
 1

M+-tree: A New Dynamical Multidimensional Index for Metric Spaces
Xiangmin Zhou1, Guoren Wang1, Jeffrey Xu Yu2, Ge Yu1

1 Northeastern University, Shenyang, China
{wanggr, yuge}@mail.neu.edu.cn

2 The Chinese University of Hong Kong, Hong Kong, China
yu@se.cuhk.edu.hk

Abstract
In this paper, we propose a new metric index, called M+-tree,
which is a tree dynamically organized for large datasets in
metric spaces. The proposed M+-tree takes full advantages of
M-tree and MVP-tree, with a new concept called key dimension,
which effectively reduces response time for similarity search.
The main idea behind the key dimension is to make the fanout
of tree larger by partitioning a subspace further into two
subspaces, called twin-nodes. We can double the filtering
effectiveness by utilizing the twin-nodes. In addition, for the
purpose of ensuring high space utilization, we also conduct data
reallocation between the twin nodes dynamically. Our
experiment shows that higher filtering efficiency can be
obtained by using the key dimensions for r-neighbor search and
k-NN (k-nearest neighbor). We will report our experimental
results in this paper.
Keywords: Multidimensional index, Metric space, Key
dimension, Range search, k-NN search.

1 Introduction
Recently, an incommensurable amount of audiovisual
information becomes available in digital libraries, digital
archives, personal and professional databases, the World
Wide Web, and broadcast data streams. Besides, the data
bulk continues to grow rapidly. A wide range of
applications including image processing, geography
system, medical applications and biomedicine, etc.,
highly demand fast processing content-based similarity
search in a very large databases.

In order to respond such requests, there exist a large
number of multidimensional indexes. As referred in the
works (N.Berkmann, H.-P. Krigel. R. Schneider, and
B.Seeger.1990, N.Katayama and S.Satoh. 1997,
D.A.White and R.Jain.1996, K.-I. Lin,H. V. Jagadish, and
C. Faloutsos.1994), R-tree and its variants are widely
used in geographical information systems. But they
cannot be directly applicable to handle large datasets in
metric spaces. Metric-based indices have been proposed
for a generic metric space, including VP-tree (J. K.
Uhlmann.1991), MVP-tree (T.Bozkaya, M.Ozsoyoglu.
1997), M-tree(P.Zezula, P.Ciaccia, and F.Rabitti.1996,
P.Ciaccia, M.Patella, P.Zezula.1997) and MB+tree (M.
Ishikawa, H. chen, K, Furuse, J.Xu Yu, N.Ohbo.2000).
These index structures are different from the R*-tree and
its other variants. They do not deal with the relative
positions in a vector space, but rather handle the distances

 Copyright © 2003, Australian Computer Society, Inc.
This paper appeared at the Fourteenth Australasian
Database Conference (ADC2003), Adelaide, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 17. Xiaofang Zhou and Klaus-Dieter
Schewe, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

between objects. VP-tree (J. K. Uhlmann.1991) is
designed with a hierarchical index structure for similarity
search. It partitions a data set according to distances the
objects have with respect to a vantage point. The median
value of such distances is used as a separator to partition
objects into two balanced subsets. At the same time, the
same procedure is applied recursively. VP-tree is the first
one among the metric-based indices that utilizes the
triangle inequality to filter and reduce the similarity
search cost for multimedia information systems. However,
due to small fanout, VP-tree is very high thus a search
operation needs a large number of distance calculations,
which is time-consuming.

MVP-tree extends the idea of VP-tree by using
multiple vantage points, and exploits pre-computed
distances to reduce the number of distance computations
at query time. In comparison with VP-tree, the fanout of
MVP-tree is increased, and the height is reduced.
MVP-tree outperforms VP-tree, but, as the same as
VP-tree, MVP-tree is built from top to bottom. The
top-down index construction strategy implies that the
index is static, and cannot be dynamically updated
according to database changes. The cost of reconstructing
the whole index frequently becomes unacceptable for the
database that may possibly change frequently.

