
Manufacturing Opaque Predicates in Distributed Systems for Code
Obfuscation

Anirban Majumdar Clark Thomborson

Secure Systems Group, Department of Computer Science
The University of Auckland,

Private Bag 92019, Auckland, New Zealand.
Email: {anirban|cthombor}@cs.auckland.ac.nz

Abstract

Code obfuscation is a relatively new technique of soft-
ware protection and it works by deterring reverse
engineering attempts by malicious users of software.
The objective of obfuscation is to make the logic em-
bedded in code incomprehensible to automated pro-
gram analysis tools used by adversaries. Opaque
predicates act as tool for obfuscating control flow
logic embedded within code. In this position paper,
we address the problem of control-flow code obfusca-
tion of processes executing in distributed computing
environments by proposing a novel method of com-
bining the open problems of distributed global state
detection with a well-known hard combinatorial prob-
lem to manufacture opaque predicates. We name this
class of new opaque predicates as distributed opaque
predicates. We demonstrate our approach with an
illustration and provide an extensive security analy-
sis of code obfuscated with distributed opaque predi-
cates. We show that our class of opaque predicates
is capable of withstanding most known forms of au-
tomated static analysis attacks and a restricted class
of dynamic analysis attack that could be mounted by
adversaries.

Keywords: Code obfuscation, opaque predicates,
distributed predicate detection, software protection, mo-
bile code protection, and distributed systems security.

1 Introduction

Software obfuscation is a protection technique for
making code unintelligible to automated program
comprehension and analysis tools. It works by per-
forming semantic preserving transformations such
that the difficulty of automatically extracting com-
putational logic out of the code is increased. The
first formal definition of obfuscation was given by
Barak et al. (2001) where an obfuscator was defined
in terms of a compiler that takes a program as in-
put and produces an obfuscated program as output.
Two important conditions that need to be preserved
while making this transformation are (a) functional-
ity: the obfuscated program should have the same
functionality (input/output behaviour) as the input
program, and (b) unintelligibility: the obfuscated pro-
gram should be unintelligible to the adversary in some
sense. Barak et al. defined an obfuscation method as
a failure if there exists at least one program that can-
not be completely obfuscated by this method, that is,

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

if any adversary could learn something from an ex-
amination of the obfuscated version of this program
that cannot be learned (in roughly the same amount
of time) by merely executing this program repeatedly.
Their negative result established that every obfusca-
tor will fail to completely obfuscate some programs.

Since Barak’s landmark paper on the impossibility
of obfuscation, focus has shifted to finding obfuscat-
ing transforms that are difficult (but not necessarily
impossible) for an adversary to reverse engineer. The
goal of such research is to find sufficiently difficult
transforms such that the resources required for undo-
ing them are too expensive to be worth the while of
adversaries. Following this line of research, we pro-
pose in this contribution, an obfuscation technique
derived from the combination of an instance of a hard
combinatorial problem and the difficult problem of
global state detection in distributed systems.

Depending on the size of software and the com-
plexity of transforms, a human adversary may find
the obfuscated code difficult to comprehend. How-
ever, as Thomborson et al. (2004) noted, software
that is simple and manageable enough to be com-
pletely analysed by human adversaries could presum-
ably be redeveloped from scratch by attackers at rea-
sonable cost. It is up to the software developer to
decide against using complicated obfuscation trans-
forms that might overwhelm the performance of his
simple efficient software. We will not address issues
related to performance/security tradeoffs in this con-
tribution; nevertheless, the purpose of making such
observation at the beginning of this paper is to jus-
tify the focus of this paper on an obfuscation method
that increases the difficulty of analysing complex pro-
grams.

Distributed computing obfuscation could be use-
ful in a number of practical scenarios where it is nec-
essary to maintain code confidentiality. In the first
example, consider a distributed electronic commerce
bidding scenario where the bidders download seller’s
code for bidding. The seller’s code may contain priv-
ileged information such as reserve price and priori-
tized selection list of bidders (such as frequent bid-
ders may have higher rating than first time bidders).
The seller would like to keep such information con-
fidential to the bidders, especially when their pro-
grams are executing on hosts owned by bidders, at
least for the duration of the auction. Code obfusca-
tion would serve as an appropriate tool in achieving
this objective. Secondly, consider a grid computing
scenario, like the SETI@home (2005) setup, where
scientific computation codes are downloaded on un-
trusted personal computers connected to the global
network of loosely-coupled machines. These machines
are owned by users willing to contribute a portion of
their machine’s processing power and time for helping
the project compute a section of its scientific result
by executing the downloaded code. Here too, it may

Adversary decides on a

strategy

Spying out

code/control

flow

Manipulation

of code/

control flow

Masquerading

of host

Denial of

execution

Incorrect

execution of

code

Returning

wrong results

of system

calls

Opaque predicates

prevent this branch

of attacks

Figure 1: The attack tree. The class of attacks marked
with the dotted oval are specifically addressed by
control-flow obfuscation using opaque predicates.

be desirable that scientific computation logic be kept
obscure to the owner of the host. Lastly, distributed
obfuscation would be most useful in hiding watermark
construction code (Palsberg et al. 2000, Nagra &
Thomborson 2004) which are used for proving own-
ership of software. Note that ownership proofs are
most important during the economic lifetime of the
software product. In all three scenarios, obfuscation
need not be perfect in the sense of Barak. Instead,
obfuscation is useful if it delays the release of confi-
dential information for a sufficiently long time (Hohl
1998). Secondly, any obfuscation technique would in-
crease the confidence of the code-sender, but might
decrease the confidence of a code-executer because it
would make it harder to understand what the code is
doing.

