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Abstract 
In this paper, we propose a new metric index, called M+-tree, 
which is a tree dynamically organized for large datasets in 
metric spaces. The proposed M+-tree takes full advantages of 
M-tree and MVP-tree, with a new concept called key dimension, 
which effectively reduces response time for similarity search. 
The main idea behind the key dimension is to make the fanout 
of tree larger by partitioning a subspace further into two 
subspaces, called twin-nodes. We can double the filtering 
effectiveness by utilizing the twin-nodes. In addition, for the 
purpose of ensuring high space utilization, we also conduct data 
reallocation between the twin nodes dynamically. Our 
experiment shows that higher filtering efficiency can be 
obtained by using the key dimensions for r-neighbor search and 
k-NN (k-nearest neighbor). We will report our experimental 
results in this paper.   
Keywords: Multidimensional index, Metric space, Key 
dimension, Range search, k-NN search. 

1 Introduction 
Recently, an incommensurable amount of audiovisual 
information becomes available in digital libraries, digital 
archives, personal and professional databases, the World 
Wide Web, and broadcast data streams. Besides, the data 
bulk continues to grow rapidly. A wide range of 
applications including image processing, geography 
system, medical applications and biomedicine, etc., 
highly demand fast processing content-based similarity 
search in a very large databases.  

In order to respond such requests, there exist a large 
number of multidimensional indexes. As referred in the 
works (N.Berkmann, H.-P. Krigel. R. Schneider, and 
B.Seeger.1990, N.Katayama and S.Satoh. 1997, 
D.A.White and R.Jain.1996, K.-I. Lin,H. V. Jagadish, and 
C. Faloutsos.1994), R-tree and its variants are widely 
used in geographical information systems. But they 
cannot be directly applicable to handle large datasets in 
metric spaces.  Metric-based indices have been proposed 
for a generic metric space, including VP-tree (J. K. 
Uhlmann.1991), MVP-tree (T.Bozkaya, M.Ozsoyoglu. 
1997), M-tree(P.Zezula, P.Ciaccia, and F.Rabitti.1996, 
P.Ciaccia, M.Patella, P.Zezula.1997) and MB+tree (M. 
Ishikawa, H. chen, K, Furuse, J.Xu Yu, N.Ohbo.2000). 
These index structures are different from the R*-tree and 
its other variants. They do not deal with the relative 
positions in a vector space, but rather handle the distances 
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between objects. VP-tree (J. K. Uhlmann.1991) is 
designed with a hierarchical index structure for similarity 
search. It partitions a data set according to distances the 
objects have with respect to a vantage point. The median 
value of such distances is used as a separator to partition 
objects into two balanced subsets. At the same time, the 
same procedure is applied recursively. VP-tree is the first 
one among the metric-based indices that utilizes the 
triangle inequality to filter and reduce the similarity 
search cost for multimedia information systems. However, 
due to small fanout, VP-tree is very high thus a search 
operation needs a large number of distance calculations, 
which is time-consuming. 

MVP-tree extends the idea of VP-tree by using 
multiple vantage points, and exploits pre-computed 
distances to reduce the number of distance computations 
at query time. In comparison with VP-tree, the fanout of 
MVP-tree is increased, and the height is reduced. 
MVP-tree outperforms VP-tree, but, as the same as 
VP-tree, MVP-tree is built from top to bottom. The 
top-down index construction strategy implies that the 
index is static, and cannot be dynamically updated 
according to database changes. The cost of reconstructing 
the whole index frequently becomes unacceptable for the 
database that may possibly change frequently. 

Unlike VP-tree and MVP-tree, M-tree is a paged and 
balanced metric tree that is built from bottom to top, with 
node promotion and split mechanisms. M-tree can handle 
reconstruct the tree dynamically with low costs. M-tree 
takes the complexity of distance computation into 
account, and is a very efficient index. But M-tree’s 
subspaces overlap is considerable large, which affects its 
performance. 

