
Measuring the difficulty of code comprehension tasks using software
metrics

Nadia Kasto and Jacqueline Whalley

Software Engineering Research Laboratory
School of Computing and Mathematical Sciences

AUT University
PO Box 92006, Auckland 1142, New Zealand

{nkasto,jwhalley}@aut.ac.nz

Abstract
In this paper we report on an empirical study into the use
of software metrics as a way of estimating the difficulty
of code comprehension tasks. Our results indicate that
software metrics can provide useful information about the
difficulties inherent in code tracing in first year
programming assessment. We conclude that software
metrics may be a useful tool to assist in the design and
selection of questions when setting an examination.
Keywords: software metrics, code comprehension, novice
programmers, assessment.

1 Introduction
It is common knowledge that novice programmers find
programming particularly difficult and that assessing the
knowledge and skills the students have gained is
problematic. Historically the pass rates for students
undertaking first year courses have been relatively low.
This in part might be due to some difficulties related to
the assessment of these courses. Whalley et al. (2006)
noted that “assessing programming fairly and consistently
is a complex and challenging task, for which
programming educators lack clear frameworks and tools”
(p. 251). More recently, Elliott Tew (2010) suggested that
“the field of computing lacks valid and reliable
assessment instruments for pedagogical or research
purposes” (p.xiii).

In order to write better questions and assessments
computer science educators have attempted to apply
various educational taxonomies to guide the design of
assessments. In 2006 an analysis of a program
comprehension question set within two key pedagogical
frameworks: the Bloom (Anderson et al. 2001) and
SOLO (Biggs and Collis 1982) taxonomies was reported
(Whalley et al. 2006). It was found that student
performance was consistent with the cognitive difficulty
levels, indicated by the assigned Bloom category of the
questions. Additionally a degree of consistency was
found between student performance and the SOLO
taxonomy level of their responses to an ‘Explain in Plain

Copyright © 2013, Australian Computer Society, Inc. This paper
appeared at the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

English’ (EiPE) question. While these results and results
of subsequent studies by the Bracelet project team were
encouraging (e.g.: Lister et al. 2006, Thompson et al.
2008, Clear et al. 2008, Sheard et al. 2008, Whalley et al.
2011) many educators have reported difficulties in
reliably using these and other taxonomies in the context
of novice computer programming assessment design,
evaluation and research (e.g.: Fuller et al. 2007,
Thompson et al. 2008, Shuhidan, Hamilton and D’Souza
2009, Meerbaum-Salant, Armoni and Ben-Ari 2010)

An alternative or supplementary approach to
informing the assessment instrument design process
might be to use software metrics in order to determine the
difficulty of examination questions designed to assess
novice programmers.

2 Background
Typically research into software metrics is conducted in
the context of relatively large scale commercial software
development projects. However some work using
software metrics to support research related to the
improvement of teaching and learning of computer
programming has been undertaken.

One study applied software metrics to previously
reported code used in empirical studies of novice and
expert program comprehension (Mathias et al. 1999). The
metrics were used in order to examine the underlying
nature of code designed to study the process of program
comprehension. The software metrics used in this study
were lines of code and cyclomatic complexity (McCabe
1976) . A correlation was found between the complexity
of the code and the comprehension strategies observed by
the original researchers suggesting that lines of code and
cyclomatic complexity might correlate to the difficulty of
small program comprehension tasks.

Parker and Becker (2003) employed Halstead’s
metrics (Halstead 1977) to measure and compare the
effectiveness of students solutions of two different code
writing assessments based on the premise that the metrics
can be seen as a measure of work done. An earlier
empirical study measuring student solutions to code
writing questions using software metrics and comparing
those measures with student performance found that
neither lines of code nor Halstead’s metrics were able to
predict the error rate in the student’s solutions (Klemola
1998). Subsequently, Klemola and Rilling (2003)
developed a software metric called the Kind of Line of
Code Identifier Density (KLCID) metric for analysing the
cognitive complexity of program comprehension tasks.
KLCID was designed to capture the effect of the number