Unlike VP-tree and MVP-tree, M-tree is a paged and
balanced metric tree that is built from bottom to top, with
node promotion and split mechanisms. M-tree can handle
reconstruct the tree dynamically with low costs. M-tree
takes the complexity of distance computation into
account, and is a very efficient index. But M-tree’s
subspaces overlap is considerable large, which affects its
performance.

Practically, data of multimedia databases are often in
metric spaces. But, almost all of spatial access methods
(SAMs), e.g. R-tree and its variants, are not applicable to
multimedia database. They are valid only when the
following conditions are satisfied: (1) indexed objects are
represented as feature values in a multidimensional vector
space; (2) the similarity of two objects is measured by
Euclidean distance. However, metric trees such as
MVP-tree and M-tree circumvent these problems.
Therefore, they have a higher practical value.

Because M-tree is one of the best among
metric-based indices, this paper proposes a new
metric-based index, called M+-tree. It improves the
performance of M-tree. First, like M-tree, M+-tree is a
dynamical paged and balance tree. It inherits M-tree’s
promotion mechanism, triangle inequality and the branch
and bound technique. Second, M+-tree fully utilizes the
filtering twice idea used in MVP-tree. Third, M+-tree
adopts the similar ideas of key dimension and the key
dimension shift used in TV-tree (K.-I. Lin,H. V. Jagadish,
and C. Faloutsos. 1994) in a novel way, based on our

 2

observations: a) dimension can be ordered by their
significance in a metric-space, and b) the active
dimensions can be shift for enhancing the efficiency. The
key dimension and the shift of the key dimension reduce
the distance computation significantly.

The remainder of the paper is structured as follows.
Section 2 gives the problem definition. Section 3
introduces M+-tree, containing its data structures, key
techniques and basic algorithms. Section 4 presents
experimental results and performance evaluations.
Section 5 concludes this paper.

2 Problem Definition
A metric space, M, is defined as, M = (O, d), where O is
the domain of feature values and d is the distance
function with the following properties.

1．d(Ox, Oy) = d(Oy, Ox)
2．d(Ox, Oy) > 0 (Ox ≠ Oy), d(Ox, Ox) = 0
3．d(Ox,Oy) ≤ d(Ox, Oz) + d(Oz, Oy)
where Ox, Oy and Oz are objects in O. The

(dis)similarity between objects can be measured based on
the given distance function d. R-neighbor search and
k-nearest neighbor search are two basic types of
similarity queries, defined as follows.

Definition 2.1 (r-neighbor search) Given a query object

q ∈ O and a non-negative query radius r, the
r-neighbor search of q is to retrieve the objects o
satisfying the condition: o∈O and d(q, o) ≤ r.

Definition 2.2(k-nearest neighbor search) Given a

query object q∈O and an integer k ≥ 1, the k-NN
query is to retrieve k objects with the shortest
distance from q.

Indexing a metric space aims to provide an efficient

support for retrieving objects similar to a reference (query)
object (r-neighbor search or k-nearest neighbor search).

3 The M+-tree
M+-tree is a dynamical paged and balance tree. It
combines binary MVP-tree and M-tree but improves the
partition of binary MVP-tree and the node structure of
M-tree. In binary MVP-tree, a data space is partitioned
into four subspaces with two vantage points while in
M+-tree the partition is done through one vantage point
and a key dimension. Because there is no distance
computation for partitioning data space by key dimension,
M+-tree has fewer distance computations than MVP-tree.
The main idea behind the key dimension is to make the
fanout of tree larger by partitioning a subspace further
into two subspaces, called twin-nodes. We can double the
filtering effectiveness by utilizing the twin-nodes.

3.1 The Key Dimension

3.1.1 Method of Key Dimension Selection
The key dimension is a dimension that affects mostly
distance computation. Generally speaking, different data
distribution of dimensions has different effect on the
distance computation. A key dimension can be used to
minimize the overlap, and thus avoid much too

unnecessary paths traversal.
In SS-tree and SR-tree, the most optimal partition

method is to partition the data space along the axis that
has maximal variance, which has been proved to be
efficient for their index methods. It keeps the
optimization of data space partition and reduces the
number of paths traversed. So, in M+-tree, the dimension
having maximal variance is selected to serve as the key
one.

