
Lower bounds on quantum query complexity
for read-once decision trees with parity nodes

Hideaki Fukuhara1 Eiji Takimoto2

1 Graduate School of Information Science, Tohoku University,
Aramaki-Aza-Aoba 6-6-05, Aoba-ku, Sendai 980-8579, Japan

Email: fk hide@i.kyushu-u.ac.jp

2 Department of Informatics,
Graduate School of Information Science and Electrical Engineering,

Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Email: eiji@i.kyushu-u.ac.jp

Abstract

We introduce a complexity measure for decision
trees called the soft rank, which measures how well-
balanced a given tree is. The soft rank is a somehow
relaxed variant of the rank. Among all decision trees
of depth d, the complete binary decision tree (the
most balanced tree) has maximum soft rank d, the
decision list (the most unbalanced tree) has minimum
soft rank

√
d, and any other trees have soft rank be-

tween
√

d and d. We show that, for any decision tree
T in some class G of decision trees which includes
all read-once decision trees, the soft rank of T is a
lower bound on the quantum query complexity of the
Boolean function that T represents. This implies that
for any Boolean function f that is represented by a
decision tree in G, the deterministic query complex-
ity of f is only quadratically larger than the quantum
query complexity of f .

Keywords: quantum query complexity, decision trees,
adversary method

1 Introduction

The biggest challenge in quantum computation the-
ory is to clarify the extent to which quantum compu-
tation gives an advantage over classical deterministic
and randomized computation. We know some quan-
tum algorithms that would be significantly faster for
a few specific problems. But many results on the limi-
tation of quantum computation suggest that quantum
computers may outperform the classical ones only
modestly (see, e.g., Aaronson (2008)). Most of the
interesting results have been shown in the quantum
query model of computation. In the model, the al-
gorithm is given access to a black-box containing an
input assignment x = (x1, x2, . . . , xn) for some n vari-
able function f , and is required to compute f(x) using
as few queries to the black-box as possible. In each
query, the algorithm may ask for the value assigned to

This work was done while the first author was visiting Kyushu
University. The second author is supported by MEXT Grant-
in-Aid for Scientific Research (C) No.20500001.

Copyright c⃝2009, Australian Computer Society, Inc. This pa-
per appeared at the Fifteenth Computing: The Australasian
Theory Symposium (CATS2009), Wellington, New Zealand.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 94, Rod Downey and Prabhu Manyem, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

a single variable of some index i, 1 ≤ i ≤ n, and the
value xi is returned. Queries are quantum coherent,
which means that the algorithm may superpose dif-
ferent query requests i with complex amplitudes αi,
and then receive a superposition of the correspond-
ing values xi. The complexity of f is the number of
queries needed to compute f on a worst-case input x.
The quantum query model is the quantum analogue
to the classical decision tree model, where the query
complexity is measured by the depth of decision trees.
It is of great interest to compare the computational
powers of the two models.

One of the major algorithmic results in this regard
is Grover’s search algorithm (Grover 1996), which can
be viewed as a quantum algorithm for computing the
n-bit OR function with O(

√
n) queries. This con-

trasts with the facts that n queries are required for
deterministic decision trees and Ω(n) queries for ran-
domized decision trees. Thus the OR function pro-
vides an example where quantum computation gives a
quadratic speedup over deterministic and randomized
decision trees. It should be noticed that the bound
of O(

√
n) on the quantum query complexity of the

OR function holds only in the bounded error setting,
where the computation may have a small probability
of being incorrect. We write Qϵ(f) for the quantum
query complexity of f in the bounded error setting,
where ϵ is the permissible error. We also write D(f)
for the deterministic decision tree complexity of f .
Note that Qϵ(f) ≤ D(f) for any ϵ, which implies
that the quantum query model is at least as powerful
as the classical model. With these notations, we can
describe the query complexities of the n-bit OR func-
tion, denoted by ORn, as follows: Qϵ(ORn) = O(

√
n)

for any ϵ ∈ (0, 1/2), and D(ORn) = n. (It is well
known that the value of ϵ only affects Qϵ(f) within a
constant factor, unless ϵ = 0.)

On the other hand, Barnum & Saks (2004) show
that for any read-once function f of n variables,
Qϵ(f) = Ω(

√
n), where a read-once function is

a Boolean function that can be represented by a
Boolean formula over the basis {AND, OR, NOT}
such that each variable appears only once. Note that
the OR function is a read-once function. This result
implies that more than quadratic speedup of quantum
computation over classical decision trees is impossible
for read-once functions. Actually, no such speedup
result is known for any Boolean function.

So, an important problem in quantum query com-
plexity is to resolve the following conjecture.

Conjecture 1 For any Boolean function f and ϵ ∈
[0, 1/2), Qϵ(f) = Ω(D(f)1/2).

Note that the conjecture is only for total functions

whose domain is all of {0, 1}n. For partial functions
whose domain is restricted, there are much better
speedups known (Simon 1997). The best known re-
sult toward this conjecture say that for any Boolean
function f , Qϵ(f) = Ω(D(f)1/6) for ϵ ∈ (0, 1/2)
(Beals et al. 2001), and Qϵ(f) = Ω(D(f)1/3) for
ϵ = 0 (Midrijanis 2004). Several results provide ev-
idence for the conjecture. For example, the bound
of Qϵ(f) = Ω(D(f)1/2) holds for all symmetric func-
tions, and for some particular functions f such as the
PARITY and the MAJORITY functions, Qϵ(f) =
Ω(D(f)) (Beals et al. 2001).

In this paper, we provide further evidence for the
conjecture. We show that the bound of Qϵ(f) =
Ω(D(f)1/2) holds for any function f that can be rep-
resented as a decision tree in some class of determin-
istic decision trees, denoted by DT⊕. The class DT⊕
consists of read-once decision trees that may have spe-
cial nodes called the parity nodes. A parity node is an
inner node that has only one child subtree T , and rep-
resents the parity of the variable labeled at the node
and the function that T represents. A read-once de-
cision tree is a decision tree in which each variable
appears at most once. The AND, OR, and PAR-
ITY functions can be represented by decision trees in
DT⊕.

Below we state our results in a more precise
way. We introduce a complexity measure for decision
trees called the soft rank, which measures how well-
balanced a given tree is, and show that for any func-
tion f that can be represented as a decision tree T in
DT⊕, the bounded error quantum complexity Qϵ(f)
is bounded below by the soft rank of T . The soft rank
is a somehow relaxed variant of the rank defined by
Ehrenfeucht & Haussler (1989), who investigate the
learnability of low-rank decision trees. Among all de-
cision trees of depth d, the complete binary decision
tree (the most balanced tree) has maximum soft rank
d, the decision list (the most unbalanced tree) has
minimum soft rank

√
d, and any other trees have soft

rank between
√

d and d. Since the depth of a tree T
in DT⊕ is an upper bound on the decision tree com-
plexity D(f) of the function f that T represents, the
bound Qϵ(f) = Ω(D(f)1/2) immediately follows from
our lower bound.