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

59

of unique kinds of code lines in a program segment. For
KLCID only conceptually unique lines of code are
counted and within these unique lines the identifier
density is calculated (Klemola and Rilling 2003). The
effectiveness of the KLCID metric was evaluated in a
study of code comprehension tasks from a final
examination of an introductory C++ course. The
complexity of each task as measured by KLCID was
compared with the average student performance on the
task. A correlation was found between increasing KLCID
and decreasing student performance. This finding is not
surprising as in text comprehension it has been found that
a higher density of concepts decreases the rate of
comprehension (Kintsch and van Dijk 1978). The authors
concluded that KLCID was “a good candidate to measure
the complexity of code comprehension assessment tasks
within the same course” (Klemola and Riling 2003).
However the code comprehension examination questions
themselves are not reported so it is difficult to determine

the general applicability of the KLCID metric to novice
programmer code comprehension tasks.

3 Software Metrics
In order to attempt to measure the difficulty of typical
code comprehension and code tracing examination
questions we first selected an appropriate set of software
metrics. Software metrics focus on a particular feature of
a program and are often devised with a single
programming paradigm in mind. Table 1 shows a set of
commonly employed software metrics classified by
metric type and their applicability to three programming
paradigms.

The examination questions that we have analysed are
from a CS1 (first semester) Java programming course.
The questions are typical code tracing and EiPE questions
that have been reported extensively in the recent literature
(e.g.: Venables, Tan and Lister 2009, Murphy, McCauley
and Fitzgerald 2012).

Metric Type Metric Programming Paradigm

imperative structural object oriented

 Number of lines of code   

 Number of blank lines of code   

 Number of comment lines of code.   

 Number of comment words.   

 Number of statements   

 Number of methods.  

 Average line of code per method.  

Basic Number of parameters.   

Number of import statements.
 

 Number of arguments.  

 Number of methods per class. 

 Number of classes referenced. 

 Average number of attributes per class 

 Number of constructors. 

 Average number of constructors per class. 

 KLCID   

Complexity metrics Cyclomatic complexity   

Nested block depth.   

 Number of operands.   

 Number of operators.   

 Number of unique operands.   

 Number of unique operators.   

Halstead metrics Effort to implement.  

Time to implement.
 

 Program length.  

 Program level.  

 Program volume.  

 Maintainability index.  

 Weight method per class. 

 Response for class. 

Object oriented Lack of cohesion of methods. 

Coupling between object classes.


 Depth of inheritance tree. 

 Number of children. 

Table 1: Static metrics and their applicability across programming paradigms

CRPIT Volume 136 - Computing Education 2013

60

Although the course is taught with an objects first
approach most of the comprehension questions are small
bite size pieces of code and are largely procedural.
Therefore, even if the code is encapsulated in a method,
many of the questions are essentially procedural in
nature.

Of the metrics in Table 1 we selected the subset
which we deemed to be most applicable to measuring the
difficulty of novice code tracing and EiPE tasks:

• Number of statements
• Number of operands (including all identifiers

that are not key words)
• Cyclomatic complexity
• Average nested block depth
• Average number of parameters

One EiPE question involved code that contained two
methods and internal method calls. The object oriented
metric, the number of methods, that had a variation in
value was therefore included as part of our metric set for
EiPE questions.

We did not use KCLID because most of our code
comprehension questions did not contain lines of code
which were not conceptually unique lines of code.
Additionally, we elected not to use the number of
operators metric as the number of operators is
proportional to the number of operands and would
therefore not contribute anything new to the evaluation.

We also supplemented this set of metrics with two
simplified versions of dynamic metrics for the
measurement of the difficulty of the code tracing
questions that we have called the sum of all operands in
the executed statements and the number of executed
program statements. The sum of all operands in the
executed statements was calculated as the sum of all
operands (O) in the executed statements ES where the
total number of executed statements is ν.

Sum of all operands in the executed statements = ∑ν ESi (O)
i=1

The number of executed program statements was

counted as the total number of statements executed for
the complete tracing task. This count, if a selection or
iterative statement is included in the code, is dependent

on the data provided as the input for the specific tracing
task.