3.1.2 The Validity of Key Dimension Filtration
It is a simple process to use the key Dimension to filter.
However, some inactive sub-trees may not be filtered.
But it always keeps all correct results. The correctness
can be deduced from the following formula.
 Let Oi(d1,d2,…dn) and Oj(D1,D2,…Dn) be two data
objects. The distance between the two objects is
represented as follows:

 22
22

2
11)()()(),(nnji DdDdDdOOD −++−+−= L

Let k be the key dimension number and search radius
be r, then |dk-Dk|≤D(Oi,Oj). If D(Oi,Oj)≤r, then |dk-Dk|≤
r. So the active data cannot be filtered.

3.2 Partition of Space
Space partition is one of the most important issues in the
metric indexes. M-tree partitions object space according
to their relative distances. It grows in a bottom-up fashion.
By allocating a new node, the overflow of node is
managed. At the same level of this node, the entries are
partitioned between these two nodes. To reference the two
nodes, two reference objects are promoted. In M-tree,
partitioning by m-RAD-2 is best among all the partition
methods.

 Figure 1 (3) and (4) give the process of partitioning
space in M+-tree. A space corresponding to an entry in a
tree node consists of two twin spaces, e.g., A and B. The
nodes corresponding to twin spaces in M+-tree are called
twin nodes. These two sub-spaces are expressed through
two boundary values of a key dimension, i.e. the maximal
key dimension value of the left twin space and the

Figure 1: Partition in M-tree v.s. Partition in M+-tree

1

2

A B

3

A’ B’

c d

e f

4

 3

Figure 2:The M+-tree structure

minimal key dimension value of the right twin space.
Two boundary values are used to achieve higher filtering
ability, because the bigger the gap between the maximal
key dimension value of the left twin space and the
minimal key dimension of the right twin space, the better
the filtering ability.

In M+-tree, partition is performed in two steps. First,
the twin spaces are regarded together as a whole space
and it is partitioned with the m-RAD-2 way, as in M-tree.
As a result, two new sub-spaces are got, e.g., A’ and B’ in
Figure 1(4). Second, the sub-space A’ is further
partitioned into two twin sub-spaces c and d according to
the selected key dimension. The partitioning process of
the sub-space B’ is the same as that of the sub-space A’.

3.3 The Structure of M+-tree Nodes
In this paper, M+-tree shares the term used in M-tree. So
what stored in the internal nodes is termed as routing
objects. Therefore, there are two types of node objects, i.e.
routing objects and leaf objects. The structure of leaf
entries is denoted as the following form:

L(Oj ,oid(Oj), d(Oj , P(Oj))
 Leaf entry in M+-tree is quite similar to that of in
M-tree. Here, Oj denotes the feature value of a DB object,
oid(Oj) an object identifier, and d(Oj,P(Oj)) the distance
of Oj from its parent.
 The structure of routing objects is denoted as the
following form:
 R(Or, r(Or), d(Or, P(Or)), DNO, leftTwinPtr(Tlt(Or)),
Mlmax, Mrmin, rightTwinPtr(Trt(Or)))
 Where Or is the feature value of the routing object,
r(Or) the covering radius of Or, d(Or,P(Or) the distance of
Or from its parent, DNO key dimension number,
leftTwinPtr(Tlt(Or)) the pointer to the left twin sub-tree,
rightTwinPtr(Trt(Or)) the pointer to the right twin sub-tree,
Mlmax the maximal value of key dimension in the left twin
sub-tree and Mrmin is the minimal value of key dimension
in the right twin sub-tree.

For each routing object, there are two twin pointers
to the root of left twin sub-tree and of right twin sub-tree
respectively. This data structure increases the fanout of
the tree and lowers the height of the tree. Figure 2
indicates an M+-tree structure.