To derive the lower bound, we employ the ad-
versary method, which is one of the most success-
ful techniques for showing lower bounds on quan-
tum query complexity (Ambainis 2002, 2006, Bar-
num et al. 2003, Laplante & Magniez 2004, Špalek
& Szegedy 2005). There are several equivalent for-
mulations of the adversary method. We use the set-
ting of the spectral formulation, since it behaves well
with respect to function composition. The spectral
adversary method is formulated as an optimization
problem specified by the function f under consider-
ation, and its solution, denoted by ADV(f), gives
a lower bound on Qϵ(f). Thus, ADV(f) is often
referred to as the adversary bound. Høyer et al.
(2006) consider the adversary bound for composite
functions of the form h = f ◦ (g1, g2, . . . , gk) and
give an exact expression for ADV(h) in terms of
the adversary bounds of f and gi for 1 ≤ i ≤ k.
More precisely, they generalize the adversary method
and introduce a quantity ADVα(f) with a cost vec-
tor α, and show that ADV(h) = ADVα(f) with
α = (ADV(g1), ADV(g2), . . . ,ADV(gk)), provided
that the sets Xi of input variables for gi are disjoint
from each other. Despite the constraint of disjoint-
ness, this composition theorem enables us to estimate
asymptotic bounds on ADV for various functions such
as read-once functions (Høyer et al. 2006).

We apply the composition theorem to obtain a

lower bound on ADV for decision trees in the class
DT⊕, based on the observation that DT⊕ consists of
recursively defined composite functions with two ba-
sis functions XOR and MUX, where XOR denotes the
two-variable exclusive-or function and MUX denotes
the three-variable multiplexer function. The lower
bound obtained is in the form of a complicated re-
currence equation, which seems hard to solve. So, we
approximate the equation and get a simple recurrence
equation, by which the soft rank is defined.

The rest of the paper is organized as follows.
In Section 2 we give basic terminologies that are

used throughout the paper. In Section 3 we define
the class of read-once decision trees with parity nodes
and introduce the notion of soft rank. In Section 4
we state the quantum query model and review the
adversary method with some useful results including
the composition theorem. In Section 5 we give tight
bounds on ADVα(XOR) and ADVα(MUX). These
are the main technical contribution of the paper. Ap-
plying the composition theorem to the bounds on
ADVα(XOR) and ADVα(MUX), we give in Section 6
the soft rank adversary bound for read-once decision
trees with parity nodes. We also state the gap be-
tween classical and quantum query complexities. In
Section 7 we demonstrate that for several functions
one can easily compute the soft rank and thus the
adversary bounds as well. In Section 8 we state some
concluding remarks.

2 Preliminaries

For a natural number n, [n] denotes the set
{1, 2, . . . , n}. For a binary sequence x ∈ {0, 1}n, xi
denotes the i-th bit of x. The set of real numbers is
denoted by R and the set of real positive numbers is
denoted by R+. For a Boolean function f , f̄ denotes
the negation function of f , that is, for any input x,
f̄(x) = 1 if f(x) = 0 and f̄(x) = 0 if f(x) = 1.

For a matrix A, A[x, y] denotes its (x, y) element.
For a matrix A and a column vector v, AT and vT

denote the transposes of A and v, respectively. For a
matrix A, A∗ denotes its conjugate transpose. For a
column vector v, let |v| denote the l2-norm of v, that
is, |v| =

√
v∗v. For a square matrix A, ∥A∥ denotes

the spectral norm of A, that is,

∥A∥ =
√

(maximum eigenvalue of A∗A)

= max
v:|v|̸=0

|Av|
|v|

.

Note that for any real symmetric matrix A, its spec-
tral norm equals the maximum absolute eigenvalue of
A. Let A◦B denote the Hadamard product of A and
B, that is, (A ◦ B)[x, y] = A[x, y]B[x, y]. A Boolean
matrix is a matrix whose elements are 0 or 1. For a
Boolean matrix A, Ā gives the element-wise negation
of A, that is, Ā[x, y] = 1 − A[x, y].

3 Decision trees and soft rank

In this paper, we consider the class DT⊕ of read-
once decision trees with parity nodes. We first be-
gin with the definition of the standard decision trees.
A standard decision tree is a rooted ordered binary
tree, where each internal node of a decision tree is la-
beled with a variable xi and each leaf is labeled with
a value 0 or 1. Given an input x ∈ {0, 1}n, the tree
is evaluated as follows. Start at the root, and repeat
the following procedure: If the current node is a leaf,
then stop and output the value (0 or 1) of the leaf;
Otherwise, query the variable xi of the current node

x1x2
x4

x5
10
1

0
0

x3
x1x2

x4
x5

10
1

0
0

x3
x1x2
x4

x5
10
1

0
0

x3
x4

x50
1

1

x1x2
x4

x5
10
1

0
0

x3
x4

x50
1

1
Figure 1: A decision tree in DT⊕ (left) and a standard
decision tree (right) equivalent to the left tree. The
node designated by a double circle with x3 in it stands
for a parity node.

and go to the left child if xi = 0, and go to the right
child if xi = 1.

We say a decision tree computes f if its output
equals f(x), for all x ∈ {0, 1}n. In what follows, we
sometimes identify a decision tree T with the function
that it computes, and denote by T (x) the output of
T for input x.

The complexity of a tree is its depth, i.e., the num-
ber of queries made on the worst-case input. We
define the decision tree complexity of f , denoted by
D(f), as the depth of a minimal-depth decision tree
that computes f .

For a decision tree T , T̄ denotes the decision tree
that is the same as T , except that all leaf labels are
inverted. Clearly, T̄ computes the negation function
of T , i.e., T̄ (x) = 1 − T (x) for all inputs x.

3.1 Read-once decision trees with parity
nodes

Now we define decision trees with parity nodes. A
parity node is an inner node that is labeled with some
input variable as a normal inner node, but it has only
one child. A tree with parity nodes is evaluated as the
same way as the standard trees, except the case where
the current node is a parity node. When the current
node is a parity node labeled with a variable xi, first
go to the (unique) child and evaluate recursively the
subtree T rooted at the child, and then output xi ⊕
T (x). In other words, if xi = 0, then go to the child
and evaluate normally the subtree T , but if xi = 1,
then evaluate the negation T̄ of the subtree T .