Practically, data of multimedia databases are often in 
metric spaces. But, almost all of spatial access methods 
(SAMs), e.g. R-tree and its variants, are not applicable to 
multimedia database. They are valid only when the 
following conditions are satisfied: (1) indexed objects are 
represented as feature values in a multidimensional vector 
space; (2) the similarity of two objects is measured by 
Euclidean distance. However, metric trees such as 
MVP-tree and M-tree circumvent these problems. 
Therefore, they have a higher practical value. 

Because M-tree is one of the best among 
metric-based indices, this paper proposes a new 
metric-based index, called M+-tree. It improves the 
performance of M-tree. First, like M-tree, M+-tree is a 
dynamical paged and balance tree. It inherits M-tree’s 
promotion mechanism, triangle inequality and the branch 
and bound technique. Second, M+-tree fully utilizes the 
filtering twice idea used in MVP-tree. Third, M+-tree 
adopts the similar ideas of key dimension and the key 
dimension shift used in TV-tree (K.-I. Lin,H. V. Jagadish, 
and C. Faloutsos. 1994) in a novel way, based on our 
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observations: a) dimension can be ordered by their 
significance in a metric-space, and b) the active 
dimensions can be shift for enhancing the efficiency. The 
key dimension and the shift of the key dimension reduce 
the distance computation significantly.  

The remainder of the paper is structured as follows. 
Section 2 gives the problem definition. Section 3 
introduces M+-tree, containing its data structures, key 
techniques and basic algorithms. Section 4 presents 
experimental results and performance evaluations. 
Section 5 concludes this paper. 

2 Problem Definition 
A metric space, M, is defined as, M = (O, d), where O is 
the domain of feature values and d is the distance 
function with the following properties. 

1．d(Ox, Oy) = d(Oy, Ox)  
2．d(Ox, Oy) > 0 (Ox ≠ Oy), d(Ox, Ox) = 0  
3．d(Ox,Oy) ≤ d(Ox, Oz) + d(Oz, Oy) 
where Ox, Oy and Oz are objects in O. The 

(dis)similarity between objects can be measured based on 
the given distance function d. R-neighbor search and 
k-nearest neighbor search are two basic types of 
similarity queries, defined as follows. 

 
Definition 2.1 (r-neighbor search) Given a query object 

q ∈ O and a non-negative query radius r, the 
r-neighbor search of q is to retrieve the objects o 
satisfying the condition: o∈O and d(q, o) ≤ r. 

 
Definition 2.2(k-nearest neighbor search) Given a 

query object q∈O and an integer k ≥ 1, the k-NN 
query is to retrieve k objects with the shortest 
distance from q. 

 
Indexing a metric space aims to provide an efficient 

support for retrieving objects similar to a reference (query) 
object (r-neighbor search or k-nearest neighbor search). 

3 The M+-tree 
M+-tree is a dynamical paged and balance tree. It 
combines binary MVP-tree and M-tree but improves the 
partition of binary MVP-tree and the node structure of 
M-tree. In binary MVP-tree, a data space is partitioned 
into four subspaces with two vantage points while in 
M+-tree the partition is done through one vantage point 
and a key dimension. Because there is no distance 
computation for partitioning data space by key dimension, 
M+-tree has fewer distance computations than MVP-tree. 
The main idea behind the key dimension is to make the 
fanout of tree larger by partitioning a subspace further 
into two subspaces, called twin-nodes. We can double the 
filtering effectiveness by utilizing the twin-nodes. 

3.1 The Key Dimension 

3.1.1 Method of Key Dimension Selection 
The key dimension is a dimension that affects mostly 
distance computation. Generally speaking, different data 
distribution of dimensions has different effect on the 
distance computation. A key dimension can be used to 
minimize the overlap, and thus avoid much too 

unnecessary paths traversal. 
In SS-tree and SR-tree, the most optimal partition 

method is to partition the data space along the axis that 
has maximal variance, which has been proved to be 
efficient for their index methods. It keeps the 
optimization of data space partition and reduces the 
number of paths traversed. So, in M+-tree, the dimension 
having maximal variance is selected to serve as the key 
one. 