3.4 Query processing

3.4.1 Range Query
Given a query object q and radius r, the range query starts
from the root node and recursively traverses all the paths
in which the objects matching condition might exist.
Range search algorithm of M+-tree is described as

follows:

Algorithm RS (N:node，Q:queryObj，r(Q):queryRad)
1. begin
2. Op= ParentNode(N);
3. if N is Not Leaf
4. ∀Or in N, do:
5. if |d(Op,Q)-d(Or,Op)|<=r(Q)+r(Or)
6. Compute d(Or,Q);
7. if d(Or,Q)<=r(Q)+r(Or)
8. if keydimVal(Q) -r(Q)≤M1max
9. RangeSearch(*leftTwinPtr(Tlt(Or)),
10. Q, R(Q));
11. end if
12. if keydimVal(Q)+r(Q)≥M2min
13. RangeSearch(*rightTwinPtr(Trt(Or)),
14. Q,R(Q));
15. end if
16. end if
17. end if
18. else
19. ∀Oj in N do:
20. if |d(Op,Q)-d(Or,Op)| ≤r(Q)
21. Compute d(Oj,Q);
22. if d(Oj,Q) ≤r(Q)
23. add oid(Oj) to the result;
24. end if
25. end if
26. end if
27. end

Range search begins from root firstly. An entry of

the node keeps the distance from its parent. Thus, the
sub-trees not containing the query results can be filtered
using triangular inequality. If the sub-tree is not filtered,
the distance between the querying object and the routing
object is calculated and further filtering can be done still
based on triangular inequality, like in the M-tree. Then,
filtering based on key dimension is performed on the
remainder twin nodes. The process is done recursively
until the leaf. In leaf, the results can be obtained by
computation and comparison.

3.4.2 Nearest Neighbour Searching
Given a query object q and the number of objects
searching k, k-NN search retrieves the k nearest
neighbors of a query object q. Sharing the method
proposed in M-tree, M+-tree uses PR, a priority queue
that contains pointers to active sub-trees, and NN, an
array used to store the final search results.

In the k-NN search algorithm of M+-tree, the key
dimension filtration is added and the priority queues
operation is improved. In the PR, let the node be N, if the
twin node of N is active, the flag of N is set to TRUE. Or
this flag is set to FALSE. When the twin nodes are all
active, only one PR access is needed to do. In this way,
many PR accesses are saved. As a result, the cost of query
is lowered. The k-NN search algorithm is described as
follows.

 4

Algorithm k_NN_Search (T: root, Q: queryObj,
k: integer)

1. begin
2. PR=[T,_];
3. for i=1 to k do:
4. NN[i]=[_,∞];
5. end for
6. while PR≠Ф do:
7. Next_Node=ChooseNode(PR);
8. k-NN_NodeSearch(Next_Node,Q,k);
9. if the flag of Next_Node is TRUE
10. Next_Node =TwinNode(Next_Node);
11. k-NN_NodeSearch(Next_Node,Q,k);
12. end if
13. end while
14. end

First, the root is kept into the priority queue PR. The
maximal distance is kept in the array NN. Then priority
node is chosen from PR and node search are performed.
If the flag of this node is TRUE, the same search process
is needed to do for its twin.

K-NN_NodeSearch function is an important part in
the search process. It can be described as follows:

Algorithm k-NN_NodeSearch(N:node,Q:queryObj,
k:integer)

1. begin
2. Op= ParentNode(N);
3. if N isn’t leaf
4. ∀Or in N, do:
5. if |d(Op,Q)-d(Or,Op)|≤dk+r(Or)
6. Compute d(Or,Q);
7. if dmin(T(Or))≤dk
8. FilterByKeyDim();
9. SetFlag(TRUE/FALSE);
10. PushPR(Node);
11. end if
12. if dmax(T(Or))<dk
13. dk=NN_Update([_,dmax(T(Or))]);
14. RemoveFromPR (dmin(T(Or))>dk);
15. end if
16. end if
17. else
18. ∀Oj in N, do:
19. if |d(Op,Q)-D(Oj,Op)|≤dk
20. Compute d(Oj,Q);
21. if d(Oj,Q)≤dk
22. dk=NN_Update([oid(Oj),d(Oj,Q)]);
23. RemoveFromPR(dmin(T(Or))>dk);
24. end if
25. end if
26. end if
27. end

