
Metadata Management in Federated Multimedia Systems∗

Mark Roantree

School of Computer Applications
Dublin City University,

Glasnevin, Dublin 9, Ireland.
Email: mark.roantree@compapp.dcu.ie

Abstract

A Federated Information System requires that multiple (of-
ten heterogenous) information systems are integrated to the
extent that they can share data through views. One issue
faced during the construction of federated view schemata is
the continuous need to extract metadata from cooperating sys-
tems. This is more pressing in the case of federated multime-
dia systems where needless transfer of large binary objects af-
fects system performance. Where participating systems employ
an object-oriented common model to communicate, obtaining
metadata is problematic due to the type and complexity of
object-oriented metamodels. In the IOMPAR project, we spec-
ified and developed a high-level query interface for the ODMG
schema repository in order to simplify this task for integration
system engineers. This paper describes a schema repository
query language which greatly reduces the efforts of integration
engineers.

Keywords: Federated Databases, Interoperability,
Metadata, ODMG, Object-Oriented Databases.

1 Introduction

Database applications often require a means by which
‘generic’ applications can determine a database’s
structure at run-time for functions such as graphi-
cal browsers, dynamic query construction, and the
specification of view schemata. This property, of-
ten referred to in programming languages as re-
flection, has been a feature of databases for many
years, and an early version of the ODMG meta-
model [Cattell and Barry, 1997] provided a standard
API for metadata queries in object-oriented data-
bases. As part of our earlier research into fed-
erated healthcare systems [Roantree et al. (2), 2001],
we specified and implemented a global view mecha-
nism to facilitate the creation of views for ODMG
databases, and the subsequent integration of view
schemata to form federated schemata. Please refer
to [Pitoura et al., 1995, Sheth and Larson, 1990] for
a complete background on federated databases. As
the integration of information systems requires many
metadata queries to determine structural and seman-
tic heterogeneities, we focus on the construction of
a metadata interface to ODMG information systems.
This paper is structured as follows: the remainder
of this section highlights the importance of metadata
to our view mechanism, and the motivation for this
research; in §2 the main concepts of the metadata

∗Funded by Enterprise Ireland Strategic Research Grant
ST/2000/091
Copyright c°2001, Australian Computer Society, Inc. This pa-
per appeared at the Thirteenth Australasian Database Confer-
ence (ADC2002), Melbourne, Australia. Conferences in Research
and Practice in Information Technology, Vol. 5. Xiaofang Zhou,
Ed. Reproduction for academic, not-for profit purposes permit-
ted provided this text is included.

query language are discussed; in §3 the query lan-
guage is presented through a series of examples; in §4
we present details of the implementation; and finally
in §5 we offer some conclusions.

1.1 Background and Motivation

The IOMPAR project involves research into secure
federated multimedia systems [Roantree, 2000], and
while reusing much of the output and engineering
tools from the OASIS project [Roantree et al., 1999],
it faces new problems in dealing with the transfer
of large multimedia objects, and key management
and encryption issues for secure communication. The
main focus of OASIS was to extend the ODMG 2.0
model to provide views in a federated database envi-
ronment. This work yielded the specification and im-
plementation of a global view mechanism, using the
ODMG model as the common model for a federation
of databases. The concept of a federation of databases
[Sheth and Larson, 1990] is one where heterogeneous
databases (or information systems) can communicate
with one another through an interface provided by
a common data model. In the OASIS and IOM-
PAR projects, the common data model is the ODMG
model, the standard model for object-oriented data-
bases since 1993 [Cattell, 2000]. The most common
architecture for these systems is as follows: data re-
sides in many (generally heterogeneous) information
systems or databases; the schema of each Information
System (IS) is translated to an O-O format, and this
new schema is called the component schema; view
schemata are defined as shareable subsets of the com-
ponent schema; the view schemata are exported to a
global or federated server where they are integrated
to form many global or federated schemata. In this
paper we use the term view (or ODMG view) to refer
to an ODMG subschema which may contain multiple
classes, where those classes may be connected through
either inheritance or association relationships.
Our focus was to extend the ODMG model so