3.1.2 The Validity of Key Dimension Filtration 
It is a simple process to use the key Dimension to filter. 
However, some inactive sub-trees may not be filtered. 
But it always keeps all correct results. The correctness 
can be deduced from the following formula. 
 Let Oi(d1,d2,…dn) and Oj(D1,D2,…Dn) be two data 
objects. The distance between the two objects is 
represented as follows:  

  22
22
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Let k be the key dimension number and search radius 
be r, then |dk-Dk|≤D(Oi,Oj). If D(Oi,Oj)≤r, then |dk-Dk|≤
r. So the active data cannot be filtered. 

3.2 Partition of Space 
Space partition is one of the most important issues in the 
metric indexes. M-tree partitions object space according 
to their relative distances. It grows in a bottom-up fashion. 
By allocating a new node, the overflow of node is 
managed. At the same level of this node, the entries are 
partitioned between these two nodes. To reference the two 
nodes, two reference objects are promoted. In M-tree, 
partitioning by m-RAD-2 is best among all the partition 
methods. 

 Figure 1 (3) and (4) give the process of partitioning 
space in M+-tree. A space corresponding to an entry in a 
tree node consists of two twin spaces, e.g., A and B. The 
nodes corresponding to twin spaces in M+-tree are called 
twin nodes. These two sub-spaces are expressed through 
two boundary values of a key dimension, i.e. the maximal 
key dimension value of the left twin space and the 

Figure 1: Partition in M-tree  v.s.  Partition in M+-tree
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Figure 2:The M+-tree structure 

minimal key dimension value of the right twin space. 
Two boundary values are used to achieve higher filtering 
ability, because the bigger the gap between the maximal 
key dimension value of the left twin space and the 
minimal key dimension of the right twin space, the better 
the filtering ability.  

In M+-tree, partition is performed in two steps. First, 
the twin spaces are regarded together as a whole space 
and it is partitioned with the m-RAD-2 way, as in M-tree. 
As a result, two new sub-spaces are got, e.g., A’ and B’ in 
Figure 1(4). Second, the sub-space A’ is further 
partitioned into two twin sub-spaces c and d according to 
the selected key dimension. The partitioning process of 
the sub-space B’ is the same as that of the sub-space A’. 

3.3 The Structure of M+-tree Nodes 
In this paper, M+-tree shares the term used in M-tree. So 
what stored in the internal nodes is termed as routing 
objects. Therefore, there are two types of node objects, i.e. 
routing objects and leaf objects. The structure of leaf 
entries is denoted as the following form: 

L( Oj ,oid(Oj), d(Oj , P(Oj)) 
 Leaf entry in M+-tree is quite similar to that of in 
M-tree. Here, Oj denotes the feature value of a DB object, 
oid(Oj) an object identifier, and d(Oj,P(Oj)) the distance 
of Oj from its parent. 
 The structure of routing objects is denoted as the 
following form: 
 R(Or, r(Or), d(Or, P(Or)), DNO, leftTwinPtr(Tlt(Or)), 
Mlmax, Mrmin, rightTwinPtr(Trt(Or))) 
 Where Or is the feature value of the routing object, 
r(Or) the covering radius of Or, d(Or,P(Or) the distance of 
Or from its parent, DNO key dimension number, 
leftTwinPtr(Tlt(Or)) the pointer to the left twin sub-tree, 
rightTwinPtr(Trt(Or)) the pointer to the right twin sub-tree, 
Mlmax the maximal value of key dimension in the left twin 
sub-tree and Mrmin is the minimal value of key dimension 
in the right twin sub-tree. 

For each routing object, there are two twin pointers 
to the root of left twin sub-tree and of right twin sub-tree 
respectively. This data structure increases the fanout of 
the tree and lowers the height of the tree. Figure 2 
indicates an M+-tree structure. 