Most search operations are implemented within the
k-NN_NodeSearch function. First, in an internal node,
active sub-nodes are determined. If the twin sub-nodes
are all active, the flag of left twin sub-node is set to
TRUE and left twin sub-node is inserted into the PR. If
only one sub-tree is active, the flag of this sub-node is set
to FALSE and the sub-node is inserted into the PR.
Second, if the minimal distance between the covering tree
of current node and the query object Q is less than dk

=NN[k-1], the array NN will be updated with an ordered
insertion. Third, for the leaf, if the distance between a leaf
entry and query object is less than dk, NN is updated.
Repeat the steps above until PR is null. Finally, when the
minimal distance between Q and the priority sub-node in
PR is greater than dk, all pointers in PR will be removed
and the array NN is returned.

3.5 Construction of M+-tree
A new object is inserted into M+-tree in the following way.
First, from the root, the appropriate node is found. If the
twin nodes are all full, a split is needed. The split is
performed in two steps. First is the splitting based on the
distances among objects, and the other is the splitting
based on the key dimension. If the node is full but its twin
node is not full, then the entries of the twin nodes are
reallocated. The process of reallocation is the same as that
of the splitting with the key dimension. If the node is not
full, the object is inserted directly.

Now, the tree construction and node split algorithms
are given in the following. In the insert algorithm,
entry(On) is an entry to be inserted and N is a node into
which the entry is inserted.
Algorithm Insert(N：node，entry(On)：M+-tree_entry)
1. begin
2. if N is Not Leaf
3. Node=ChooseSubtree(N);
4. Insert(Node, entry(On));
5. else
6. if N is Not Full
7. StoreEntry(N, entry(On));
8. else
9. if TwinNode(N) is Not Full
10. Reallocate(N, TwinNode(N),entry(On));
11. else
12. Split(nEntry, entry(On));
13. end if
14. end if
15. end if
16. end

M+-tree performs node split in a bottom-up fashion.
It shares the promotion and partition mechanism with
M-tree. At the same time, M+-tree performs node split by
two steps: splitting with m-RAD-2 like in M-tree and
splitting with key dimension. The split algorithm of
M+-tree and its input parameters are described as follows.

nEntry: the entry associated to the node splitting
M+-tree entry: object to be inserted;

Algorithm Split (N：nEntry；E：M+-tree_entry)
1. begin
2. Nt=entries(*N->leftTwinNode)∪
3. entries(*N->rightTwinNode)∪{E};
4. if N is not root
5. let Op let the parent of N, stored in Np node;
6. end if
7. Allocates a new node N’
8. promote(N,Op1,Op2);
9. partition(N,Op1,Op2,N1,N2);
10. keydimSplit(N, N1);
11. keydimSplit(N’,N2);
12. if N is the current root
13. Allocate a new root node: Np;

 5

14. Store entry(Op1) and entry(Op2) in Np；
15. else
16. Replace entry(Op) with entry(Op1);
17. if node Np is full
18. if the twin node of Np is full
19. Split(NP,entry(Op2));//NP: entry to Np

20. else
21. Allocate the entries of parent twins
22. else
23. store entry(Op2) in Np；
24. end if;
25. end if
26. end if
27. end

4 Performance Evaluation
Some experimental results of r-N search and k-NN search
are given in this section. There are two data sets: a
uniform data set and a real data set. The performance of
the multidimensional index structures, M-tree and
M+-tree, is evaluated to compare their advantages and
disadvantage.

The performance comparison and analysis of M-tree
and M+-tree include the following four aspects: (1) the
size of dataset; (2) the dimension of data; (3) uniform
data; and (4) real data.