that it was possible to define the view schemata on
top of each component schema, and define integra-
tion operators which facilitated the construction of
federated schemata. This extension provided a layer
of ODMG views on top of the component schema.
However, it was also necessary to provide a mapping
language which could bind the component schema to
its local model representation. This facilitates the
translation of ODMG queries (to the their local IS
equivalent), and enables data transfer to the ODMG
database when views are defined. In IOMPAR the
same view mechanism is used although it has been
adapted to the ODMG 3.0 standard, and is currently
being implemented for an object-relational database
(ORDB) in order that ORDBs can define semanti-
cally rich views, and that both database system mod-
els provide a standard view interface. The effect is
that the ORDB appears to provide an object-oriented

Oracle Video Server

Descriptions of
database classes,

wrapper definitions to local IS,
and view definitions

(metaclasses)

mappings

View definitions

ODMG PMN

Federated Database Server

Descriptions of imported views
and federated view definitions

(metaclasses)

D.S.

S.R. : Schema Repository

S.R.

D.S.S.R.

D.S. : Database Schema

ORDB PMN

D.S.S.R.

PMN : Participating Multimedia Node

Figure 1: Federated Multimedia Architecture.

view mechanism.
The classes which comprise the database schema

are used to model the real world entities which are
stored in the database. Additionally, there is a
set of metaclass instances which are used to de-
scribe the database classes. Thus, one can think of
an ODMG database as having two distinct sets of
classes: those which reside in the database schema,
and the abstract classes (metaclasses) which reside in
the schema repository. Whenever it is necessary to
process and store a view definition, a set of metaclass
instances are stored in the database. Where a view
definition involves multiple classes, each with their
own extents, this combination of meta-objects can
become quite complex. Thus, a command to display
view data, or to extract data from the local IS often
requires powerful query facilities in order to retrieve
the required meta-information. In figure 1 the role of
the schema repository within a federated database en-
vironment is illustrated. In federated database termi-
nology, the Oracle Video Servers act as local database
systems, and the ODMG and ORDB databases act as
component databases. In reality, the federation can
consist of many multimedia servers including ODMG
servers where the ODMG database is at the level of
Oracle Video Server in figure 1. The global (or fed-
erated) database will always be an ODMG database.
Each schema repository contains a description of the
database classes, hence the arrow towards the data-
base schema. However, in this type of architecture,
the schema repository will contain a large amount of
additional data describing both view definitions and
query results. Before the transfer of multimedia data,
it is necessary to determine the size of result sets to
decide if that transfer is necessary or worthwhile.
Due to the complex nature of both the base meta-

model and extensions, many of the OQL queries
which are required both to retrieve base and view
class metadata would necessitate long expressions.
In practical terms (using an ODMG vendor data-
base), it was not possible to express all of the desired
queries. In IOMPAR, the focus is on creating federa-
tions of multimedia databases which use ODMG 3.0
databases, Oracle Video Server and Object-relational
databases as storage devices. The contribution of the
work in this paper is the specification of language ex-
tensions to OQL for the specific purpose of efficient
retrieval of metadata from the schema repositories of
ODMG databases, and object-relational system cata-
logs. Two clears benefits have emerged: the reduced

complexity of metadata queries during system inte-
gration (and federated schema construction); and a
reduced learning curve for programmers who need to
use the ODMG schema repository.

2 Query Language Concepts

In this section we provide a description of the main
concepts involved in the Query Language: the meta-
data objects and the queries used to manipulate meta-
data. Metadata objects are used to describe both the
structural elements of the participating systems (base
metadata objects), and the virtual elements which are
generated by the view language. Note that virtual en-
tities (classes, properties etc.) are always mapped to
base entities. Metadata queries are categorized into
groups representing the type of metadata information
required. These groupings are later described in §2.2.