 

 

3.4 Query processing 

3.4.1 Range Query 
Given a query object q and radius r, the range query starts 
from the root node and recursively traverses all the paths 
in which the objects matching condition might exist. 
Range search algorithm of M+-tree is described as 

follows: 
 

Algorithm RS (N:node，Q:queryObj，r(Q):queryRad)
1. begin 
2.    Op= ParentNode(N); 
3.    if N is Not Leaf 
4.      ∀Or in N, do: 
5.      if |d(Op,Q)-d(Or,Op)|<=r(Q)+r(Or) 
6.        Compute d(Or,Q); 
7.        if d(Or,Q)<=r(Q)+r(Or) 
8.          if keydimVal(Q) -r(Q)≤M1max 
9.                  RangeSearch(*leftTwinPtr(Tlt(Or)), 
10.                      Q, R(Q)); 
11.          end if 
12.          if keydimVal(Q)+r(Q)≥M2min 
13.            RangeSearch(*rightTwinPtr(Trt(Or)), 
14.                       Q,R(Q)); 
15.          end if 
16.        end if 
17.      end if 
18.    else 
19.      ∀Oj in N do:  
20.       if |d(Op,Q)-d(Or,Op)| ≤r(Q) 
21.         Compute d(Oj,Q); 
22.         if d(Oj,Q) ≤r(Q) 
23.           add oid(Oj) to the result; 
24.         end if 
25.       end if 
26.    end if 
27. end 

  
Range search begins from root firstly. An entry of 

the node keeps the distance from its parent. Thus, the 
sub-trees not containing the query results can be filtered 
using triangular inequality. If the sub-tree is not filtered, 
the distance between the querying object and the routing 
object is calculated and further filtering can be done still 
based on triangular inequality, like in the M-tree. Then, 
filtering based on key dimension is performed on the 
remainder twin nodes. The process is done recursively 
until the leaf. In leaf, the results can be obtained by 
computation and comparison. 

3.4.2 Nearest Neighbour Searching 
Given a query object q and the number of objects 
searching k, k-NN search retrieves the k nearest 
neighbors of a query object q. Sharing the method 
proposed in M-tree, M+-tree uses PR, a priority queue 
that contains pointers to active sub-trees, and NN, an 
array used to store the final search results. 

In the k-NN search algorithm of M+-tree, the key 
dimension filtration is added and the priority queues 
operation is improved. In the PR, let the node be N, if the 
twin node of N is active, the flag of N is set to TRUE. Or 
this flag is set to FALSE. When the twin nodes are all 
active, only one PR access is needed to do. In this way, 
many PR accesses are saved. As a result, the cost of query 
is lowered. The k-NN search algorithm is described as 
follows. 
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Algorithm k_NN_Search (T: root, Q: queryObj,  
k: integer) 

1. begin 
2.    PR=[T,_]; 
3.    for i=1 to k do: 
4.       NN[i]=[_,∞]; 
5.    end for 
6.    while PR≠Ф do: 
7.      Next_Node=ChooseNode(PR); 
8.      k-NN_NodeSearch(Next_Node,Q,k); 
9.      if the flag of Next_Node is TRUE 
10.        Next_Node =TwinNode(Next_Node ); 
11.        k-NN_NodeSearch(Next_Node,Q,k); 
12.      end if 
13.    end while 
14. end 

First, the root is kept into the priority queue PR. The 
maximal distance is kept in the array NN. Then priority 
node is chosen from PR and node search are performed. 
If the flag of this node is TRUE, the same search process 
is needed to do for its twin. 

K-NN_NodeSearch function is an important part in 
the search process. It can be described as follows: 

Algorithm k-NN_NodeSearch(N:node,Q:queryObj,
k:integer) 

1. begin 
2.   Op= ParentNode(N); 
3.   if N isn’t leaf  
4.    ∀Or in N, do: 
5.    if |d(Op,Q)-d(Or,Op)|≤dk+r(Or)  
6.      Compute d(Or,Q); 
7.      if dmin(T(Or))≤dk 
8.        FilterByKeyDim(); 
9.        SetFlag( TRUE/FALSE ); 
10.        PushPR( Node );  
11.      end if 
12.      if dmax(T(Or))<dk 
13.        dk=NN_Update([_,dmax(T(Or))]); 
14.        RemoveFromPR ( dmin(T(Or))>dk ); 
15.      end if 
16.    end if  
17.   else 
18.     ∀Oj in N, do: 
19.     if |d(Op,Q)-D(Oj,Op)|≤dk 
20.       Compute d(Oj,Q); 
21.       if d(Oj,Q)≤dk 
22.         dk=NN_Update([oid(Oj),d(Oj,Q)]); 
23.         RemoveFromPR(dmin(T(Or))>dk);  
24.       end if 
25.     end if 
26.   end if 
27. end 