The data sets used in these four tests are shown in
Table 1, and the data features are shown in Table 2.

Table 1: Datasets used in the experiments

Test content Dimension Dataset size Description

(1) 10 10,000~
80,000

Uniform
distributed

(2) 5~40 50,000 Uniform
distributed

(3) 10 50,000 Uniform
distributed

(4) 12 20,000 Real data

Table 2: Features of Datasets used in the experiments

Date set type Property Source Generation method

Uniform data Uniform Synthetic A time function
randomly

Real data Uneven Real images MPEG-7 tools

A 10 dimensional uniform data set is used for the

performance comparison of k-NN search and range
search. The uniform data set is synthetic that consists of
the points distributed uniformly in the range [0,1] on each
dimension. It is generated randomly through a time
function. To evaluate the effect of dimensionality and
data set size, the dimension of data space and the size of a
data set are varied in 5-40 and 10,000-80,000,
respectively.

For real data set, data is 12 dimensional points. They
are generated using the MPEG-7 feature extraction tools.
It consists of the real color layout feature vectors of
images. Through standardizing the vectors, the data is
transformed to Euclidean space and each dimension of
the feature ranges between [0,1].

The testing environment is a Pentinum III 933MHz
PC with 128MB memory and 30G hard disk. The data are

stored in an object database system Fish (Yu G, Kaneko
K, Bai G, Makinouchi A. 1996).

4.1 Data Set Size vs. Performance

0

200

400

600

800

10 20 30 40 50 60 70 80

Size of Data Set(*1000)(a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M+
M

0

5

10

15

20

25

10 20 30 40 50 60 70 80

Size of Data Set(*1000)(b)
qu

eu
e

ac
ce

ss
 n
um
(*
10
0) M+

M

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80

Size of Data Set(*1000)(c)

N
u
m
b
e
r

o
f

I
O
(
*
1
0
0
)

M+
M

0

5

10

15

20

25

10 20 30 40 50 60 70 80

Size of Data Set(*1000)(d)

d
i
s
t
a
n
c
e

c
a
l
c
u
l
a
t
i
o
n
(
*
1
0
0
0
)

M+
M

Figure 3: Comparison of k-NN searches by dataset size varying

We investigated how the performance of M-tree and
M+-tree varies with the data sets size. The performance
metrics include total response time, distance calculation,
IO operations, and PR operations. The data sets size is
varied from 10,000 to 80,000. The number of retrieved
object is fixed to 10. Figure 3 shows the performance
comparison of M-tree and M+-tree for k-NN search.

From the figure, we can see that M+-tree has more
IO operations and distance calculations than M-tree. This
is mainly because the k-NN search algorithm adopts the
heuristic criterion and sets the search radius from
maximum, while the key dimension has a poor filtering

 6

ability when the search radius is longer. At the same time,
query radius converges very slowly because the uniform
data is sparse. However, the heuristic criterion is
implemented with operations to the priority queue, in
which many ordering operations are needed, this is much
time-consuming, so the number of queue access is an
important factor affecting the performance of the index.
Due to the introduction of the twin nodes in M+-tree, the
number of queue access is reduced greatly, which can be
seen from Figure 3(b). This saves much more query time
and the response time is reduced remarkably. With the
increasing of data sets size, M+-tree has more advantage
over M-tree on search performance. The performance
advantage of M+-tree will be more noticeable for real
data.

4.2 Dimensionality of Data vs. Performance

0

2000

4000

6000

8000

10000

5 10 15 20 25 30 35 40

Dim (a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M

M+

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40

Dim (b)

Q
ue

ue
 a

cc
es

s
n
u
m
(
*
1
0
0
) M

M+

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40

Dim (c)

d
i
s
t
a
n
c
e

c
a
l
c
u
l
a
t
i
o
n
(
*
1
0
0
0
)

M

M+

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40

Dim (d)

n
u
m
b
e
r

o
f

I
O
(
*
1
0
0
0
)

M

M+

Figure 4: comparison of k-NN searches by dimension varying

To compare the different characteristics of M+-tree and
M-tree, we measured the performance of them with
varying the dimensionality. In this experiment, Data set is
uniform and the size is fixed to 50,000. Data space
dimensionality varies from 5 to 40.