2.1 Metadata Elements

For an ODMG DBMS containing a view mechanism,
it is necessary to distinguish between base and virtual
classes, and in both cases one must be capable of ob-
taining the same structural information. The view
mechanism, its specification language, and imple-
mentation are described in [Roantree et al. (2), 2001].
This paper assumes that view definitions have already
been processed and stored, and a requirement exists
to retrieve meta-information in order to display views
or process global queries. A view is represented by the
meta-objects outlined below. See [Jordan, 1998] for a
similar description of base metadata object construc-
tion.

1. Subschema Construction. The definition of a
virtual subschema requires the construction of a
v_Subschema instance.

2. Class Construction. Where it is necessary to
construct new virtual classes, a v_Class object
is instantiated for each new virtual class.

3. Attribute and Relationship Construc-
tion. A single v_Attribute instance and a
v_Primitive_Type instance is constructed for
each attribute property, and a v_Relationship
and v_Ref_Type instance is constructed for each
relationship property.

4. Inheritance Construction. A v_Inheritance
meta-object connects classes to subclasses.

5. Class Scope. When v_Attribute and
v_Relationship instances are constructed, it is
necessary to associate these properties with a
specific v_Class instance. This is achieved by
updating the v_Scope object which the v_Class
object inherits from.

6. Subschema Scope. When v_Class instances
are constructed, it is necessary to associate these
virtual classes with a specific v_Subschema in-
stance.

2.2 Metadata Query Language

The Schema Repository Query Language (SRQL) is
an extension to ODMG’s Object Query Language,
and resides between the client database application
and the ODMG database. The language comprises
seventeen productions listed in the appendix to this
paper. In this section we provide an informal descrip-
tion of the types and usage of query language expres-
sions. The language resembles OQL in the fact that

it employs a select expression. However, SRQL ex-
pressions employ a series of keywords, and are always
single line expressions. As shall be demonstrated in
the next section, this has practical advantages over
using standard OQL to retrieve metadata informa-
tion.

• Subschema Expressions. This type of query
is used to retrieve subschema objects, which
are container objects for all elements contained
within a view definition. The subschema key-
word identifies this type of expression.

• Class Expressions. This type of query can be
used to retrieve specified base or virtual class ob-
jects, the entire set of base class objects, the en-
tire set of virtual class objects, or the set of vir-
tual classes contained within a specified schema.
The class keyword identifies the type of expres-
sion, with the qualifier virtual specified for vir-
tual classes, and a further qualifier in used when
retrieving virtual classes for a specific subschema
(or view).

• Attribute Expressions. This type of query is
used to retrieve single base or virtual attribute
objects, the entire set of base or virtual attribute
objects, or all attributes for a specific base or
virtual class, by specifying the attribute key-
word. The query can also be expressed in a shal-
low form (retrieve only those attributes for the
named class) or a deep form (retrieve attributes
for the named class and all derived classes).
The qualifiers (virtual and in) are used in at-
tribute query expressions, and a further qualifier
inherit is used to determine between shallow
and deep query expressions.

• Relationship Expressions. This type of query
is similar to attribute queries. Syntactically,
the attribute keyword is replaced with the
relationship keyword.

• Link and Base Expressions. These queries
return the meta-objects to which virtual objects
are mapped. In a view mechanism, each virtual
element which has been generated as a result of a
view definition must map to an equivalent base or
virtual element. For example, a virtual attribute
object may map to another virtual attribute ob-
ject, which in turn maps to a base attribute ob-
ject. The link query expression will return ei-
ther a virtual class, attribute or relationship ob-
ject if the specified object is mapped to a virtual
element, or NULL, if it is mapped directly to
a base element. The base query expression will
always return either a base class, attribute or re-
lationship object, but never NULL as all virtual
elements must eventually map to a base element.

• MetaName and MetaCount Expressions.
Both query expressions take a single SRQL ex-
pression as an argument and return the names
of the meta-objects and the count of the meta-
objects respectively.