Control-flow obfuscation by means of opaque pred-
icates was introduced by Collberg et al. (1998). An
opaque predicate is a construct with true/false out-
come. The opaqueness property of predicates is at-
tributed by the fact that though their outcome is
known at obfuscation time, it is hard for a deobfusca-
tor to deduce from automated program analysis trace.
These constructs are specifically useful for addressing
attacks originating out of spying the control-flow as
illustrated in the attack tree of Figure 1. This branch
confidentiality is achieved by obscuring the real con-
trol flow of behaviours behind irrelevant statements
that do not contribute to the actual computations.
An adversary with no semantic understanding of cor-
rect control-flow of the code will also find it hard to
do purposeful manipulation of the code.

The rest of the paper is structured as follows: In
section 2, we introduce notation for discussing dis-
tributed opaque predicates. Section 3 illustrates with
an example how distributed opaque predicates could
be constructed in distributed systems. In section 4,
we present a security analysis of our technique. We
conclude our paper with a summary and discussion
of future work in section 5.

2 The concept of distributed opaque predi-
cates and global states in distributed sys-
tems

We define a distributed opaque predicate (Φ) as an
opaque predicate which depends on local states of
multiple processes spread across the distributed sys-
tem for its evaluation. The activity of each process is
modeled as execution of a sequence of events. Com-

munication in distributed systems is accomplished
through the communication primitive events send(m)
and receive(m), where m denotes the message. In
asynchronous message-passing systems, information
may flow from one event to another either because
the two events belong to the same process, and thus
may access the same local state, or because the two
events are of different processes and they correspond
to the exchange of a message.

Without a global clock, events can be ordered only
based on the notion of causality which states that
two events are constrained to occur in a certain or-
der only if the occurrence of the first may affect the
outcome of the second. In distributed systems, we
use a happened-before relation, → between states to
denote this causality (Lamport 1978). The happened-
before relation can be formally stated as: a → b if and
only if: a occurs before b in the same process or the
action following a is a send of a message and the ac-
tion preceding b is a receive of that message. Two
states for which the happened-before relation does
not hold in either direction are said to be concurrent.
The concurrency relation ‖, can be formally stated
as: a ‖ b ⇒ (a 6→ b ∧ b 6→ a). A set of states is called
a consistent cut if all states are pairwise concurrent.

Palsberg et al. (2000) defined the concept of dy-
namic opaque predicates as a possible improvement
over static opaque predicates defined originally by
Collberg et al. (1998). Their dynamic opaque pred-
icates were constant over a single program run but
varied over different program runs. We extend their
concept of dynamic opaque predicates by designing
distributed opaque predicates to be temporally unsta-
ble. A temporally unstable distributed opaque predi-
cate can be evaluated at multiple times at different
program points (t1, t2, ...) during a single program
execution such that the values (v1, v2, ...) observed
to be taken by this predicate are not identical, that
is, there exists i, j such that vi 6= vj . There are a
couple of advantages of making distributed opaque
predicates temporally unstable. The first one con-
cerns its reusability; one predicate can be reused
multiple times to obfuscate different control flows.
The second one relates to its resilience against static
analysis attacks. As will be explained later in de-
tails, distributed opaque predicate values (vi) depend
on predetermined embedded message communication
pattern between different processes participating in
maintaining the opaque predicate. The communica-
tion pattern serves as an invariant for maintaining the
consistency of local states updates and these in turn
make the predicate go true or false at desired program
locations. It is hard for the attacker to statically de-
duce predicate values because this pattern is:

• distributed over the processes.

• generated on-the-fly only when processes exe-
cute.

Structurally, we design distributed opaque predi-
cates to be relational in nature and of the form:

Φ : [(a + b + c + . . . + n) < K]

where (a, b, c, . . . , n) are integers whose values are set
by individual processes (this forms the local state of
the process, as explained in the next section), < de-
notes an equality (inequality) operator such as ‘=’
(‘!=’) and K is a constant. Opaque predicates that
are structurally relational are stealthy in the follow-
ing sense: an adversary who discovers a relational
construct in a program cannot conclude with abso-
lute certainty that it is a distributed opaque pred-
icate since common conditional constructs appear-
ing in programs are often relational in nature. But

the most important purpose of making distributed
opaque predicates structurally relational lies in the
difficulty of detecting this class of predicates in the
context of distributed global state monitoring. Re-
lational predicates cannot be written as a Boolean
expression of local predicates and therefore presents
foremost difficulty in distributed global state detec-
tion (Chase & Garg 1995). Our rationale will be fur-
ther clarified in section 4, where we provide a full
security analysis for our class of distributed opaque
predicates. A detailed discussion on the difficulty
of distributed global state monitoring is outside the
scope of this contribution and the reader is encour-
aged to see Chase & Garg (1995) and the references
contained therein.

In the next section, we will illustrate how dis-
tributed opaque predicates can be generated from
an instance of a hard combinatorial problem in dis-
tributed systems. An obfuscator will automatically
embed distributed opaque predicates in a distributed
systems program and insert send/receive primitives
for generating a predetermined communication invari-
ant. The communication invariant, in turn, maintains
the consistency of local states, that is, the value of
each component in the predicate (Φ) so that the pred-
icate holds true (ΦT) or false (ΦF) at predetermined
control-flows decided by the obfuscator and we will
argue that to an attacker, predicate value at every
obfuscated control-flow seems unknown (Φ?).

3 Generation of distributed opaque predi-
cates for distributed systems

We present here different design issues an obfuscator
needs to deal with and a step-by-step approach for
generating distributed opaque predicates in the con-
text of distributed computing obfuscation.

3.1 Selecting/spawning guard processes

Let us assume that a distributed computing system
consisting of a set of n inter-communicating processes,
denoted by {P1, P2, P3, ..., Pn}, executes on multiple
heterogeneous hosts. Assuming that the control-flow
of process P1 is to be obfuscated using distributed
opaque predicates, the obfuscator selects or spawns a
certain number of guard processes to aid in the ob-
fuscation of P1. Since processes in distributed sys-
tems typically collaborate through message exchanges
to achieve a particular task, the set of guards could
be those processes P1 frequently communicates with.
The actual number of guards employed in the ob-
fuscation of a single process may depend dynami-
cally on the availability of processes. However, the
obfuscator may spawn dummy processes to serve as
guards if there are not enough processes in the sys-
tem to do this task. The basic idea is to distribute
the local states formed in the construction of dis-
tributed opaque predicate in P1 amongst the guards
and embed a communication pattern in the form of
send/receive calls that will update respective local
states of processes to previously known values. The
local state update rules and communication pattern
embedding are described in the following subsections.