From Figure 4, we can see that the number of
distance calculation and IO access is very close for the
two indexes with the dimension varying. Moreover, when
the dimension increases to 25, they both have to traverse
nearly the whole tree because the subspaces are all
overlapped. The search performance is mainly determined
by queue access. While the queue access number of
M+-tree is well under that of M-tree when the dimension
becomes larger, M+-tree has a much better performance
than M-tree.

4.3 Performance on Uniform Data

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5
Search Radius (a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M

M+

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5
Search Radius (b)

d
i
s
t

c
a
l
c
(
*
1
0
0
0
) M

M+

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

Search Radius (c)

N
u
m
b
e
r

o
f

I
O
(
*
1
0
0
)

M

M+

Figure 5: Comparison of r-N search for Uniform Data

In this section, we compare the range search and k-NN
search of M+-tree with M-tree’ when the data is uniform.
We compare their performance for range search in terms
of response time, the number of distance calculation and
the number of IO. Figure 5 gives the experimental result.

The performance of M+-tree are superiority over the
M-tree’ in the three factor when the search radius is less,
and the less search radius, the better search performance.
When the search radius closes to zero, about half data can
be filtered in the twin nodes. M+-tree is faster twice than

 7

M-tree because of the higher filtering ability. As the
search radius increases, the filtering ability of M+-tree
becomes weak and the two indexes’ performance contrast
is unapparent gradually.

M+-tree needs less distance calculation, and the
distance calculation number is closer with the increasing
of search radius. At the same time, because the filtering
ability of key dimension reduced with the increasing of
search radius, M+-tree’s IO increases more quickly.

Because of the data’s multidimensionality, distance
calculation needs more time. At the same time, the
distance calculation contrasts more bitterly. Therefore
M+-tree improves the query performance despite that it
needs more IO access sometimes.

0

100

200

300

400

500

600

700

10 20 30 40 50

Retrieved Objects(a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M+
M

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50

Retrieved Objects(b)

Q
ue

ue
 a

cc
es

s n
um

M+

M

0

5

10

15

20

25

10 20 30 40 50

Retrieved Objects(c)

d
i
s
t
a
n
c
e

c
a
l
c
u
l
a
t
i
o
n
(
*
1
0
0
0
)

M+

M

.

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50

Retrieved Objects(d)

N
u
m
b
e
r

o
f

I
O
(
*
1
0
0
0
)

M+

M

Figure 6: Comparison of k-NN search for Uniform data

Figure 6 shows the comparison result of k-NN search for
uniformly distributed data. It compares the two indexes
from four performance aspects: (1) response time, (2) the
number of priority queue access, (3) distance calculation,
(4) Number of IO. M+-tree needs more distance
calculations and IO access due to the uniformity of sparse
data. But because of the using of twin nodes, M+-tree
needs less priority queue access operation, as a result,
M+-tree responds more quickly than M-tree. In brief,
M+-tree outperforms M-tree on query performance
because of the introduction of key dimension and twin
node.

4.4 Performance on Real Data

0

20

40

60

80

100

10 20 30 40 50

Retrieved Object(a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M+

M

0

200

400

600

800

1000

10 20 30 40 50

Retrieved Object(b)

Q
ue

ue
 a

cc
es

s
n
u
m

M+

M

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50

Retrieved Object(c)

d
i
s
t
a
n
c
e

c
a
l
c
u
l
a
t
i
o
n

M+

M

0

200

400

600

800

10 20 30 40 50
Retrieved Object(d)

N
u
m
b
e
r

o
f

I
O

M+

M

Figure 7: Comparison of k-NN search for real data

In our experiment, we also test the performance of k-NN
search and range search using a set of real data. As Figure

 8

7 and Figure 8 show, because the real data is distributed
densely, and clusters more easily, the superiority of
M+-tree is more obvious. In k-NN search, as regards
response time, priority queue access number and distance
calculations, M+-tree superiors to the M-tree. Only
M+-tree has more IO operations slightly. As a result,
because of fewer queue access operations and distance
calculation, the query using M+-tree is more rapidly.
 In range search, the number of IO is very close in
the two index structures. But M+-tree needs fewer
distance calculations, which saves much more time.
Therefore, despite the performance curves of IO access
have a cross, the response time is shorter in M+-tree than
in M-tree.