It should be noticed that a parity node with child
subtree T can be replaced by a normal inner node
with left child subtree T and right child subtree T̄ ,
without changing the function that is computed.

We say that a tree is a read-once decision tree if
every variable xi appears at most once as node labels
of the tree. Let DT⊕ denote the class of read-once de-
cision trees with parity nodes. Note that any tree in
DT⊕ can be transformed into a standard decision tree
(with no parity nodes) without changing the depth by
the node replacement as stated above, but the resul-
tant tree may not be a read-once decision tree (See
Figure 1). Therefore, the depth of a decision tree
T in DT⊕ is an upper bound on D(f) for f that T
computes.

3.2 Representation with composite functions

Let XOR denote the two-variable exclusive-or func-
tion and MUX denote the three-variable multiplexer
function. The multiplexer function MUX outputs the
second or third input bit that is singled out by the

first bit. More formally,

XOR(x1, x2) = x1 ⊕ x2,

MUX(x1, x2, x3) = x̄1x2 ∨ x1x3.

We observe that a decision tree T in DT⊕ can
be viewed as a recursively defined composite function
with two basis functions XOR and MUX. If the root
of T is a normal inner node labeled with xi with left
subtree T1 and right subtree T2, then T can be repre-
sented as MUX(xi, T1, T2). Similarly, if the root of T
is a parity node labeled with xi with unique subtree
T1, then T can be represented as XOR(xi, T1). In this
way, we can recursively represent the subtrees T1 and
T2 as composite functions with XOR and MUX. For
example, the left tree in Figure 1 is represented as

MUX(x1, x2, XOR(x3, MUX(x4, x̄5, 0))).

3.3 Rank and soft rank

Below we define the complexity measure soft rank for
decision trees that may have parity nodes. The soft
rank measures how well-balanced a given tree is. For
comparison, we give the definition of a similar mea-
sure called the rank (Ehrenfeucht & Haussler 1989).

Definition 1 (rank) For a decision tree T that may
have parity nodes, the rank of T , denoted by r(T),
is defined recursively as follows. If T is a leaf, then
r(T) = 0. If the root of T is a parity node with subtree
T1, then r(T) = r(T1)+1. If the root of T is a normal
inner node with left subtree T1 and right subtree T2,
then

r(T) =
{

max{r(T1), r(T2)} if r(T1) ̸= r(T2),
r(T1) + 1 if r(T1) = r(T2).

So, when we combine two trees T1 and T2 to make
a larger tree T = MUX(xi, T1, T2), the rank does not
increase unless r(T1) = r(T2). While on the other
hand, the soft rank always increases by an amount
determined by the difference |r̃(T1) − r̃(T2)|.

Definition 2 (soft rank) For a decision tree T that
may have parity nodes, the soft rank of T , denoted by
r̃(T), is defined recursively as follows. If T is a leaf,
then r̃(T) = 0. If the root of T is a parity node with
subtree T1, then r̃(T) = r̃(T1) + 1. If the root of T
is a normal inner node with left subtree T1 and right
subtree T2, then

r̃(T) = min{r̃(T1), r̃(T2)} +
√

l2 + 1

= max{r̃(T1), r̃(T2)} − l +
√

l2 + 1,

where l = |r̃(T1) − r̃(T2)|.

It is clear from definition that the soft rank is at
least as large as the rank for any decision trees.

Proposition 1 For any decision tree T with parity
nodes,

r̃(T) ≥ r(T).

In fact, for the left tree T of Figure 1, we can easily
verify that r(T) = 2 and r̃(T) = 1 +

√
3. Note that

the same results hold for the right tree of Figure 1.
Generally, the rank (and the soft rank, resp.) of a
decision tree T with parity nodes are the same as
the rank (and the soft rank, resp.) of the standard
decision tree with no parity nodes that is transformed
from T .

We show in the next proposition that, among all
decision trees of depth d, the complete binary decision

tree (the most balanced tree) has maximum soft rank
d, the decision list (the most unbalanced tree) has
minimum soft rank

√
d, and any other trees have soft

rank between
√

d and d. Here, by a decision list we
mean a standard decision tree such that one of the
two children of each internal node is a leaf.

Proposition 2 For any decision tree T of depth d,
√

d ≤ r̃(T) ≤ d.

Furthermore, the first equality is attained by a deci-
sion list, and the second equality is attained by the
complete binary decision tree.

Proof. Without loss of generality, we consider only
standard decision trees. Let r̃max(d) (and r̃min(d),
resp.) denote the maximum (and the minimum, resp.)
of r̃(T) over all decision trees T of depth d. It is clear
that r̃max(d) and r̃min(d) are monotonically increasing
functions of d and take value 0 when d = 0. Let T
be an arbitrary decision tree of depth d whose root
has left subtree T1 and right subtree T2. We assume
that the depth of T1 is d − 1 and the depth of T2 is
d′ ≤ d − 1.

We first show that r̃max(d) = d. By the definition
of the soft rank and the monotonicity of r̃max, we have

r̃(T) = max{r̃(T1), r̃(T2)} − l +
√

l2 + 1

≤ max{r̃max(d − 1), r̃max(d′)} − l +
√

l2 + 1

= r̃max(d − 1) − l +
√

l2 + 1,

where l = |r̃(T1)− r̃(T2)|. Since −l +
√

l2 + 1 ≤ 1 for
any l ≥ 0, we have

r̃(T) ≤ r̃max(d − 1) + 1.

We thus establish a recurrence formula

r̃max(d) ≤ r̃max(d − 1) + 1,

which gives
r̃max(d) ≤ d.

On the other hand, the complete binary decision tree
of depth d has soft rank d. So, we have

r̃max(d) = d.

Next we show that r̃min(d) =
√

d. By the defini-
tion of the soft rank, we have

r̃(T) =
{

r̃(T1) +
√

l2 + 1 if r̃(T2) > r̃(T1),
r̃(T1) − l +

√
l2 + 1 if r̃(T2) ≤ r̃(T1),

from which it follows that

r̃(T) ≥ r̃(T1) − l +
√

l2 + 1

for any l, 0 ≤ l ≤ r̃(T1). Since −l +
√

l2 + 1 is mini-
mized at l = r̃(T1), we have

r̃(T) ≥
√

r̃(T1)2 + 1 ≥
√

r̃min(d − 1)2 + 1.

We thus establish a recurrence formula

r̃min(d) ≥
√

r̃min(d − 1)2 + 1,

which gives
r̃min(d) ≥

√
d.