We illustrate the process interaction architecture
in Figure 2. For the demonstration to follow, we have
selected two processes, P2 and P3, to serve as guards
for P1. Local state for each process i is denoted by
the variable pi.v. P1 could, in turn, serve as a guard
process for helping in obfuscating any other process
within the system but we have excluded that possi-
bility for the sake of keeping this illustration simple.

Guard P2
Local State

p2.v

Guard P3
Local State

p3.v
Process P1
Local State

p1.v

send/receive

send/receive

send/receive

Figure 2: The protected process P1 with local state
p1.v and two guards P2 and P3 with local states p2.v
and p3.v respectively.

11

9

18 2

12 5

17 19

4 7

1

33

p1.v p2.v
p3.v

Figure 3: The doubly circular linked-list configura-
tions of P1, P2 and P3 initialised with elements from
set S. Each copy of the list is also initialised with an
initial pointer location (p1.v, p2.v, or p3.v) respective
to the process it is sent.

3.2 Adapting a Knapsack problem instance
for distributed computing obfuscation

We now consider an instance of a hard combinatorial
problem called Knapsack problem (Garey & Johnson
1979) and show that it can be adapted for manufac-
turing distributed opaque predicates. The original
0/1-Knapsack problem can be stated as follows:

Given a set S = {a1, a2, . . . , an} of positive inte-

gers and a sum T =
n∑

i=1

xiai where each xi ∈ {0, 1},
find xi. This decision problem has been shown to
be NP-complete. In adapting this problem for man-
ufacturing distributed opaque predicate, the obfusca-
tor selects the set S of positive integers and xi’s ac-
cording to some predetermined sum T . An adversary
through careful static analysis and reverse engineering
may come to learn about set S and sum T . However,
given an arbitrarily large set, the hard problem for
him is to not only decide if a solution vector x exists
but to also to determine the vector at precisely the
program points (t1, t2, ...) where distributed opaque
predicates are used to obscure the control-flow of P1.
This is hard since the distributed opaque predicates
are constructed from local states (the values range
in set S) of guard processes and P1 and local states
dynamically change depending on the interaction pat-
tern between processes. This underlying concept will
gradually evolve as we describe our methodology.

For our illustration, we select an arbitrary set as:

S = {11, 9, 18, 2, 12, 5, 17, 19, 4, 7, 1, 33}
After dynamically selecting/spawning the guards,
process P1 and the guards are each initialised by pass-
ing a dynamic data structure, such as a doubly circu-
lar linked-list, initialised with the elements of the set
S. This is illustrated in Figure 3.

In addition to initialising the linked lists with el-
ements of set S, each copy is also initialised with an
initial pointer location respective to the process the

list is sent. Node values corresponding to the pointer
locations form the local state of that particular pro-
cess. For our illustration with three processes, the
list is initialised with three pointers: p1.v for P1, p2.v
for P2, and p3.v for process P3. Messages are ex-
changed between the guards {P2, P3} and P1 accord-
ing to an embedded communication pattern. Gener-
ation of this predetermined communication pattern
will be discussed shortly. Considering an arbitrary
sum for our illustration as T = 27, the corresponding
solution vector x for the sum T is:

x = {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0}
For our three process illustration, this solution vec-

tor corresponds to p1.v = 18, p2.v = 5, and p3.v = 4.
The distributed opaque predicate (Φ) thus formed in
this case would be:

Φ : p1.v + p2.v + p2.v = 27

In the following subsections, we will explain how to
coordinate the local state update values between pro-
cesses by controlling their interaction pattern such
that Φ is satisfied at precisely the program points
where the obfuscator decides. We note that there
could be other possible solution vectors for set S and a
similar approach for constructing distributed opaque
predicates could be used with different sets of guards
and the same sum T .

3.3 Defining the local state update rules

The local state update rules defined on inter-process
message communication events are defined as follows:

receive(m) =⇒ pointer shifted right of the
current node

send(m) =⇒ pointer shifted left of the
current node

Thus, if the local state of P1, defined by p1.v, is 9
at a certain point in P1’s execution and if P1 receives
a message, the local state will change to 18. Simi-
larly, if P1 sends a message, the local state changes
to 11. Since the distributed opaque predicate is con-
structed by composing the local states of individual
processes and each local state value (corresponding to
the pointer location) fluctuates when processes send
or receive messages, the predicate will alternate be-
tween true/false outcomes throughout the run.

3.4 Selection of communication pattern and
message types

As stated earlier, local state update of individual pro-
cesses take place according to an embedded invariant
communication pattern. This predetermined pattern
is generated when the embedded send/receive calls
in processes P1, P2, and P3 get executed. The calls
could be embedded by the obfuscator by tracing
and annotating the processes with send/receive
primitives, much in the same way dynamic water-
marking algorithms annotate programs for inserting
watermark building code (Nagra & Thomborson
2004). However, there are a couple of problems with
adopting this approach for embedding the communi-
cation pattern. First of all, embedded send/receive
calls will generate an arbitrary pattern for each
run of the program unless they are controlled in
some way. Secondly, because of the nondeterminism
and latency associated with asynchronous message
passing, there is no guarantee of causal delivery
of messages. Thus, we have to ensure message
exchanges satisfy FIFO (First-in-first-out) delivery.

