 cases for vowels use Energy.)

e There seems to be a preference towards a size of
4 for the mixture-of-Gaussians, and none of the
top 50 cases have a size of 16.

e The difference in relative accuracy over the top
5% of the cases is only 1%, so that the exact
choice of E vs 0, frame period, window size and
number of Gaussians, within the ranges above,
does not appear to be critical.

e Changing the threshold to 8ms or 32ms makes no
difference to the strong advantage of the Deriva-
tive and Acceleration features. However, the pre-
ferred frame period and window size are slightly
smaller for the 8ms threshold, and slightly larger
for the 32ms threshold. Also for the 8ms thresh-
old, there is preference for the Energy feature
rather than the Oth Cepstral feature.

The outcome of this experiment is a clear recom-
mendation for the parameters we should use for the
speech analyser system: using Oth Cepstral, Deriva-
tive and Acceleration features, along with a frame
period of 11ms, a window size of 15ms, and a mixture
of 4 Gaussians should minimise the boundary timing
errors on the vowels. If it turns out in later work on
the system that boundary timing differences of less
than 16ms are significant, we would then need to use
a smaller frame period and window size and the En-
ergy feature.

5.2 Recognition Accuracy

The results above focused on the accuracy of the
boundaries of the auto-labelled phonemes. The sec-
ond evaluation attempted to identify some possible
sources of the boundary errors by counting the kinds
of phoneme recognition errors made by the recogniser
using the best performing HMMs. There are three
kinds of phoneme recognition errors:

e substitution, where the auto-labelled phoneme is
different from the hand-labelled phoneme.

e insertion, where the auto-labelling includes an
additional phoneme that is not present in the
hand-labelling.

e deletion, where the auto-labelling does not con-
tain a phoneme that is present in the hand-
labelling.

Table 4 shows the percentage of each category of
recognition errors for the highest ranked HMM (9-15-
0-D-A-8) applied to the test set. Since insertion and
deletion errors will almost certainly result in bound-
ary time errors of phonemes adjacent to the error,
in addition to the phoneme inserted or deleted, the
nearly 5.8% of insertion or deletion errors is a non-
trivial cause of the approximately 18% boundary tim-
ing error rate in table 2. The substitution errors may
or may not result in boundary timing errors.

Table 4: Recognition errors for 9-15-0-D-A-8.

Kind of Error
Insertion errors
Deletion errors
Substitution errors

Percentage of phonemes
4.7% (1221 out of 25723)
1.1% (286 out of 25723)
4.4% (1134 out of 25723)

The recognition system uses forced alignment
recognition in which the system knows the target sen-
tence and uses a dictionary of alternative word pro-
nunciations to determine the expected phonemes. In-
sertion and deletion errors will generally occur when



the actual pronunciation by the speaker does not
match any of the pronunciations in the dictionary:
the speaker drops a phoneme or includes an extra
phoneme, and the system is forced to align the dic-
tionary pronunciation with the actual pronunciation.
These errors are due primarily to inadequacies in the
dictionary, rather than to the HMM models. Substi-
tution errors will result from pronunciations by the
speaker that are not in the dictionary, but also may
result from poor HMM phoneme models if the dic-
tionary gives two alternative pronunciations, and the
HMM for the wrong phoneme matches the speech sig-
nal better than the HMM for the correct phoneme.

6 Improving the Recognition Performance

Even with the best choice of parameters, there are
clearly many phoneme boundaries that the recogni-
tion system is not able to identify accurately. Al-
though we do not yet know exactly how much of a
problem this would be for the overall speech analysis
system, we do know that computer aided instruction
systems need a very high accuracy when providing
feedback to students, and we believe it will be im-
portant to improve the accuracy of the speech recog-
nition component. We also expect the problem to
be much greater with non-native speakers than with
native speakers, since non-native speakers are much
more likely to mispronounce words, and to delete or
insert phonemes in their utterances.

Analysis of the results of our experiments, partic-
ularly a detailed analysis of some of the errors that
the system makes, have enabled us to identify two
approaches to deal with this problem.

The first approach is to augment the dictionary
with a richer set of alternative pronunciations that
capture more of the likely pronunciations and mis-
pronunciations. The second is to modify the archi-
tecture of the phoneme-level HMMs to allow skipping
of states. In particular, if the HMMs allow all three
states to be skipped, then the recogniser, even with
forced alignment, can handle missing phonemes by
matching the phoneme against a zero length segment
of the speech signal.