Most search operations are implemented within the 
k-NN_NodeSearch function. First, in an internal node, 
active sub-nodes are determined. If the twin sub-nodes 
are all active, the flag of left twin sub-node is set to 
TRUE and left twin sub-node is inserted into the PR. If 
only one sub-tree is active, the flag of this sub-node is set 
to FALSE and the sub-node is inserted into the PR. 
Second, if the minimal distance between the covering tree 
of current node and the query object Q is less than dk 

=NN[k-1], the array NN will be updated with an ordered 
insertion. Third, for the leaf, if the distance between a leaf 
entry and query object is less than dk, NN is updated. 
Repeat the steps above until PR is null. Finally, when the 
minimal distance between Q and the priority sub-node in 
PR is greater than dk, all pointers in PR will be removed 
and the array NN is returned. 

3.5 Construction of M+-tree  
A new object is inserted into M+-tree in the following way. 
First, from the root, the appropriate node is found. If the 
twin nodes are all full, a split is needed. The split is 
performed in two steps. First is the splitting based on the 
distances among objects, and the other is the splitting 
based on the key dimension. If the node is full but its twin 
node is not full, then the entries of the twin nodes are 
reallocated. The process of reallocation is the same as that 
of the splitting with the key dimension. If the node is not 
full, the object is inserted directly.  

Now, the tree construction and node split algorithms 
are given in the following. In the insert algorithm, 
entry(On) is an entry to be inserted and N is a node into 
which the entry is inserted. 
Algorithm Insert(N：node，entry(On)：M+-tree_entry)
1. begin  
2.   if N is Not Leaf 
3.     Node=ChooseSubtree(N); 
4.     Insert(Node, entry(On) );  
5.   else 
6.     if N is Not Full 
7.       StoreEntry(N, entry(On) ); 
8.     else  
9.       if TwinNode(N) is Not Full 
10.         Reallocate(N, TwinNode(N),entry(On));
11.       else  
12.         Split(nEntry, entry(On) );  
13.       end if 
14.     end if 
15.   end if 
16. end 

M+-tree performs node split in a bottom-up fashion. 
It shares the promotion and partition mechanism with 
M-tree. At the same time, M+-tree performs node split by 
two steps: splitting with m-RAD-2 like in M-tree and 
splitting with key dimension. The split algorithm of 
M+-tree and its input parameters are described as follows. 

nEntry: the entry associated to the node splitting 
M+-tree entry: object to be inserted; 

Algorithm Split (N：nEntry；E：M+-tree_entry) 
1. begin 
2.   Nt=entries(*N->leftTwinNode)∪ 
3.   entries(*N->rightTwinNode)∪{E}; 
4.   if N is not root 
5.     let Op let the parent of N, stored in Np node;
6.   end if 
7.   Allocates a new node N’ 
8.   promote(N,Op1,Op2); 
9.   partition(N,Op1,Op2,N1,N2); 
10.   keydimSplit(N, N1);  
11.   keydimSplit(N’,N2);  
12.   if N is the current root 
13.      Allocate a new root node: Np; 
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14.      Store entry(Op1) and entry(Op2) in Np； 
15.   else   
16.      Replace entry(Op) with entry(Op1); 
17.      if node Np is full 
18.        if the twin node of Np is full 
19.           Split(NP,entry(Op2));//NP: entry to Np

20.        else  
21.           Allocate the entries of parent twins 
22.        else  
23.           store entry(Op2) in Np； 
24.        end if; 
25.      end if 
26.   end if 
27. end 

4 Performance Evaluation 
Some experimental results of r-N search and k-NN search 
are given in this section. There are two data sets: a 
uniform data set and a real data set. The performance of 
the multidimensional index structures, M-tree and 
M+-tree, is evaluated to compare their advantages and 
disadvantage. 