On the other hand, a decision list of depth d has soft
rank

√
d. So, we have

r̃min(d) =
√

d.

2

4 Quantum query model

As with the classical counter part, in the quantum
query model we wish to compute some Boolean func-
tion f : {0, 1}n → {0, 1}, and we access the input
through queries. The complexity of f is the number
of queries needed to compute f . Unlike the classical
case, however, we can now make queries in superposi-
tion. Formally, a query O corresponds to the unitary
transformation

O : |i, b, z⟩ 7→ |i, b ⊕ xi, z⟩

where i ∈ [n], b ∈ {0, 1}, and z represents the
workspace. A t-query quantum algorithm A has the
form A = UtOUt−1O · · ·OU1OU0, where the Uk are
fixed unitary transformations independent of the in-
put x. The computation begins in the state |0⟩, and
the result of the computation of A is the observa-
tion of the rightmost bit of A|0⟩. We say that A
ϵ-approximates f if the observation of the rightmost
bit of A|0⟩ is equal to f(x) with probability at least
1− ϵ, for every x. We denote by Qϵ(f) the minimum
query complexity of a quantum query algorithm that
ϵ-approximates f .

Along with the polynomial method (Beals et al.
2001), one of the main techniques for showing lower
bounds in quantum query complexity is the quantum
adversary method.

4.1 Adversary bound

There are several formulation of the adversary
method. We use the setting of the spectral formu-
lation of the adversary method.

In what follows, when we refer to a matrix, it
means, unless otherwise stated, a square matrix of
size 2n × 2n for some integer n, of which rows and
columns are indexed by n-bit strings.

We say that a matrix Γ is an adversary matrix for
a Boolean function f : {0, 1}n → {0, 1} if Γ satisfies
the following conditions:

1. Γ is a symmetric matrix;

2. Γ[x, y] ≥ 0 for every x, y ∈ {0, 1}n;

3. Γ[x, y] > 0 for some x, y ∈ {0, 1}n; and

4. Γ[x, y] = 0 if f(x) = f(y).

Let Di be a Boolean matrix defined by Di[x, y] =
1 if and only if bitstrings x and y differ in the i-th
coordinate.

The spectral adversary method is formulated as
an optimization problem specified by the function
f under consideration, and its solution, denoted by
ADV(f), gives a lower bound on Qϵ(f) (Barnum et al.
2003). Thus, ADV(f) is referred to as the adversary
bound of f .

Definition 3 Let f : {0, 1}n → {0, 1} and Φf be the
set of adversary matrices for f . ADV(f) is defined
as

ADV(f) = max
Γ∈Φf

min
i∈[n]

∥Γ∥
∥Γ ◦ Di∥

.

Theorem 1 (Barnum et al. (2003)) For any
Boolean function f and any ϵ ∈ [0, 1/2),

Qϵ(f) ≥
1 − 2

√
ϵ(1 − ϵ)
2

ADV(f).

4.2 Adversary bounds for composite func-
tions

Høyer et al. (2006) generalize the adversary method
and introduce a quantity ADVα with a cost vector α.

Definition 4 Let f : {0, 1}n → {0, 1} and Φf be the
set of adversary matrices for f . For every vector α ∈
Rn

+, ADVα(f) is defined as

ADVα(f) = max
Γ∈Φf

min
i∈[n]

αi∥Γ∥
∥Γ ◦ Di∥

.

Note that when α = (1, 1, . . . , 1), ADVα(f) =
ADV(f). It is clear from Definition 4 that ADVα is
monotonically increasing with respect to α. For two
vectors α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn),
we write α ≤ β if αi ≤ βi for any index i ∈ [n].

Proposition 3 Let f : {0, 1}n → {0, 1}. For any
vectors α and β in Rn

+ such that α ≤ β,

ADVα(f) ≤ ADVβ(f).

Moreover, ADVα has the following obvious but
useful properties.

Proposition 4 Let f : {0, 1}n → {0, 1} and α ∈ Rn
+.

Then, for any c ∈ R+,

ADVcα(f) = cADVα(f).

Proposition 5 Let f : {0, 1}n → {0, 1} and α =
(α1, α2, . . . , αn) ∈ Rn

+. For a permutation π over the
set {1, 2, . . . , n}, π(f) denotes the function defined as
f(xπ(1), xπ(2), . . . , xπ(n)), and π(α) denotes the vector
defined as (απ(1), απ(2), . . . , απ(n)). For any permuta-
tion π over {1, 2, . . . , n},

ADVπ(α)(π(f)) = ADVα(f).

Proposition 6 Let f : {0, 1}n → {0, 1} and α =
(α1, α2, . . . , αn) ∈ Rn

+. For a bit v ∈ {0, 1}, let
v0 = v and v1 = v̄. For any function f ′ defined
as f ′(x1, x2, . . . , xn) = f(xa1

1 , xa2
2 , . . . , xan

n) for some
binary sequence a = (a1, a2, . . . , an) ∈ {0, 1}n,

ADVα(f ′) = ADVα(f).

Høyer et al. (2006) consider the adversary bound
for composite functions of the form h = f ◦
(g1, g2, . . . , gk) and give an exact expression for
ADV(h) in terms of ADVα(f) and ADV(gi) for 1 ≤
i ≤ k.

Theorem 2 (Høyer et al. (2006)) Let h be a
Boolean function of n variables given by

h(x) = f(g1(x1), g2(x2), . . . , gk(xk))

for some Boolean function f : {0, 1}k → {0, 1} and
k Boolean functions g1 : {0, 1}n1 → {0, 1}, . . ., gk :
{0, 1}nk → {0, 1}, where x is the concatenation of the
k binary sequences x1 ∈ {0, 1}n1 , x2 ∈ {0, 1}n2 , . . .,
xk ∈ {0, 1}nk . Then,

ADV(h) = ADVα(f)

where α = (α1, α2, . . . , αk) with αi = ADV(gi).

One limitation of the theorem above is that we require
the sub-functions gi to act on disjoint subsets of the
input bits.

The usefulness of Theorem 2 is that it reduces the
problem of computing the adversary bound for a com-
plicated function h into a few subproblems of com-
puting the adversary bounds for functions of smaller
size. In fact, Høyer et al. (2006) give a simple proof
of the

√
n adversary bound for read-once functions.

Specifically, they first show that

ADVα(AND) = ADVα(OR) = |α|

and then apply Theorem 2, by which the bound is
immediately derived.

Unlike the cases of the AND and OR functions,
it seems very hard to represent ADVα(f) as a closed
form expression of α for most functions f . The main
contribution of this paper is that we give closed form
expressions for ADVα(XOR) and ADVα(MUX).