6.1 Improved Forced Alignment System

The dictionary we use currently contains alternative
pronunciations of many of the words in the dictio-
nary. The alternative pronunciations reflect some of
the pronunciations acceptable to a native speaker.
Clearly, we need to continue augmenting the dictio-
nary with other alternative pronunciations that are
acceptable to native speakers. However, the dictio-
nary does not include the common pronunciation mis-
takes of native speakers nor the mispronunciations of
non-native speakers who are currently learning En-
glish. These mispronunciations cause auto-labelling
errors in our system.

Figure 5 shows an example from a non-native
speaker mispronouncing the word pretend. The dic-
tionary pronunciation is /prr'tend/, but the speaker
mispronounced it as /p'tens/ (she missed /r1i/ and
mispronounced the final phoneme /d/ as /a/). The
top viewport is the spectrogram of the sound of word
pretend mispronounced by the speaker; the mid-
dle viewport shows the hand-labelling of the sound
waveform, and the bottom viewport shows the auto-
labelling of the same sound waveform. Clearly,
the boundaries of the auto-labelled phonemes have
been badly affected by missing and mispronounced
phonemes.
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Figure 5: Auto-labelling errors of the forced align-
ment system.

Missing certain phonemes (such as /r/) and adding
phonemes such as /o/ at word boundaries and within
consonant sequences are common mistakes among
ESL students, and our system needs to be able to
deal with them more effectively. However, adding
all the possible alternative pronunciations directly to
the dictionary would make the dictionary very large,
and would also greatly increase the complexity of
the HMMs built (on the fly) by the forced alignment
speech recogniser. This increased complexity would
have unacceptable consequences for the computation
speed of the recogniser.

Instead, we intend to build a model of the kinds of
deletions, insertions, and substitutions that are com-
mon in the speech of Chinese ESL students, and use
this model to dynamically construct a better phoneme
network that allows the recogniser to deal with inser-
tion and deletion errors more gracefully.

6.2 A New HMM Model

The second approach for improving the recognition
performance is to improve the HMM design. The con-
strained left-to-right connection mode between the
three states of a phoneme HMM requires that ev-
ery phoneme is allocated at least three frames of
the speech signal. We have identified errors due to
very short phonemes. The boundaries of the auto-
labelled phonemes may be wrong because the system
was forced to allocate frames to a short phoneme that
should have been allocated to adjacent phonemes.
Also, where the dictionary states that the phoneme
should be present but the speaker has dropped it, the
system is forced to “steal” at least three frames from
neighbouring phonemes to allocate them to the ex-
pected phoneme.

We believe that these problems can be addressed
by a more robust three state HMM in which some or
all of the states can be skipped. This enhanced HMM
is shown in figure 6.

Figure 6: A new three-state HMM.

For long phonemes, particularly diphthongs, there
may be more variation during the phoneme than can
be captured well by just three states. We will consider
HMMs with more than three states for such vowels.



In addition, the current HMM design deals with
the short pause /sp/ and the silence /sil/ but does
not model breathing properly since an audible breath
has energy, and we do not have an HMM for breath-
ing. Short periods of breathing currently confuse the
recogniser, and cause it to label the phoneme bound-
aries badly.

Figure 7 shows an example of auto-labelling er-
rors resulting from a short breath and an inserted
phoneme. The first panel presents the spectrogram of
a speech signal consisting of the word but preceded by
a short breath and followed by an inserted /a/, pro-
duced by a female ESL student. The second panel
shows the sound waveform and the hand-labelling.
The third panel presents the auto-labelling generated
by the forced alignment system. As can be seen, the
forced alignment system placed most of the bound-
aries quite inappropriately.

Audiable breathing has less of an impact on the na-
tive speaker data as these speakers were largely able
to read the sentences fluently on a single intake of
breath. For non-native speakers, we expect consider-
ably more hesitation and therefore periods of breath-
ing will be much more common. We will add an HMM
model for breathing to our system, to remove these
errors.
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Figure 7: Auto-labelling errors with a short breath
and an inserted phoneme.

7 Conclusions

We have described an HMM based forced alignment
speech recogniser that will be a component of a speech
analyser system to assist ESL students practice and
improve their English. The central requirement on
the recogniser is that it can accurately identify the
boundaries of the phonemes in a speech signal.

We have reported on an experiment that exhaus-
tively explored a space of parameter values for the
recogniser. This included the parameters of the en-
coding of the speech signal and the size of the statisti-
cal models in the states of the phoneme-level HMMs.
The results of the experiment gave clear recommen-
dations for the choice of frame period, window size,
MFCC features, and the statistical model in order to
minimise the significant phoneme boundary errors.

The results of the experiment also identified sev-
eral causes of phoneme boundary errors, including
limitations of the dictionary used for forced align-
ment, the constraints of the HMM connection mode,
and the need for a model of breathing. We also out-

lined the approaches that we will explore to address
these limitations.
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