This delivery order ensures for all messages m and m′:

sendi(m) → sendi(m′) ⇒ deliverj(m) → deliverj(m′)

In distributed systems, the notion of global clock
is absent. We propose using vector clocks (Mattern
1989) for solving these two problems. Using vector
clock, event orderings based on increasing clock val-
ues are guaranteed to be consistent with causal prece-
dence. Before going into a detailed discussion on its
usage for constructing the predetermined communi-
cation pattern, we briefly provide a general overview
of vector clocks.

Vector clock of a system of n processes is an array
of n logical clocks, one per process. A local copy of the
vector clock is kept in each process Pi, contributing a
local state in the construction of distributed opaque
predicate. A notation of V Cb

i [i] denotes the logical
clock value of Pi at send/receive event b. V Cb

i [j] de-
notes the time V Ca

j [j] of last event a at Pj that is
known to have happened before its local event b. The
vector clock algorithm update rules could be specified
as:
• If a and b are successive events in Pi, then

V Cb
i [i] = V Ca

i [i] + 1.

• Also, if b denotes receive(m) by Pi with
a vector timestamp tm, then V Cb

i [k] =
max{V Ca

i [k], tm[k]}, for all k 6= i.
Three obfuscation-specific message classes are

used for message exchanges between process P1 and
the guards P2 and P3. These message classes help in
maintaining consistency of vector clock values and lo-
cal state updates. Each class is identified by a special
tag. The first class is identified by the tag SYSTEM.
Messages of this class may originate in either P1, P2 or
P3 and carry vector timestamp in them. Also, when a
process participates in a send/receive event of SYSTEM
type messages, it updates its vector clock and local
state according to the state update rules specified in
the previous subsection. The second class, REQUEST,
type message may only originate at P1 since it is used
to request local state values for the guards. This class
also carries vector timestamp and causes vector clock
updates but does not cause any change in local state
when received by the guards. The third type of mes-
sage is identified by tag RESPONSE. This type is identi-
cal to the second class of messages with the exception
that these originate at guards and are received by P1.
RESPONSE messages are used by guards to send lo-
cal state values back to P1 against incoming REQUEST
messages.

An example of predetermined communication pat-
tern is illustrated with processes P1, P2, and P3 in the
event-time diagram of Figure 4. An event-time dia-
gram maps each event against time and state changes
are effected by exchange of messages. The embedded
send/receive calls in processes P1, P2, and P3 generate
this communication pattern. The vector clock value
for each participating process is indicated within the
square brackets and the value of local state is indi-
cated in variable pi.v, where i denotes the process
number. Thick arrows in the figure denote SYSTEM
type messages. Thin arrows denote REQUEST type
messages and dashed arrows represent RESPONSE type
messages.

As evident from Figure 4, asynchrony of message
passing induces concurrency within the system. Be-
cause of this concurrency, an adversary will find it
difficult to monitor local state changes occurring be-
tween the processes from outside and determine if dis-
tributed opaque predicate (Φ) is satisfied at a partic-
ular program location in a particular run. Along the

[0,0,1]

[0,1,0]

[1,1,0]

P2
p2.v = 5

p3.v = 7

p2.v = 5

CUT 1

P3

P1
F ?

p2.v = 12 p2.v = 17

p3.v = 4

p1.v = 9 p1.v = 18

F

p1.v = 9

[2,1,0] [3,1,0]

[0,2,1] [2,3,1][2,4,1]

[4,4,1]

[3,1,2] [3,1,3]

[10,7,5][6,4,3]

[6,5,3]

[7,4,3]

[7,6,3]

[8,4,3]

[8,4,4]

[7,7,3]

[9,7,3][5,4,3]

[8,4,5]

Figure 4: The invariant in the form of a predetermined nondeterministic communication pattern is embedded
by the obfuscator into P1, P2 and P3. The update pattern of local states can be traced from Figure 3. Thick
arrows denote SYSTEM type messages, thin arrows denote REQUEST type messages, and dashed arrows denote
RESPONSE type messages.

timeline of process P1, we have labeled the value of
predicate (Φ) between two successive events distin-
guished by vector clock values. A (ΦT) label implies
that the predicate is guaranteed to hold true within
that event interval (successive events) for that partic-
ular run. Similarly, (ΦF) implies that the predicate
is guaranteed to be false within that interval for that
particular run. A label denoted by (Φ?) along the
timeline implies that the predicate value is unknown
since Φ is not guaranteed to hold.

Moreover, in Figure 4, it seems that (Φ) would
be satisfied at CUT1 since the local states p1.v = 18,
p2.v = 5, p3.v = 4 add up to 27. However, note that
there is no guarantee of Φ being satisfied at CUT1.
This guarantee cannot be made because of the fol-
lowing two special cases that could arise out of non-
determinism:

3.4.1 No guarantee on message delivery or-
der

Consider the case from Figure 4 where the message
(henceforth referred to as message a) originating from
P3 at vector clock value [0, 0, 1] reaches before the
message (henceforth referred to as message b) origi-
nating at vector clock value [0, 1, 0] of P2 is sent by
process P2. This situation is depicted in Figure 5.

When message a reaches guard process P2, the
vector clock value changes to [0, 1, 1] and P2’s local
state, p2.v, changes from 5 to 17 (refer to Figure 3).
Guard process P3’s local state, p3.v, changes from 7
to 5. However, after P2 sends message b at vector
clock [0, 2, 1], its local state reverts to 5. When the
probe messages (REQUEST) are sent by P1 after the
vector clock state [1, 2, 1], the local state values re-
turned from processes P2 and P3 are p2.v = 5 and
p3.v = 4 respectively. By the time the probe mes-
sages are sent to P2 and P3, process P1 has already
changed its local state value, p1.v, to 18. The local
state values of processes P1, P2, and P3 add up to 27
and the distributed opaque predicate (Φ) is satisfied
at CUT1.