The performance comparison and analysis of M-tree 
and M+-tree include the following four aspects: (1) the 
size of dataset; (2) the dimension of data; (3) uniform 
data; and (4) real data.  

The data sets used in these four tests are shown in 
Table 1, and the data features are shown in Table 2. 

Table 1: Datasets used in the experiments 

Test content Dimension Dataset size Description

(1) 10 10,000~ 
80,000 

Uniform 
distributed

(2) 5~40 50,000 Uniform 
distributed

(3) 10 50,000 Uniform 
distributed

(4) 12 20,000 Real data 
 
Table 2: Features of Datasets used in the experiments 

Date set type Property Source Generation method

Uniform data Uniform Synthetic A time function 
randomly 

Real data Uneven Real images MPEG-7 tools 
 
A 10 dimensional uniform data set is used for the 

performance comparison of k-NN search and range 
search. The uniform data set is synthetic that consists of 
the points distributed uniformly in the range [0,1] on each 
dimension. It is generated randomly through a time 
function. To evaluate the effect of dimensionality and 
data set size, the dimension of data space and the size of a 
data set are varied in 5-40 and 10,000-80,000, 
respectively.  

For real data set, data is 12 dimensional points. They 
are generated using the MPEG-7 feature extraction tools. 
It consists of the real color layout feature vectors of 
images. Through standardizing the vectors, the data is 
transformed to Euclidean space and each dimension of 
the feature ranges between [0,1]. 

The testing environment is a Pentinum III 933MHz 
PC with 128MB memory and 30G hard disk. The data are 

stored in an object database system Fish (Yu G, Kaneko 
K, Bai G, Makinouchi A. 1996). 

4.1  Data Set Size vs. Performance 
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Figure 3: Comparison of k-NN searches by dataset size varying 
 
We investigated how the performance of M-tree and 
M+-tree varies with the data sets size. The performance 
metrics include total response time, distance calculation, 
IO operations, and PR operations. The data sets size is 
varied from 10,000 to 80,000. The number of retrieved 
object is fixed to 10. Figure 3 shows the performance 
comparison of M-tree and M+-tree for k-NN search. 

From the figure, we can see that M+-tree has more 
IO operations and distance calculations than M-tree. This 
is mainly because the k-NN search algorithm adopts the 
heuristic criterion and sets the search radius from 
maximum, while the key dimension has a poor filtering 
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ability when the search radius is longer. At the same time, 
query radius converges very slowly because the uniform 
data is sparse. However, the heuristic criterion is 
implemented with operations to the priority queue, in 
which many ordering operations are needed, this is much 
time-consuming, so the number of queue access is an 
important factor affecting the performance of the index. 
Due to the introduction of the twin nodes in M+-tree, the 
number of queue access is reduced greatly, which can be 
seen from Figure 3(b). This saves much more query time 
and the response time is reduced remarkably. With the 
increasing of data sets size, M+-tree has more advantage 
over M-tree on search performance. The performance 
advantage of M+-tree will be more noticeable for real 
data. 

4.2 Dimensionality of Data vs. Performance 

0

2000

4000

6000

8000

10000

5 10 15 20 25 30 35 40

Dim    (a)

R
e
s
p
o
n
s
e
 
T
i
m
e
(
m
s
)

M

M+

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40

Dim    (b)

Q
ue

ue
 a

cc
es

s 
n
u
m
(
*
1
0
0
) M

M+

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40

Dim   (c)

d
i
s
t
a
n
c
e
 
c
a
l
c
u
l
a
t
i
o
n
(
*
1
0
0
0
)

M

M+

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40

Dim   (d)

n
u
m
b
e
r
 
o
f
 
I
O
(
*
1
0
0
0
)

M

M+

 
Figure 4: comparison of k-NN searches by dimension varying 

To compare the different characteristics of M+-tree and 
M-tree, we measured the performance of them with 
varying the dimensionality. In this experiment, Data set is 
uniform and the size is fixed to 50,000. Data space 
dimensionality varies from 5 to 40.  