These dynamic metrics provide a measurement of the
execution complexity of the code. It seems reasonable to
include such metrics because when students are tracing
code they are hand executing the code and, from an initial
input, processing data through the code line by line via
the relevant paths of the code in order to determine the
output. We postulate that these metrics will correlate well
with the difficulty of the tracing task.

4 Data Sets
The questions analysed in this study were selected from
several occurrences of a final examination for a first year
Java programming course. The teaching team and
pedagogy was the same for all instances of the course and
the results were taken from exam scripts for which the
students had given ethical consent for their data to be
used. These students were representative of the entire
cohort.

For the code tracing questions two examinations were
analysed. One examination contained the questions 1A-D
and resulted in 93 student responses for analysis and the
other contained questions 2A-2E for which 79 student
responses were analysed (Table 2). The EiPE questions
were selected from three examinations. For 3A-D, 4A-C
and 5A-E there were respectively 93, 79, and 92 student
responses analysed. The percentage of fully correct
answers is used as the measure of question difficulty.

The distribution of the percentage of fully correct
answers was irregular and clustered. We therefore used
natural, data driven, clustering to place the data into a five
point scale from very easy (a relatively high percentage of
students got the question correct) to very hard. Questions
of similar difficulty, as determined by student
achievement, for example 1D (26%), 2D (21%) and 2E
(27%) were therefore ranked at the same difficulty level.
These ranks were then used to determine whether or not
there was a correlation between difficulty and the relevant
metrics. It seemed unlikely that one common set of
software metrics would provide useful information about
different types of questions or about questions designed
to measure significantly different types of knowledge. For
this reason the data from the code tracing and EiPE
questions were placed in separate data sets.

 questions
 1A 1B 1C 1D 2A 2B 2C 2D 2E

Difficulty ranked 1 4 4 8 4 6 2 8 8
Cyclomatic complexity 1 2 2 3 1 1 3 2 3
Average nested block depth 1 2 2 3 1 1 2 2 3
Number of operands 14 10 12 29 13 5 13 12 17
Number of parameters 0 2 1 2 0 2 3 1 1
Number of statements 7 5 5 8 3 1 2 4 3
Sum of all operands in the executed statements 14 18 33 48 13 10 35 42 138
Number of commands in the executed statements 7 9 13 52 6 4 13 20 34

Table 2: Metrics for code tracing questions

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

61

An item discrimination analysis was undertaken to
examine the relationship between student scores for each
question and the total score for the related set of
questions to identify any outlier questions that did not
therefore belong in the data set. A point bi-serial
correlation was calculated between each question and the
total score, excluding the score for the question itself, for
all questions in that set (tracing questions or EiPE
questions) . This provides an estimate of the extent to
which an individual question is measuring the same
competencies as the rest of the questions in that question
set. Each question is expected to contribute to the total
score for that question set. Any question that does not
correlate positively with the total score is probably
measuring something other than what the examiners
intended and does not belong in that set.

For all questions except 2C and 2B a significant
positive correlation was found between students’ scores
on the question and their overall scores on the related set
of questions. Therefore, except for 2C (rpb = 0.165, p =
0.15) and 2B (rpb= 0.217, p = 0.06) the questions in each
set are contributing towards the respective total scores
and can be considered to belong within the sets. However,
the discrimination analysis also provides evidence that for
some reason 2C and 2B are not measuring the same thing
as the other code tracing questions. Therefore, for the
purpose of further analysis, we removed both of these
outliers from the data set.

The students found 2C relatively easy while we would
have expected that this would be one of the more difficult
code tracing questions. The students had been introduced
to this code in lectures and had been guided through a
similar tracing exercise with slightly different input data.
Perhaps this is encouraging; clearly teaching has had
some impact on student learning. Nevertheless, if test
questions are set that are too close to specific examples
taught in lectures they may be measuring the students’
abilities to remember specific examples rather than
measuring their code tracing abilities. That is, they may
well be measuring something other than what the
examiner intended.