3.4.2 No guarantee on message delivery

Now consider the case where after the first receive
of message b at [1, 1, 0] by process P1, it cannot be

b

a

[0,0,1]

[0,1,1]

[1,2,1]

P2
p2.v = 5

p3.v = 7

p2.v = 5

P3

P1
F

p2.v = 17

p3.v = 4

p1.v = 9
p1.v = 18

[0,2,1]

Figure 5: No guarantee on message delivery order.
Messages a and b are swapped and (Φ) is satisfied at
CUT1.

guaranteed that the message a from guard process P3
originating at [0, 0, 1] has reached guard process P2.
This guarantee cannot be made because of the nonde-
terministic nature of asynchronous message-passing.
This situation is depicted in Figure 6.

As seen from the figure, since guard process P2
changes its local state to p2.v = 12, the local state
values of processes P1, P2, and P3 do not add up to 27.
Consequently, the distributed opaque predicate (Φ) is
not satisfied at CUT1. In yet another specialization of
this case, message b may reach process P1 even before
message a originates from guard process P3. In this
case, guard process P3 will maintain its local state
value at p3.v = 7. Thus, the predicate value will also
not be satisfied in this case since the sum of the local
state values of processes does not add up to 27.

Thus, we can generally observe, from the non-
deterministic communication pattern of Figure 4,
that while designing the communication invariant,
crossover message-passing patterns will cause nonde-
terminism within the system and this property could
be utilized by the obfuscator to confuse attackers into
falsely believing that a distributed opaque predicate
will be guaranteed to hold true or false at a particular

b

a

[0,0,1]

[0,1,0]

[1,1,0]

P2
p2.v = 5

p3.v = 7
P3

P1
F

p2.v = 12

p3.v = 4

p1.v = 9
p1.v = 18

Figure 6: No guarantee on message delivery. Message
a is in transit while message b reaches process P1. The
predicate (Φ) is not satisfied at CUT1.

program location.
On the other hand, deterministic communication

patterns would produce guaranteed results for dis-
tributed opaque predicates. An example of determin-
istic cyclic communication pattern is shown in Fig-
ure 7. This event-time diagram is a continuation of
the one shown in Figure 4 and the vector clock ticks
are continued along the timelines of processes P1, P2,
and P3. At [14, 10, 9], process P1 is ready to evaluate
the distributed opaque predicate (Φ). Interestingly
at this point, it can be guaranteed that there are no
messages in transit and hence the predicate must hold
true (ΦT) at CUT2. For all other event intervals, (Φ)
is guaranteed to be false (ΦF).

3.5 Distributed opaque predicate embedding
and guarded commands for maintaining
local state consistency

Just as nondeterminism and asynchrony can be used
as tools against the adversary, these could also cause
problems to the obfuscator since uncontrolled con-
currency will update states in an unpredictable way.
If local states of processes are updated in an uncon-
trolled way, then distributed opaque predicates can-
not be used effectively for control-flow obfuscation.

The problem associated with unpredictable local
state update can be brought under control if the com-
munication pattern generating code (specifically the
send/receive primitives) can be guarded; i.e., a mes-
sage contributing to a deterministic communication
pattern is only sent from a process if it is guaranteed
that the vector clock value of the process issuing this
send is up-to-date. Alternatively, this means that the
process should have completed all the message com-
munication events (send/receive) before issuing an-
other send. We show an abstract pseudo-code for con-
trolled message passing and predicate evaluation for
process P1 in Figure 8. We have used blocking receive
to ensure that the local state of process P1 is consis-
tent before it issues a send message (i.e., the process
busy-waits on all outstanding messages it has not yet
received). To make it more flexible, non-blocking re-
ceive with guarded sends could be used to maintain
consistency of local states. This can be implemented
by making sure that before each send primitive, the
vector clock from last receive is up-to-date (by com-
paring it against an expected timestamp value). If
the clock is not up-to-date, the process blocks the
send call for outstanding receives.

Figure 8 shows pseudo-code snippets for nondeter-
ministic (CUT1) and deterministic (CUT2) evaluation
of the predicate Φ. At CUT1, Φ is unknown and hence
dummy actions are inserted in branches correspond-
ing to both ‘true’ and ‘false’ paths. However, at
CUT2, the obfuscator knows that Φ holds true (be-
cause it knows when it participates in deterministic
and nondeterministic message-passing) and hence in-
serts real actions in the path corresponding to the
‘true’ branch of the control statement. Pseudo pro-
cess interaction codes for guard processes are similar
to P1’s code and have been excluded from this con-
tribution because of space limitations.

During obfuscation phase of P1, the obfuscator
may embed many distributed opaque predicates at
different control-flow points in the program corre-
sponding to, for example, the construction of water-
marking code. Any arbitrary nesting of distributed
opaque predicates can be used for obfuscating the
control-flows. A different set of guard processes could
also participate in different communication invariants
involving other local state update rules.

4 Security analysis of obfuscation using dis-
tributed opaque predicates

In this section, we comment on the obfuscatory
strength of the proposed technique by arguing that
known forms of static analysis attacks and a restricted
class of dynamic analysis attack are intractable from
an adversary’s perspective. For each class of attack,
we also present our assumptions on technical limita-
tions of the adversary.

4.1 Static analysis attacks

We argued in section 2 that static analysis of tempo-
rally unstable distributed opaque predicates will not
reveal their outcome since the invariant communica-
tion pattern which influences their outcome is gener-
ated from the embedded send/receive primitives on-
the-fly. We did not, however, comment on the difficult
issues an attacker needs to address in order to stat-
ically find these distributed opaque predicates from
the process codes.

In order to statically analyse the obfuscated code,
an adversary must depend on static slicers to slice
parts of the process code which could affect the
value of distributed opaque predicates at obfuscated
control-flow points. Slicing of distributed programs
is a major challenge due to the timing related inter-
dependencies among processes. Moreover, to find the
slicing criterion of the slicer, the analyser must rely
on alias analysis (Horowitz 1997, Hind et al. 1999) to
determine the kind of structure the local state of pro-
cesses points-to (this information he could get from
the message parameters), and if the pointer corre-
sponding to the variables used in the construction of
distributed opaque predicates refer to the same dy-
namic data structure in the guards at some program
location (where the distributed opaque predicates are
used in P1). To achieve this, static analysers must
use inter-process escape alias analysis to determine
the objects that can be referenced in processes sepa-
rate from the ones in which they are allocated.