Below we give a dual version of the spectral ad-
versary formulation. The dual version is an equiva-
lent expression for ADVα in terms of a minimization
problem. Note that since the primal formulation is ex-
pressed as a maximization problem, any feasible (not
necessarily optimal) solution gives a lower bound on
ADVα. Similarly, any feasible solution for the dual
formulation gives an upper bound. We will use the
both formulations to derive almost tight bounds on
ADVα.

Definition 5 Let p : {0, 1}n × [n] → R be a set of
probability distributions in the sense that px(i) ≥ 0
and

∑
i∈[n] px(i) = 1 for every x ∈ {0, 1}n. Let Pn

denote the set of all such sets p. For a Boolean func-
tion f : {0, 1}n → {0, 1}, we define

MMα(f) = min
p∈Pn

max
x∈f−1(0)

y∈f−1(1)

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

,

where f−1(c) = {x ∈ {0, 1}n | f(x) = c} for c ∈
{0, 1}.

Theorem 3 (Høyer et al. (2006)) For every f :
{0, 1}n → {0, 1} and α ∈ Rn

+,

ADVα(f) = MMα(f).

5 ADVα(XOR) and ADVα(MUX)

In this section, we show that ADVα(XOR) is exactly
expressed as the l1-norm of α. Moreover, we give an
almost tight bound on ADVα(MUX) in a closed form.

Theorem 4 For any α = (a, b) ∈ R2
+,

ADVα(XOR) = a + b.

Proof. We first show that ADVα(XOR) ≤ a+ b. We
set up the set of probability distribution p as follows.
For any x ∈ {0, 1}2,

px(i) =
{ a

a+b if i = 1,
b

a+b if i = 2.

It is clear that p is a feasible solution of
the optimization problem for MMα(XOR). It
is easy to check that for any pair (x, y) ∈
{(00, 01), (00, 10), (11, 01), (11, 10)} of negative and
positive inputs for f ,

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

= a + b.

Therefore, from Theorem 3 ADVα(XOR) =
MMα(XOR) ≤ a + b.

Next we show that ADVα(XOR) ≥ a + b. We set
up the following adversary matrix Γ for XOR.

00 01 10 11
00 0 b a 0
01 b 0 0 a
10 a 0 0 b
11 0 a b 0

It is easy to check that Γ given above is a feasible so-
lution of the optimization problem for ADVα(XOR).
The characteristic polynomial for Γ is

|Γ−xI| = (x+ a− b)(x+ a+ b)(x− a+ b)(x− a− b).

So a + b is the maximum absolute eigenvalue of Γ,
and we thus have ∥Γ∥ = a + b. Similarly, since the
characteristic polynomials for Γ ◦ D1 and Γ ◦ D2 are

|Γ ◦ D1 − xI| = (x − a)2(x + a)2,
|Γ ◦ D2 − xI| = (x − b)2(x + b)2,

we have ∥Γ ◦ D1∥ = a and ∥Γ ◦ D2∥ = b. Therefore,
for any i ∈ {1, 2},

αi∥Γ∥
∥Γ ◦ Di∥

= a + b,

which implies that ADVα(XOR) ≥ a + b. 2

For the multiplexer function MUX, we have
not succeeded to derive the exact expression of
ADVα(MUX). Instead, we give lower and upper
bounds that match up to an additive factor of
O(lα2

1/(l2 + α2
1)), where l = |α2 − α3|. Note that

since MUX(x1, x2, x3) = MUX(x̄1, x3, x2), Proposi-
tions 5 and 6 imply that

ADV(a,c,b)(MUX) = ADV(a,b,c)(MUX)

for any α = (a, b, c) ∈ R3
+. So, we may assume with-

out loss of generality that the cost vector α = (a, b, c)
satisfies that b ≤ c.

Theorem 5 For any α = (a, b, c) ∈ R3
+ such that

b ≤ c,

ADVα(MUX) ≥ b

2
+

√
(c − b

2
)2 +

a2(c + a)
c − b + a

.

Proof. First we show that it suffices to prove the
theorem only for the case where a = 1, i.e.,

ADVα(MUX) ≥ b

2
+

√
(c − b

2
)2 +

c + 1
c − b + 1

(1)

for α = (1, b, c) with b ≤ c. This is because, for
any α = (a, b, c) ∈ R3

+ such that b ≤ c, Proposi-
tion 4 says that ADVα(MUX) = aADVβ(MUX) for
β = (1, b/a, c/a), from which together with (1) the
theorem follows.

Now we show (1) by constructing an adversary ma-
trix Γ for MUX so that it satisfies the following four
conditions.

∥Γ∥ ≥ b

2
+

√
(c − b

2
)2 +

c + 1
c − b + 1

, (2)

∥Γ ◦ D1∥ = 1, (3)
∥Γ ◦ D2∥ = b, (4)
∥Γ ◦ D3∥ = c. (5)

By the definition of ADVα, (1) follows from (2), (3),
(4) and (5). We give in Figure 2 such an adversary
matrix Γ. (It is easy to verify that Γ is actually an
adversary matrix for MUX.) In the following we ver-
ify that each of the conditions (2), (3), (4) and (5)
holds.

First we verify (2). Define a matrix A as

A =

 b 0 1
0 0

√
c(c − b)

1
√

c(c − b) b

 (6)

and let λ1, λ2 and λ3 be the three eigenvalues
of A. We show that the following six values λ1,
−λ1, λ2, −λ2, λ3, −λ3 are eigenvalues of Γ. Note
that the rest two eigenvalues of Γ are both 0
with corresponding eigenvectors (1, 0, 0, 0, 0, 0, 0, 0)T

and (0, 0, 0, 1, 0, 0, 0, 0)T . Let λ be an eigenvalue
of A and v = (v1, v2, v3)T be the correspond-
ing eigenvector, i.e., Av = λv. It is easy to
check that v′ = (0, v1, v1, v2, 0, v3, v3, v2)T and v′′ =
(0, v1,−v1, v2, 0,−v3, v3,−v2)T are eigenvectors of Γ
corresponding to the eigenvalues λ and −λ, respec-
tively. So the largest absolute eigenvalue of Γ equals
the largest absolute eigenvalue of A. Namely, ∥Γ∥ =
∥A∥. The characteristic polynomial of A is

pA(x)
= |A − xI|
= −x3 + 2bx2 + (c(c − b) − b2 + 1)x + bc(c − b),

whose roots are eigenvalues of A. We show that
pA(x0) > 0 for

x0 =
b

2
+

√
(c − b

2
)2 +

c + 1
c − b + 1

.