On the other hand, we would have expected question
2B to be an easy question but student performance
showed that they found it to be relatively difficult.
Question 2B is a simple method that calculates the
remainder. We believe that the issue in this question may

lie with a lack of mathematical knowledge rather than a
lack of programming comprehension. This conjecture is
supported by the fact that many of the same students were
able to answer code tracing questions that consisted of
more complex code successfully. Once again it seems that
the question is not measuring what the developers
intended and does not belong in the data set.

5 Results
The code provided in the examination was analysed using
our set of software metrics. In the case of the dynamic
metrics for the code tracing questions the metrics are
calculated from those parts of the code that are executed
in order to arrive at the correct answer. We then compare
the metrics with the student performance on the
questions. The following metrics were calculated using
the Rationale® Software Analyzer 7.1 (RSA 2012) tool:
number of operands, cyclomatic complexity, average
nested block depth, average number of parameters, and
number of methods. Initially we calculated lines of code,
using Rationale® Software Analyzer, as the total number
of executable lines of code. In the programming
examination questions the code is formatted so that the
opening and closing braces are placed on their own line.
Given the small size of the code for each question, lines
containing only braces contribute significantly to the lines
of code metric when calculated this way. We believe that
these lines do not contribute to the complexity or
difficulty of the code comprehension tasks. Consequently,
we calculated the number of statements rather than the
total lines of code.

The significance of the correlation of each metric to
the categorised difficulty (encoded numerically where the
easiest is ranked as 1) of each question was then tested
using Kendall’s τ-b. Kendall’s τ-b was chosen because
the datasets contained tied ranks. Table 4 gives the
Kendall’s τ-b for all the, tracing and EiPE, questions
analysed.

It is worth noting that the tracing and EiPE exam
questions used in this study are characterised by a low
number of number of program commands and are
generally confined to one or two methods. As a
consequence the cyclomatic complexity for the exam
questions does not exceed 5 and the nested block depth
does not exceed 3.

 questions
 3A 3B 3C 3D 4A 4B 4C 5A 5B 5C 5D 5E

Difficulty ranked 8 10 8 3 5.5 11.5 11.5 1 5.5 3 8 3
cyclomatic complexity 1 2 3 4.5 2 3 5 2 3 2 3 1
Average nested block depth 1 2 3 2.5 2 3 3 2 3 2 3 1
Number of operands 11 11 18 37 14 21 36 11 21 18 39 6
Number of parameters 0 2 2 2 1 1 2 2 1 2 1 0
Number of statements 5 5 6 11 5 5 16 5 5 5 9 3
Number of methods 1 1 1 2 1 1 1 1 1 1 1 1

Table 3: Metrics for ‘Explain in plain English’ (EiPE) questions

CRPIT Volume 136 - Computing Education 2013

62

For code tracing questions cyclomatic complexity,
nested block depth and the two dynamic metrics,
developed for this study, are significantly correlated to
the student performance and therefore to the observed
difficulty of the question (Table 4). Increasing
complexity, as defined by increasing values in the four
metrics of a tracing question, therefore directly correlates
with an increase in difficulty for previously ‘unseen’
code that does not extend beyond the courses content.
The definition of ‘unseen’ code is code that is either
entirely new code for which the key syntax and language
constructs had been taught during the course or a
variation on code that had been seen in the context of the
course. For example the students may have, as a lab
exercise, been asked to write a method that found the
highest number in an array of numbers and the ‘unseen’
code might find the lowest number. Therefore it can be
argued that the students should have the knowledge
required to answer an ‘unseen’ question and that such a
question requires them to apply or adapt their existing
knowledge in order to solve the question.

Question software metric Kendall’s
Type τ-b (2-tailed)

Tracing Cyclomatic complexity 0.775*
 Average nested block depth 0.775*
 Number of operands 0.231
 Number of parameters 0.452
 Number of java commands 0.304
 Sum of all operands in the 0.732*
 executed statements

 Number of commands in the 0.732*
 executed statements

EiPE Cyclomatic complexity 0.289
 Average nested block depth 0.109
 Number of operands 0.219
 Number of parameters -0.040
 Number of commands 0.274
 Number of methods -0.277

Table 4: Correlations between software metrics and
question difficulty [* p < 0.05]

None of the metrics used correlated significantly with
the difficulty of the EiPE questions. Although it is
possible that questions that require EiPE responses are
inherently unsuitable for a metrics approach to predicting
difficulty it is just as likely that we have yet to identify
metrics capable of performing this task.