Though much research work on intra- as well as
inter-procedural alias analysis and inter-procedural
thread escape analysis have been done in the last
few years (Rugina & Rinard 1999, Sălcianu & Ri-
nard 2001, Whaley & Rinard 1999), we have been
unsuccessful in finding a technique that can perform
alias analysis by considering asynchronous message-
passing of distributed processes as escape points. We
believe the reason why this problem has not yet been

[7,8,3]
P2

p2.v = 5

CUT 2

P3

P1
FT

p2.v = 17

p3.v = 4

p3.v = 7

p1.v = 18 p1.v = 9

[8,8,6]

[8,8,7]

[10,8,7][11,8,7][12,8,7]

[11,9,7][11,10,7]

[12,8,8] [12,8,9]

[13,10,7][14,10,9] [15,10,9]

[15,11,9]

F

Figure 7: The invariant in the form of a predetermined deterministic communication pattern is shown in this
figure. As before, thick arrows denote SYSTEM type messages, thin arrows denote REQUEST type messages, and
dashed arrows denote RESPONSE type messages.

addressed by the program analysis community is be-
cause we do not have efficient, precise and scalable
algorithms for performing simpler cases of alias anal-
ysis in sequential multi-threaded programs and asyn-
chronous concurrent systems present problems that
are much greater in magnitude.

4.2 Dynamic analysis attacks

Dynamic analysis attacks assume that the adversary
has most (if not all) of the static analysis information
available since he has to monitor the local state value
changes of individual processes (an assumption we ar-
gued in the previous subsection as quite intractable).
Moreover, in order to mount a dynamic analysis at-
tack, the adversary needs to learn about the structure
of the distributed opaque predicate so that he can
identity which processes are contributing in building
the global state (i.e. the guard processes along with
process P1). We need to make the restriction that
an adversary cannot possess sufficient static analy-
sis information in order to insert debugging probes
at obfuscated control-flow points of P1. If an adver-
sary is able to do this, he can quite easily determine
the outcome of distributed opaque predicates by just
checking probe values during execution of process P1.
If we fail to make this restriction, the use of opaque
predicates in any form of program obfuscation would
be trivial. We, however, make the relaxation that
the adversary can monitor the communication events
using sniffer processes in order to monitor individ-
ual local states formed by process P1 and the guards.
This scenario is depicted in Figure 9.

We now show proceed to show that the problem of
global state monitoring is hard even if the adversary
manages to collect all necessary static analysis infor-
mation. The problem of distributed opaque predicate
evaluation, from the adversary’s perspective, can be
stated as evaluating predicate Φ as a function of the
global state of a distributed system. It is problematic
to detect unstable distributed opaque predicates since
the condition encoded by the predicate may not per-
sist long enough for it to be true when the predicate is
evaluated by the adversary. The domain of such pred-
icates is a Boolean valued function formed on the set
of all possible cuts from all possible executions of the
distributed system. Therefore, the predicate detec-
tion problem can also be defined as identifying a cut

Guard P2
Local State

p2.v

Guard P3
Local State

p3.v
Process P1
Local State

p1.v

send/receive

send/receive

send/receive

Adversary’s

Monitor

Process

s
n
iffs s

n
if
fs

Figure 9: A typical dynamic analysis attack scenario
by actively monitoring state changes to detect dis-
tributed opaque predicate Φ.

in which the predicate evaluates to true. The diffi-
culty associated with detection is the fact that the
number of states from any execution may be expo-
nential in the number of processes.

Let {X1, X2, . . . , Xn} define a sequence of cuts,
where for all i, Xi < Xi+1. A sequence of cuts is
called an observation if and only if for all i, Xi and
Xi+1 differ by exactly one state. The adversary has
to detect a consistent observation O of the distributed
computation such that Φ holds in a global state of O.
Now, this is a decision problem in the form of:

Given: an execution Y of n processes, an initial cut
X ≤ Y , and the predicate Φ.

Determine: if there exists a cut W : X ≤ W ≤ Y
such that Φ(W) is true.

Chase & Garg (1995) proved that this detection
problem is NP-complete by showing that the detec-
tion of general global predicate is intractable even for
simple distributed computation where the local states
are restricted to take only true or false values and
no messages are exchanged within the system.

In the subsections to follow, we model a dynamic
analysis distributed monitoring attack by discussing
in details the three types of available algorithms an
adversary may choose to dynamically evaluate the
outcome of Φ and the technical limitations these al-
gorithms possess.

Process P1:

initialize(VectorClock); //Initialize Vector Clock to [0,0,0]

… //Start nondeterministic predicate evaluation

//get SYSTEM message
while(!receive(VectorClockTimeStamp,SYSTEM,bufferVa l)){

probe(ReceivePort); //Check for message by polling
}
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [1,1,0]
shift_right(p 1.v); //point to the right node

//probe for local states from guard processes
increment(VectorClock); // Vector Clock value [2,1, 0]
send(P 2,REQUEST); //probe for p 2.v value
increment(VectorClock); // Vector Clock value [3,1, 0]
send(P

3
,REQUEST); //probe for p

3
.v value

//get RESPONSE messages
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p2.v = bufferVal;
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [4,4,1]
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p3.v = bufferVal;
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [5,4,3]

// evaluate distributed opaque predicate
if (p

1
.v+p

2
.v+p

3
.v==27) {// CUT1: Predicate Value Unknown

 // Dummy watermark building code
}
else {

 // Dummy watermark building code
}

… //Start deterministic predicate evaluation

//get SYSTEM message
while(!receive(VectorClockTimeStamp,SYSTEM,bufferVa l)){

probe(ReceivePort); //Check for message by polling
}
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [10,7,8]
shift_right(p