From Figure 4, we can see that the number of 
distance calculation and IO access is very close for the 
two indexes with the dimension varying. Moreover, when 
the dimension increases to 25, they both have to traverse 
nearly the whole tree because the subspaces are all 
overlapped. The search performance is mainly determined 
by queue access. While the queue access number of 
M+-tree is well under that of M-tree when the dimension 
becomes larger, M+-tree has a much better performance 
than M-tree. 

4.3 Performance on Uniform Data 
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Figure 5: Comparison of r-N search for Uniform Data 

 
In this section, we compare the range search and k-NN 
search of M+-tree with M-tree’ when the data is uniform. 
We compare their performance for range search in terms 
of response time, the number of distance calculation and 
the number of IO. Figure 5 gives the experimental result. 

The performance of M+-tree are superiority over the 
M-tree’ in the three factor when the search radius is less, 
and the less search radius, the better search performance. 
When the search radius closes to zero, about half data can 
be filtered in the twin nodes. M+-tree is faster twice than 
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M-tree because of the higher filtering ability. As the 
search radius increases, the filtering ability of M+-tree 
becomes weak and the two indexes’ performance contrast 
is unapparent gradually.  

M+-tree needs less distance calculation, and the 
distance calculation number is closer with the increasing 
of search radius. At the same time, because the filtering 
ability of key dimension reduced with the increasing of 
search radius, M+-tree’s IO increases more quickly.  

Because of the data’s multidimensionality, distance 
calculation needs more time. At the same time, the 
distance calculation contrasts more bitterly. Therefore 
M+-tree improves the query performance despite that it 
needs more IO access sometimes. 
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Figure 6: Comparison of k-NN search for Uniform data 

Figure 6 shows the comparison result of k-NN search for 
uniformly distributed data. It compares the two indexes 
from four performance aspects: (1) response time, (2) the 
number of priority queue access, (3) distance calculation, 
(4) Number of IO. M+-tree needs more distance 
calculations and IO access due to the uniformity of sparse 
data. But because of the using of twin nodes, M+-tree 
needs less priority queue access operation, as a result, 
M+-tree responds more quickly than M-tree. In brief, 
M+-tree outperforms M-tree on query performance 
because of the introduction of key dimension and twin 
node. 

4.4 Performance on Real Data 
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Figure 7: Comparison of k-NN search for real data  

 
In our experiment, we also test the performance of k-NN 
search and range search using a set of real data. As Figure 



 8

7 and Figure 8 show, because the real data is distributed 
densely, and clusters more easily, the superiority of 
M+-tree is more obvious. In k-NN search, as regards 
response time, priority queue access number and distance 
calculations, M+-tree superiors to the M-tree. Only 
M+-tree has more IO operations slightly. As a result, 
because of fewer queue access operations and distance 
calculation, the query using M+-tree is more rapidly. 
 In range search, the number of IO is very close in 
the two index structures. But M+-tree needs fewer 
distance calculations, which saves much more time. 
Therefore, despite the performance curves of IO access 
have a cross, the response time is shorter in M+-tree than 
in M-tree. 
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Figure 8:Comparison of r-NN search for real data 

5 Conclusion 
In this paper, we proposed M+-tree that is a dynamically 
updateable page-based metric index. This approach has 
the following features. 

(1) Using a key dimension to split a subspace into 
two twin subspaces, which are not overlapped.  

(2) In k-NN search, when the twin nodes need to 
enter a queue, this operation is performed only 
once, by using a flag in each node to mark 
whether its twin node is contained in the queue.  

(3) In range search, the key is used to perform 
effective filter while it is not needed to compute 
distance between objects.  

(4) The M+-tree adopts reallocation process 
between twin nodes to save storage space, and 
prevents the underflow of nodes.  

Experimental results show that the M+-tree has a 
higher query performance compared with M-tree.  
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