6 Conclusion
This research has analysed student responses to two types
of exam questions, which are typically used in novice
programming exams, code tracing and EiPE. The results
have shown that some software metrics, for our dataset,
correlate to the difficulty of code tracing exam questions.
As a result of this study we suggest that software metrics
might be a useful tool in the early prediction of the

difficulty of this type of first year computer programming
examination question.

More research is needed into the possible use of
software metrics for evaluating EiPE questions and other
forms of programming tasks and questions to see whether
or not it is possible to develop metrics that are meaningful
in those contexts. Further consideration needs to be given
to what other metrics may be useful for the analysis of
EiPE questions and perhaps to determining the criteria
that should be used to determine whether or not any given
EiPE question should be included in a set of questions of
that type. It is possible that some of the existing metrics
could provide useful information if the question set was
more homogeneous.

When undertaking this analysis we found aspects of
some questions that were not measured by the metrics but
that affected the validity of those questions. What the
question is assessing may not be what the examiner
intended. For example a question that includes
mathematical operators or concepts may be testing
mathematical knowledge not programming knowledge.
Perhaps such questions should be avoided unless the
intent is to assess the mathematical concept. Additionally
the use of previously ‘seen’ code has the potential to alter
the way in which students respond to the question. An
EiPE question with relatively complex code may actually
be reduced to a simple recall question rather than one that
requires an understanding of the code.

In this study we undertook an item discrimination
analysis but it appears that some of our questions may
have additional issues of validity or of inappropriate item
difficulty. It is our recommendation that any future
research should include a full item analysis of all
questions and include only those questions that have
performed adequately in terms of reliability, validity,
difficulty and item discrimination in any further analysis.
This would reduce the likelihood that any question set
contained poorly performing questions that could obscure
possible relationships between the data set and software
metrics. It could also lead to the development of criteria
for each question type that could be used in future to help
to ensure that questions meet an appropriate standard and
can be meaningfully evaluated using the appropriate
software metrics.

Future work will involve applying metrics to other
types of questions. This work will include measuring the
contribution of each metric to the overall question
difficulty with the intention of designing a single
weighted metric for each question type. We also intend to
verify the findings of this preliminary study firstly with a
larger set of examination questions and secondly by
designing questions using software metrics as a factor
that is considered in that design and evaluating the
effectiveness of this approach. Finally, we believe that
code writing tasks might also be amenable to the same
approach by identifying relevant software metrics and
applying them to the model answer and to the student
solutions.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

63

7 References
Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,

Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths,
J. and Wittrock, M. C. (2001): A Taxonomy for
Learning, Teaching, and Assessing: A Revision of
Bloom’s Taxonomy of Educational Objectives.
Longman.

Biggs, J. B. and Collis, K. F. (1982): Evaluating the
Quality of Learning: The SOLO Taxonomy (Structure
of the Observed Learning Outcome). New York.
Academic Press.

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,
Sheard, J., Simon, B., and Thompson, E. (2008):
Reliably Classifying Novice Programmer Exam
Responses using the SOLO Taxonomy. Proc. 21st
Annual Conference of the National Advisory
Committee on Computing Qualifications (NACCQ
2008), Auckland, New Zealand, 23--30.

Elliott Tew, A. (2010): Assessing fundamental
introductory computing concept knowledge in a
language independent manner. PhD dissertation,
Georgia Institute of Technology, USA.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D.
Hernán-Losada,I., Jackova, J., Lahtinen, E., Lewis, T.
L. McGee Thompson, D., Riedesel, C. and Thompson
E. (2007): Developing a computer science-specific
learning taxonomy. SIGCSE Bull. 39(4): 152-170.

Halstead, M.H. (1977): Elements of Software Science
(Operating and Programming Systems Series). New
York, NY, USA, Elsevier Science Inc..