1
.v); //point to the right node

//probe for local states from guard processes
increment(VectorClock); // Vector Clock value [11,8 ,7]
send(P

2
,REQUEST); //probe for p

2
.v value

increment(VectorClock); // Vector Clock value [12,8 ,7]
send(P 3,REQUEST); //probe for p 3.v value

//get RESPONSE messages
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p

2
.v = bufferVal;

increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [13,10,7]
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p

3
.v = bufferVal;

increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [14,10,9]

// evaluate distributed opaque predicate
if (p

1
.v+p

2
.v+p

3
.v==27) { // CUT2: Predicate Value True

 // Real watermark building code
}
else {

 // Dummy watermark building code

}

Figure 8: Pseudo-code showing the obfuscation of control-flow in P1 using distributed opaque predicate Φ.

4.2.1 Active monitoring by taking snapshot

The first option the adversary has is to solve the
global predicate evaluation problem through active
monitoring. In this strategy, the adversary uses a
monitor process which sniffs the communication be-
tween process P1 and the guards at some predeter-
mined periodic intervals and then combines all the
local states obtained to build the global state. This
strategy is called ‘snapshot’ approach and Chandy &
Lamport (1985) describe an algorithm to construct
consistent global states using snapshots of individual
local states. Since communication within distributed
systems incurs latency, the consistent global states
thus constructed can only reflect some past state of
the system. By the time the snapshots are obtained,
conclusions drawn about the system by evaluating
the distributed opaque predicate may have no bearing
to the present. Therefore, the snapshot algorithm is
suitable for monitoring predicates that do not change
value throughout the entire program run and since
our method uses temporally unstable predicates, the
adversary will not be able to deduce a correct reason-
ing about the predicate’s behaviour using this algo-
rithm - the predicate may have held even if it is not
detected.

4.2.2 Passive monitoring by constructing
state lattice

Through the second approach, due to Cooper &
Marzullo (1991), the adversary can collect all local
state values from individual processes and check for
consistent observation O using passive monitoring. In
order to implement this algorithm, the adversary’s
monitoring process must sniff the guard processes and
P1 for portions of their local states that are referenced
in Φ. The monitor maintains sequences of these lo-
cal states, one sequence per process, and uses them
to construct the global state. This procedure is based
on incrementally constructing the lattice of consistent
global states associated with the distributed compu-
tation. The state lattice formed is linear in the num-
ber of global states, and the number of global states
formed is O(en) where e is the maximum number of
events monitored and n is the number of processes
in the system. For every global state in the lattice,
there exists at least one run that passes through it.
Hence, if any global state in the lattice satisfies Φ, the
distributed opaque predicate is detected.

The problem with this type of monitoring is that
the adversary may end up incorrectly including spu-
rious local state changes in case he erroneously con-
siders processes that are interacting with guards and
P1 during construction of the lattice or if he includes
spurious message communication events (by failing
to distinguish between message classes that only up-
date the vector clock values and not the local state
of processes). Hence, if the number of guards in the
system is large and a considerable amount of mes-
sage exchange takes place, the adversary will face the
problem of state explosion while trying find a consis-
tent cut by ‘walking-through’ the lattice thus formed.
Moreover, if the adversary fails to monitor some of
the process interactions, the amount of concurrency
in the form of local state changes will increase and
this will, in turn, increase the states of the lattice.
Increase in the number of guards in the system will
increase the dimension of the lattice proportionately.
Furthermore, the adversary has to repeat this passive
monitoring process to detect the outcome of each dis-
tributed opaque predicate used to obfuscate control-
flow points in process P1. The complexity will further
increase if such predicates are nested and guards are
spawned dynamically during P1’s execution.

4.2.3 Active monitoring by exploiting predi-
cate structure

In the final approach, the adversary can use Garg
& Waldecker’s (1994) method for detecting unstable
global predicates. Their method exploits the struc-
ture of predicate by decomposing the predicate into
a conjunction of local predicates and independently
detecting the outcomes of these local predicates.
It also requires the use of explicit token passing
messages between the monitor process and the
processes which contribute states in the construction
of distributed opaque predicates. This approach
works well for predicates that are conjunctive in
nature. However, for relational distributed opaque
predicates, their method yields no feasible solution
because relational predicates cannot be broken
down into conjunction of predicates formed on local
states. Moreover, it requires processes participating
in maintaining the distributed opaque predicate to
cooperate with adversary’s monitor process by main-
taining snapshots (evaluating their component of the
predicate) and passing the result and dependence
information to the adversary’s monitoring process.
This requirement quite unrealistic under reasonable
practical assumptions.

We conclude by observing that out of these three
available approaches, the adversary has to resort to
using only the second approach because the other two
available approaches are only suitable for detecting
either predicates that do not change their value dur-
ing the entire program run or predicates that can
be broken down into a conjunction of local predi-
cates. Moreover, the second approach will be in-
tractable if a large number of guard processes are
used or are spawned dynamically during execution
of the obfuscated process P1. Also, in the absence of
precise static analysis methodologies, spurious events
and state changes would be erroneously taken into
consideration by the adversary and this would make
the detection process incorrect and intractable. Un-
der pragmatic assumptions, we believe practical dis-
tributed systems will employ a large number of pro-
cesses as guards and hence processes obfuscated with
distributed opaque predicates will be resilient to pas-
sive monitoring dynamic analysis attacks.

5 Conclusion

In this contribution, first of its kind, we have ad-
dressed the problem of code obfuscation in soft-
ware executing in distributed computing environ-
ments. Specifically, we have addressed control-flow
obfuscation and have extended the original concept of
opaque predicates proposed by Collberg et al. (1998)
to the domain of distributed computing. We have
demonstrated that hard combinatorial problems can
be tuned with open problems related to distributed
systems state monitoring to manufacture a new class
of resilient opaque predicates; which we defined in this
contribution as distributed opaque predicates. We
have also demonstrated through a detailed security
analysis that our class of distributed opaque predi-
cates is resilient to known static analysis attacks and
passive monitoring dynamic analysis attack from ad-
versaries.