Since pA(+∞) = −∞, x0 is a lower bound on the
largest root of pA, and thus a lower bound on ∥Γ∥ as
required. To see pA(x0) > 0,

pA(x0)

=
b
√

2c − b + 2
2(c − b + 1)3/2

(√
(c − b + 1)(2c − b + 2)

−
√

2c2 − 3bc + b2 + b + 2
)

, (7)

and

(c−b+1)(2c−b+2)−(2c2−3bc+b2+b+2) = 4(c−b) ≥ 0

since c ≥ b. So both the numerator and denominator
of (7) are positive.

Next we verify (3). By a similar argument to the
one stated above, the largest absolute eigenvalue of
Γ ◦ D1 equals the largest absolute eigenvalue of the
matrix B defined as

B =
[

0 1
1 0

]
.

Obviously, ∥Γ ◦ D1∥ = ∥B∥ = 1.
Next we verify (4). The largest absolute eigenvalue

of Γ◦D2 equals the largest absolute eigenvalue of the
matrix C defined as

C =
[

b 0
0 b

]
.

Obviously, ∥Γ ◦ D2∥ = ∥C∥ = b.

000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 0
001 0 0 b 0 0 1 0 0
010 0 b 0 0 0 0 1 0
011 0 0 0 0 0 0 0 0
100 0 0 0 0 0

√
c(c − b) 0 0

101 0 1 0 0
√

c(c − b) 0 b 0
110 0 0 1 0 0 b 0

√
c(c − b)

111 0 0 0 0 0 0
√

c(c − b) 0

Figure 2: The adversary matrix Γ for MUX

Finally we verify (5). The largest absolute eigen-
value of Γ ◦D3 equals the largest absolute eigenvalue
of the matrix D defined as

D =

 b 0 0
0 0

√
c(c − b)

0
√

c(c − b) b

 .

Obviously, ∥Γ ◦ D3∥ = ∥D∥ = c. 2

An upper bound on ADVα(MUX) we give in the
following theorem says that the lower bound of The-
orem 5 is almost tight. We will give the proof in
Appendix.

Theorem 6 For any α = (a, b, c) ∈ R3
+ such that

b ≤ c,

ADVα(MUX) ≤
b + c +

√
(c − b)2 + 4a2

2

Actually, by an easy calculation, we can see that
our lower bound and upper bound on ADVα(MUX)
with α = (a, b, c) match up to an additive factor of
O(la2/(l2 +a2)), where l = |b− c|. Note that if l = 0,
then the two bounds coincide. In other words, we
have an exact expression of ADV(a,b,c)(MUX) when
b = c. Specifically, ADV(a,b,b) = a + b. Moreover, if
l or a is a constant, then the two bounds coincide up
to an additive constant. So, the bounds we will use in
the next section for deriving a lower bound on ADV
of decision trees are tight, because we apply our lower
bound only in the case where a = 1.

6 Soft rank lower bound for read-once deci-
sion trees with parity nodes

We could apply Theorem 2 together with Theorems
4 and 5 to obtain a lower bound on ADV for deci-
sion trees in the class DT⊕, based on the observation
that DT⊕ consists of recursively defined composite
functions with two basis functions XOR and MUX.
However, the lower bound obtained is in the form
of a complicated recurrence equation, due to Theo-
rem 5, where the parameters b and c in the theorem
are recursively substituted by the lower bounds on
the ADVs of the left and right child subtrees. So, we
approximate the lower bound of Theorem 5 and get
a simple recurrence equation.

Lemma 1 For any α = (a, b, c) ∈ R3
+ such that b ≤

c,
ADVα(MUX) ≥ b +

√
(c − b)2 + a2.

Proof. Let l = c − b. By Theorem 5,

ADVα(MUX)

≥ b

2
+

√(
c − b

2

)2

+
a2(c + a)
c − b + a

=
b

2
+

√
b2

4
+

(
l +

a2

l + a

)
b + l2 + a2

≥ b

2
+

√
b2

4
+ b

√
l2 + a2 + l2 + a2 (8)

=
b

2
+

√(
b

2
+

√
l2 + a2

)2

= b +
√

l2 + a2.

Inequality (8) holds since

(l +
a2

l + a
)2 = l2 + a2 + (

al

l + a
)2 ≥ l2 + a2.

2

Now we give our main theorem of the paper. A
decision tree T in DT⊕ is said to be non-redundant if
the following conditions hold.

1. There is no parity node whose child is a leaf.

2. There is no normal inner node whose two children
are leaves labeled with the same value.

Theorem 7 For any non-redundant decision tree T
in DT⊕,

ADV(T) ≥ r̃(T) ≥ r(T).

Proof. By Proposition 1, we have r̃(T) ≥ r(T). We
prove ADV(T) ≥ r̃(T) by induction on the depth of
T .

(Basis 1) If the depth of T is 0, i.e., T is a leaf,
then clearly ADV(T) = r̃(T) = 0.

(Basis 2) If the depth of T is 1, then since T is
non-redundant, T should consist of the root and two
leaves, where the root is a normal node labeled with
some variable xi and the two leaves have different
values. Clearly, r̃(T) = 1. Furthermore, T computes
either of the projection functions T (x) = xi or T (x) =
x̄i. It is well known that the adversary bound for the
projection functions is 1, and we thus have ADV(T) =
1.

(Induction step) If the depth d of T is greater than
or equal to 2, then we should consider two cases,
where the root of T is a parity node (Case 1) and
the root of T is a normal node (Case 2).

First we examine Case 1. In this case, the root of
T is a parity node labeled with some variable xi and it
has one child subtree T1 of depth d− 1. Obviously, T

computes the function XOR(xi, T1). Applying Theo-
rems 2, we have

ADV(T) = ADVα(XOR)

with α = (1, ADV(T1)), and so Theorem 4 says that

ADV(T) = 1 + ADV(T1). (9)

From induction hypothesis, we have

ADV(T1) ≥ r̃(T1) (10)

and by the definition of soft rank, we have

r̃(T) = 1 + r̃(T1). (11)

Plugging (10) and (11) into (9), we have

ADV(T) ≥ r̃(T),

as required.
Next we examine Case 2, where the root of T is

a normal node labeled with some variable xi, and it
has two child subtrees of depth at most d−1. We de-
note by T1 and T2 the left child subtree and the right
child subtree of T , respectively. Obviously, T com-
putes the function MUX(xi, T1, T2). We may assume
without loss of generality that ADV(T1) ≤ ADV(T2),
since otherwise we can examine the equivalent func-
tion MUX(x̄i, T2, T1).