Kintsch, W. and van Dijk, T.A. (1978): Towards a model
of text comprehension and production. Psychological
Review, 85, 363-394.

Klemola, T. (1978): Software comprehension: theory and
metrics. Masters Thesis, Concordia University,
Montreal, Canada.

Klemola, T. and Riling, J. (2003): A cognitive complexity
metric based on category learning. Proc. of the 2nd
IEEE International Conference on Cognitive
Informatics (ICCI’03), London, UK, 106 – 112.

Lister, R., Simon, B., Thompson, E., Whalley, J. and
Prasad, C., (2006): Not seeing the forest for the trees:
Novice programmers and the SOLO taxonomy,
SIGCSE Bulletin, 38(3): 118 - 122.

Murphy, L., McCauley, R. and Fitzgerald, S. (2012):
'Explain in plain English' questions: implications for
teaching. Proc. of the 43rd ACM technical symposium
on Computer Science Education (SIGCSE '12), 385-
390

Mathias, K.S., Cross, J.H., Hendrix, T.D., and Barowski,
L.A. (1999): The role of software measures and metrics
in studies of program comprehension. Proc. of the 37th
Annual Southeast Regional Conference (CD-ROM),
ACM-SE, 37, article 13, doi =10.1145/306363.306381

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M.
(2010): Learning Computer Science Concepts with
Scratch. Proc. of the 6th International Computing
Education Research Workshop (ICER 2010). Aarhus,
Denmark, 69-76.

McCabe, T.J. (1976): A Complexity Measure, Software
Engineering, IEEE Transactions on, 2(4), 308- 320.

Parker, J. R. and Becker, K. (2003): Measuring effectiveness
of constructivist and behaviourist assignments in CS102.
Proc. of the 8th Annual SIGCSE Conference on
Innovation and Technology in Computer Science
Education (ITiCSE 2003), Thessaloniki, Greece, 40-44.

RSA, IBM. http://publib.boulder.ibm.com/infocenter/
ieduasst/rtnv1r0/index.jsp?topic=/com.ibm.iea.rsar/plugin
_types.html. Last accessed 24 August 2012.

 Sheard, J., Carbone, A., Lister, R. Simon, B. Thompson, E.
and Whalley, J. L. (2008): Going SOLO to assess novice
programmers, Proc. of the 13th annual SIGCSE
conference on Innovation and Technology in Computer
Science Education (ITiCSE’08), Madrid, Spain, 209-213.

Shuhidan, S., Hamilton, M. and D'Souza, D. (2009): A
taxonomic study of novice programming summative
assessment. Conferences in Research and Practice in
Information Technology, 95: 147-156.

Venables, A., Tan, G. and Lister, R. (2009): A Closer Look
at Tracing, Explaining and Code Writing Skills in the
Novice Programmer. Proc. of the 5th International
Computing Education Research Workshop (ICER 2009),
Berkeley, CA, USA, 117-128. Berkeley, California,
August 10-11, 2009. pp. 117-128.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P.
and Prasad, C. (2006): An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, using
the Bloom and SOLO Taxonomies. Australian Computer
Science Communications, 52: 243-252.

Whalley, J., Clear, T., Robbins, P., and Thompson, E.
(2011): Salient Elements in Novice Solutions to Code
Writing Problems. Conferences in Research and Practice
in Information Technology, 114: pp. 37-46.

CRPIT Volume 136 - Computing Education 2013

64

http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567

Appendix

Example of a typical EiPE question and a typical code
tracing question:

Question 5A
In plain English, explain the purpose of this method. Note
that more marks will be gained by correctly explaining
the purpose of the code than by giving a description of
what each line does.

public int method(int x, int y)
{
 int result =x;
 if(x < y)

{
result = y;

}
return result;

}

Question 1C
Complete the trace table below to show what happens
when this method is executed with the parameter limit
equal to 4.

public int method(int limit)
{
 int result = 0;
 for(int i = 0; i<= limit; i++)
 {
 result += 2;
 }

 return result;

}

 Initialisation

i result

0 0

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

65