The following salient points could be noted regard-
ing this new class of opaque predicates:

• Stealth: The relational structure of distributed
opaque predicates will make these unobvious
to an attacker since predicates of this nature
appear as conditional expressions in most pro-
grams. Moreover, guard processes, along with

the process to be obfuscated, maintain the dis-
tributed opaque predicate invariant through an
embedded communication pattern. This pat-
tern is generated by send/receive calls embedded
within process code. Processes in loosely-coupled
distributed systems, as such, communicate using
message-passing and hence the presence of addi-
tional guards and their interactions with the host
process will, we believe, be unsuspecting from the
perspective of an adversary.

• Performance: Distributed systems are inher-
ently loosely-coupled in nature and do not en-
force hard timing requirements on task comple-
tion. Hence, the overall slowdown in system ef-
fectuated by additional guard processes and mes-
sage exchanges might be acceptable to developers
having stringent security requirements.

As part of our future work, we will concentrate
on automatic embedding of distributed opaque pred-
icates at selected control-flow locations in distributed
computing processes through program annotation.
We would also come up with a model of making the
obfuscated system, consisting of the obfuscated pro-
cess and cooperating guards, more fault-tolerant such
that the system can function in case one or more
guards are accidentally lost or purposefully killed by
an adversary. Our present model is rigid in the sense
that the loss of guard processes will make the obfus-
cated program go into an incorrect state, thus adding
some form of tamper-proofing. But, this notion is
weak since the guards and messages may be lost in
the system accidentally. We will also investigate into
new classes of distributed opaque predicates and in-
stances of hard combinatorial problems for generating
them in the future.

References

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.,
Sahai, A., Vadhan, S., & Yang, K. (2001), On
the (Im)possibility of Obfuscating Programs, In
the proceedings of CRYPTO-2001. LNCS Vol-
ume 2139, Springer-Verlag. Santa Barbara, CA,
USA

Chow, S., Gu, Y., Johnson, H. & Zakharov, V.A.
(2001), An Approach to the Obfuscation of
Control-Flow of Sequential Computer Programs.
In the proceedings of 4th International Con-
ference on Information Security, LNCS Volume
2200. Springer-Verlag. Malaga, Spain.

Garey, M. R. & Johnson, D. S. (1979), A guide to the
theory of NP-completeness. W.H. Freeman and
Company.

Thomborson, C., Nagra, J., Somaraju, R. & He, C.
(2004), Tamper-proofing software watermarks.
In the proceedings of 2nd workshop on Aus-
tralasian information security, Data Mining and
Web Intelligence, and Software Internationaliza-
tion. Volume 32. Dunedin, New Zealand. ACM
Digital Library.

SETI@home (2005), http://setiathome.ssl.berkeley.edu/
(accessed July 15 2005).

Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D.,
Shao, Q. & Zhang, Y. (2000), Experience with
software watermarking. In the proceedings of
16th IEEE Annual Computer Security Applica-
tions Conference (ACSAC’00). IEEE Press. New
Orleans, LA, USA.

Nagra, J. & Thomborson, C. (2004), Threading Soft-
ware Watermarks. In the proceedings of 6th In-
ternational Workshop on Information Hiding,
LNCS Volume 3200, Springer-Verlag. Toronto,
ON, Canada.

Hohl, F. (1998), Time limited blackbox security: Pro-
tecting mobile agents from malicious hosts. In
the proceedings of 2nd International Workshop
on Mobile Agents, LNCS Volume 1419, Springer-
Verlag. Stuttgart, Germany.

Collberg, C., Thomborson, C. & Low, D. (1998),
Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs. In the proceedings of 1998
ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’98).
San Diego, CA, USA.

Lamport, L. (1978), Time, clocks and the ordering of
events in a distributed system. In Communica-
tions of the ACM, 21(7):558-565.

Chase, C. & Garg, V.K. (1995), Detection of global
predicates: Techniques and their limitations. In
the Journal of Distributed Computing, Volume
11, Issue 4, pages 191 - 201. Springer-Verlag.

Mattern, F. (1989), Virtual time and global states of
distributed systems. In the proceedings of Work-
shop on Parallel and Distributed Algorithms, El-
sevier Science Publication, pages 215-226.

Horowitz, S. (1997), Precise Flow-insensitive may-
alias in NP-hard. In ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS),
Vol. 19 No. 1.

Hind, M., Burke, M., Carini, P. & Choi, J.D. (1999),
In ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), Vol. 21 No. 4.

Rugina, R. & Rinard, M. (1999), Pointer analysis
for multithreaded programs. In the proceedings
of 1999 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
(PLDI ’99). Atlanta, GA, USA.

Sălcianu, A. & Rinard, M. (2001), Pointer and escape
analysis for multithreaded programs. In the pro-
ceedings of 2001 ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPOPP ’01), Snowbird, UT, USA.

Whaley, J. & Rinard, M. (1999), Compositional
pointer and escape analysis for Java programs. In
the proceedings of 1999 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA ’99), Den-
ver, CO, USA.

Chandy, K.M. & Lamport, L. (1985), Distributed
Snapshots: Determining global states of dis-
tributed systems. In ACM Transactions on Com-
puter Systems, pages 63-75.

Cooper, R. & Marzullo, K. (1991), Consistent de-
tection of global predicates. In the proceedings
of 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging (PADD ’91). Santa Cruz,
CA, USA.

Garg, V. K. & Waldecker, B. (1994), Detection
of weak unstable predicates in distributed pro-
grams. In IEEE Transactions on Parallel and
Distributed Systems, pages 299-307, Volume 5,
No. 3.