Applying Theorems 2, we have

ADV(T) = ADVα(MUX) (12)

with α = (1, ADV(T1), ADV(T2)). From induction
hypothesis, we have

ADV(T1) ≥ r̃(T1) and ADV(T2) ≥ r̃(T2). (13)

Now we consider the two subcases where r̃(T1) ≤
r̃(T2) and r̃(T2) ≤ r̃(T1).

For the subcase where r̃(T1) ≤ r̃(T2), we let
β = (1, r̃(T1), r̃(T2)). By (13) we have α ≥ β. So
Proposition 3 implies that

ADVα(MUX) ≥ ADVβ(MUX),

and by Lemma 1 we have

ADVβ(MUX) ≥ r̃(T1) +
√

(r̃(T2) − r̃(T1))2 + 1
= r̃(T), (14)

where the last equality is from the definition of soft
rank, since we have assumed r̃(T1) ≤ r̃(T2). By (12)
and (14), we have

ADV(T) ≥ r̃(T),

as required.
Finally we examine the subcase where r̃(T2) ≤

r̃(T1). In this case, we let β = (1, r̃(T2), r̃(T1)). By
the assumption of ADV(T1) ≤ ADV(T2) and the in-
duction hypothesis (13), we have

r̃(T2) ≤ r̃(T1) ≤ ADV(T1)

and
r̃(T1) ≤ ADV(T1) ≤ ADV(T2).

Hence we have β ≤ α. So applying Proposition 3 and
Lemma 1, we have

ADVα(MUX) ≥ ADVβ(MUX)

≥ r̃(T2) +
√

(r̃(T1) − r̃(T2))2 + 1
= r̃(T).

x1 x2
xn

・・・
0

0

0 1

x1 x2
xn

・・・
0

0

0 1

x1
x2

xn0

x1
x2

xn0
Figure 3: Decision trees that represent the AND (left)
and PARITY (right) functions. Recall that the dou-
ble circles indicate parity nodes.

The inequality above and (12) gives

ADV(T) ≥ r̃(T),

as required. 2

Using the theorem above together with Theorem 1,
we immediately obtain our main result: The soft rank
of a decision tree T in the class DT⊕ gives a lower
bound on the quantum query complexity of the func-
tion that T represents. Moreover, from the main re-
sult we can show that for functions represented by
decision trees in DT⊕, there is at most a quadratic
gap in the query complexity between deterministic
and quantum algorithms.
Corollary 1 For any function f that can be repre-
sented by a decision tree T in DT⊕, and for any
ϵ ∈ [0, 1/2),

Qϵ(f) = Ω(r̃(T))
and

Qϵ(f) = Ω(
√

D(f)).
Proof. Let T be a non-redundant decision tree in
DT⊕ that represents a function f . Let d be the depth
of T . By Theorems 1 and 7, and Proposition 2, we
have

Qϵ(f) = Ω(r̃(T)) = Ω(
√

d).
Since d is an upper bound on D(f), the corollary
follows. 2

7 Examples

We demonstrate the usefulness of Theorem 7 by show-
ing lower bounds on ADV for some functions.

7.1 The AND function

The n-bit AND function, denoted by ANDn, can be
recursively represented as

ANDn = MUX(xn, 0, ANDn−1).

Equivalently, ANDn has a decision tree representation
(the left tree of Figure 3) of depth n and soft rank√

n. So Theorem 7 says that ADV(ANDn) ≥
√

n.
Note that the rank of the tree is 1, and so the rank
does not give a good lower bound in this case.

7.2 The PARITY function

The n-bit PARITY function, denoted by PARITYn,
can be recursively represented as

PARITYn = XOR(xn, PARITYn−1).

Equivalently, PARITYn has a decision tree represen-
tation (the right tree of Figure 3) of depth n and soft
rank n. So Theorem 7 says that ADV(PARITYn) ≥
n.

7.3 Read-once AVL decision trees

We consider functions represented as read-once AVL
decision trees. An AVL tree is a standard decision
tree such that for any internal node, the depth of its
left child subtree and that of its right child subtree
are different by at most one.

Theorem 8 For any read-once AVL tree T of depth
d,

ADV(T) ≥ ⌈d/2⌉.

Proof. Let

rd = min{r(T) | T is an AVL decision tree of depth d}.

By an easy induction on d, we can show that

rd = ⌈d/2⌉,

which implies the theorem. 2

Note that any read-once AVL decision tree T of
depth d has decision tree complexity D(T) ≤ d. So
the theorem above implies Qϵ(T) = Ω(D(T)). In
other words, it provides a class of functions for which
the bounded error quantum query complexity is not
smaller than the classical decision tree complexity up
to a constant factor.

8 Concluding remarks

We considered Boolean functions that can be repre-
sented by read-once decision trees with parity nodes,
and showed that the soft rank of the decision tree is
a lower bound on the bounded error quantum query
complexity of the function. The soft rank measures
how well-balanced a given tree is, and the lower bound
suggests that the quantum query complexity of a
function is highly correlated to the balancedness of its
decision tree representation. The soft rank is easily
evaluated for several functions and explains quickly
why the OR function can be computed in

√
n queries

whereas the parity function requires n queries.
We also showed that for the class of functions that

are represented by read-once decision trees with par-
ity nodes, there is at most a quadratic gap in the
query complexity between deterministic and quantum
algorithms. So we made some progress toward the
conjecture that an at most quadratic gap exists for
any Boolean function.

The technical contribution of this paper is comput-
ing tight bounds on ADVα for the two-bit XOR func-
tion and the three-bit multiplexer function (MUX).
The composition theorem of Høyer et al. (2006) to-
gether with the bounds for XOR and MUX gives our
lower bound. To derive the bounds on ADVα(XOR)
and ADVα(MUX), we explicitly constructed adver-
sary matrices, which were obtained in the following
way. Using a semi-definite programming package,
we numerically calculated the values of ADVα(XOR)
and ADVα(MUX) together with optimal adversary
matrices with about twelve-digit accuracy, for vari-
ous settings of cost vectors α. For each of XOR and
MUX, we observed the matrices obtained and tried to
guess a general form of the optimal matrix in terms
of α, i.e., we tried to express each element of the op-
timal adversary matrix as a function of α. Note that
any (not necessarily optimal) adversary matrix gives
a lower bound on ADVα. Fortunately, we easily ob-
tained the exact expression of the optimal matrix for
XOR, from which we derived ADVα(XOR) = a + b
for α = (a, b). However, the adversary matrix Γ for
MUX we gave in Figure 2 is not optimal. Based on
the observation of the numerical calculations, we are

pretty sure that the optimal matrix for ADVα(MUX)
with α = (1, b, c) should be of the following form: b − x2/b x

√
1 − x2

x 0
√

c(c − b)√
1 − x2

√
c(c − b) b


for some real number x ∈ [0, 1], where the rows are in-
dexed by 001, 100, 110, and the columns by 010, 111,
101. In other words, we should replace the matrix A
of (6) with the one above. The value ADVα(MUX) is
then given by maximizing the spectral norm of Γ over
x ∈ [0, 1]. However, we have not succeeded to obtain
the optimal value of x explicitly in terms of b and c.
In this paper, we set x to be a constant, i.e., x = 0,
because it makes the subsequent arguments easy and
yet gives a good approximation.