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2
Search Radius

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M

M+

0

2000

4000

6000

8000

10000

12000

0 0.05 0.1 0.15 0.2
Search Radius

d
i
s
t
a
n
c
e

c
a
l
c
u
l
a
t
i
o
n

M

M+

0

200

400

600

800

1000

1200

0 0.05 0.1 0.15 0.2

Search Radius

N
u
m
b
e
r

o
f

I
O

M
M+

Figure 8:Comparison of r-NN search for real data

5 Conclusion
In this paper, we proposed M+-tree that is a dynamically
updateable page-based metric index. This approach has
the following features.

(1) Using a key dimension to split a subspace into
two twin subspaces, which are not overlapped.

(2) In k-NN search, when the twin nodes need to
enter a queue, this operation is performed only
once, by using a flag in each node to mark
whether its twin node is contained in the queue.

(3) In range search, the key is used to perform
effective filter while it is not needed to compute
distance between objects.

(4) The M+-tree adopts reallocation process
between twin nodes to save storage space, and
prevents the underflow of nodes.

Experimental results show that the M+-tree has a
higher query performance compared with M-tree.

6 Acknowledgement
This research was supported by the National Natural

Science Foundation of China (No.60173051 and
No.60273079), the Foundation for University Key
Teacher and the Teaching and Research Award Program
for Outstanding Young Teachers in High Education
Institution of the Ministry of Education, China.

7 References
N.Berkmann, H.-P. Krigel. R. Schneider, and B.Seeger.

(1990) “The R*-tree: an efficient and robust access
method for points and rectangles.” ACM SIGMOD,
pp.322-331, Atlantic City, NJ.

N.Katayama and S.Satoh. (1997) The SR-tree: an index
structure for high-dimensional nearest neighbor queries.
Proc. ACM SIGMOD Intl. Conf. On Management of
Data, pp369-380,.

D.A.White and R.Jain.(1996)“Similarity Indexing with
the SS-tree,” Proc.of the 12th Int.conf. on Data
Engineering, New Orleans, USA, pp.516-523.

K.-I. Lin,H. V. Jagadish, and C. Faloutsos. (1994)“The
TV-tree: An Index Structure for High-Dimensional
Data,” VLDB Journal, Vol. 3, No. 4, pp.517-542.

J. K. Uhlmann.(1991) “ Satisfying General Proximity/
Similarity Queries with Metric Trees”, Information
Processing Letters, vol 40,pages 175-179.

P.Zezula, P.Ciaccia, and F.Rabitti.(1996) “M-tree: A
dynamic index for similarity queries in multimedia
databases”. TR 7, HERMES ESPRIT LTR Project.

T.Bozkaya,M. Ozsoyoglu.(1997) “Distance-based
indexing for high-dimensional metric spaces.” Proc. the
ACM SIGMOD International Conference on
Management of Data,Tucson, Arizona, page 357-368.

P.Ciaccia, M.Patella, P.Zezula.(1997) “M-tree: An
Efficient Access Method for Similarity Search in
Metric Spaces” Proc the 23rd VLDB Conference
Athens, Greece.

M. Ishikawa, H. chen, K, Furuse, J.Xu Yu, N.Ohbo(2000)
“MB+tree: a Dynamically Updatable Metric Index for
Similarity Search” WAIM, PP356-3

Yu G, Kaneko K, Bai G, Makinouchi A. (1996)
Transaction management for a distributed object
storage system WAKSHI – design, implementation and
performance. Proc. Of the 12th Int. Conf. On Data
Engineering, USA.