It should be noted that we could use a new adver-
sary method by Høyer et al. (2007), who introduce an
adversary bound ADV±, which always gives larger
lower bounds than ADV. But it seems much more
complicated calculations involved.

Acknowledgments

We would like to thank the anonymous referees for
their helpful comments.

References

Aaronson, S. (2008), ‘The limits of quantum comput-
ers’, Scientific American 298(3), 62–69.

Ambainis, A. (2002), ‘Quantum lower bounds by
quantum arguments’, Journal of Computer and
System Sciences 64(4), 750–767.

Ambainis, A. (2006), ‘Polynomial degree vs. quantum
query complexity’, Journal of Computer and Sys-
tem Sciences 72(2), 220–238.

Barnum, H. & Saks, M. (2004), ‘A lower bound on
the quantum query complexity of read-once func-
tions’, Journal of Computer and System Sciences
69(2), 244–258.

Barnum, H., Saks, M. & Szegedy, M. (2003), Quan-
tum decision trees and semidefinite programming,
in ‘Proc. of 18th IEEE Conference on Computa-
tional Complexity’, pp. 179–193.

Beals, R., Buhrman, E., Cleve, R., Mosca, M. &
de Wolf, R. (2001), ‘Quantum lower bounds by
polynomials’, Journal of the ACM 48(4), 778–797.

Ehrenfeucht, A. & Haussler, D. (1989), ‘Learning de-
cision trees from random examples’, Information
and Computation 82(3), 231–246.

Grover, L. (1996), A fast quantum mechanical al-
gorithm for database search, in ‘Proc. 28th ACM
Symposium on Theory of Computing (STOC ’96)’,
pp. 212–219.

Høyer, P., Lee, T. & Špalek, R. (2006), ‘Tight adver-
sary bounds for composite functions’, arXiv:quant-
ph/0509067v3.

Høyer, P., Lee, T. & Špalek, R. (2007), Negative
weights make adversaries stronger, in ‘Proc. 39th
ACM Symposium on Theory of Computing (STOC
’07)’, pp. 526–535.

Laplante, S. & Magniez, F. (2004), Lower bounds for
randomized and quantum query complexity using
kolmogorov arguments, in ‘Proc. 19th IEEE Con-
ference on Computational Complexity’, pp. 294–
304.

Midrijanis, G. (2004), ‘Exact quantum query com-
plexity for total boolean functions’, arXiv:quant-
ph/0403168v2.

Simon, D. (1997), ‘On the power of quantum com-
putation’, SIAM Journal on Computing 26, 1474–
1483.

Špalek, R. & Szegedy, M. (2005), All quantum adver-
sary methods are equivalent, in ‘Proc. 32nd Inter-
national Colloquium on Automata, Languages and
Programming (ICALP 2005)’, pp. 1299–1322.

A Proof of Theorem 6

Here we give a proof of Theorem 6.
As in the proof of Theorem 5, it suffices to prove

the theorem only for the case where a = 1, That is,
we will prove the following.

ADVα(MUX) ≤
b + c +

√
(c − b)2 + 4
2

(15)

for any α = (1, b, c) ∈ R3
+ such that b ≤ c.

To show (15), we use the dual formulation of the
spectral adversary method. In other words, we con-
struct a feasible solution of the optimization problem
MMα(MUX), from which we derive an upper bound
on ADVα(MUX).

Put A = b+c+
√

(c−b)2+4

2 . We set up a set of proba-
bility distribution p as follows. For every x ∈ {0, 1}3,

px(i) =

x\i 1 2 3
000, 001, 010, 011 d 1 − d 0

100, 111 f g 1 − f − g
110, 101 j 0 1 − j

where

d = 1 − b

A
,

f =
b2(A − b)

A(bA − b2 + 1)2
,

g =
b

A(bA − b2 + 1)2
,

j =
1

A2 − bA
.

It is easy to check that p is a feasible solution of
MMα(MUX), that is, px is a probability distribution
for each input x. What we need to show is that for
any pair (x, y) ∈ f−1(0) × f−1(1) of negative and
positive inputs of f ,

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

≤ A. (16)

Note that α1 = 1, α2 = b, and α3 = c by our choice
of α = (1, b, c). We partition the set f−1(0) × f−1(1)
consisting of 16 pairs into six classes and verify (16)
for each class.

For the case where (x, y) ∈ {(000, 010), (000, 011),
(001, 010), (001, 011)},

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

=
b

1 − d

= A.

For the case where (x, y) ∈ {(000, 101), (001, 101),
(110, 010), (110, 011)},

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

=
1√
dj

= A.

For the case where (x, y) ∈ {(000, 111), (001, 111),
(100, 010), (100, 011)},

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

=

(√
df +

√
(1 − d)g

b

)−1

= A.

For the case where (x, y) ∈ {(100, 101),
(110, 111)},

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

=
c√

(1 − f − g)(1 − j)
≤ A.

To see why the last inequality holds, we show that

A
√

(1 − f − g)(1 − j)
c

=
√

A − b − 1
√

A − b + 1
√

bA + 1
√

c
√

c − b
√

bA − b2 + 1
≥ 1.

The inequality holds because

(A − b − 1)(A − b + 1)(bA + 1)
− c(c − b)(bA − b2 + 1)

=
1
2
((c − b)

√
(c − b)2 + 4 − (c − b)2) ≥ 0.

For the case where (x, y) = (100, 111), we let

w =
√

c2 − 2b3c + 4,

z = b2c2 + (2b − b3)c.
Then

A

(
g

b
+

1 − f − g

c

)
=

b2c3 + w(z + 1) + (b4 + 3)c + 3b

b2c3 + wz + (b4 + 3)c
≥ 1

Consequently,
1∑

i:xi ̸=yi

√
px(i)py(i)/αi

=
(

g

b
+

1 − f − g

c

)−1

≤ A.

For the case where (x, y) = (110, 101),

1∑
i:xi ̸=yi

√
px(i)py(i)/αi

=
c

1 − j

= A.

2