• Type Expressions. This query is used to re-
turn the type of (base or virtual) attribute or re-
lationship meta-objects. Each ODMG attribute
and relationship type is taken from a predefined
set of types.

• Data Count Expressions. This query is used
to retrieve information regarding the number of
objects in a result set, or a view class extent.

• Data Size Expressions. This query is used to
retrieve the size of objects in result sets or view
class extents.

Video
name: string
comment: string
get_frame()

Video
name: string
comment: string
get_frame()

Entertainment Movies Sport News Music

Content

duration : short
size : short

describesdescribes

SKY_news regional RTE_news

Figure 2: Partial structure of the local_news view.

3 Using the SRQL

The ODMG model provides an API specification for
access to the schema repository. However, it is quite
complex and often difficult to formulate OQL meta-
data queries as shall be shown. Since metadata
queries can be regarded as a small static group of
queries, we have developed a query sub-language for
the ODMG schema repository. This query language is
based on OQL but extends the base language with a
series of constructs which are specifically employed
in metadata querying. For this reason, we called
this metadata sub-language, the Schema Repository
Query Language (SRQL). An early version of this
language was presented in [Roantree et al. (1), 2001],
and this has now been updated for ODMG 3.0 and
object-relational databases, and with query expres-
sions for determining the size of multimedia objects.

3.1 Sample Metadata

The ODMG view can have any number of base or
(newly derived) virtual classes, and some of these
classes are connected using inheritance or relationship
links. Where a view contains both base and virtual
classes, it is not possible to connect classes from both
sets. In this case, the view contains disjoint schema
subsets. A view definition is placed inside an Ob-
ject Definition Language View file (ODLv file), passed
through the View Processor to generate a set of meta-
objects in the database’s schema repository. These
view descriptions are then exported to a global data-
base for integration with other view schemata. It is
these meta-objects which are queried by system inte-
grators as they seek to discover similarities and differ-
ences between schemata which are to be merged. The
IOMPAR project primarily deals with sharing multi-
media objects, where objects are stored in Partici-
pating Multimedia Node (LMN) databases which are
often connected to Oracle Video Server. For the pur-
pose of the examples used later in this paper, assume
that the view illustrated in figure 2 contains video
files, companion data and metadata, and is stored
as local_news in the database. The Video class has
five subclasses and one of these, the News subclass,
has a further three subclasses. The structure of these
classes is not shown for reasons of space. The types of
meta-objects constructed for this view (classes, prop-
erties etc.) were described in §2.1.
The ODMGmetamodel through its C++ API pro-

vides an ‘open’ standard for retrieving ODMG meta-

d_Scope

bind(name, value)
resolve(name): MetaObject
unbind(name)

d_Scope

bind(name, value)
resolve(name): MetaObject
unbind(name)

d_MetaObject
name: string
comment: string
absolute_name()

d_MetaObject
name: string
comment: string
absolute_name()

RepositoryObject

DefiningScopedefinedIndefinedIn definesdefines
*

d_Property d_Class

d_Attribute d_Relationship

...typetype propertiesproperties
*

d_Interface

Figure 3: API subset of the ODMG metamodel.

data, and a basis for developing a method to in-
sert data into the schema repository. This provides
a powerful mechanism both for creators of dynamic
software applications (views and dynamic querying),
and federated database engineers, whose role it is to
extract schema information from participating sys-
tems. In practical terms however, it is not possible
to build truly generic object-oriented database appli-
cations due to the imprecise specification of the stan-
dard and the heterogeneous interpretations of ODMG
vendors. For developing pure generic applications, a
number of additional features are required. Such a
discussion is outside the scope of this paper but is
discussed in [Roantree and Subieta, 2001] where pos-
sible solutions and improvements to the standard are
offered.

3.2 Metadata Query Samples

In this section, we demonstrate why the language was
developed by illustrating a series of metadata queries
using conventional OQL, and demonstrate how these
queries might be simplified using an extension to
OQL. In addition to using ‘pure’ OQL syntax, we
have also opted to use the C++ bindings as provided
by the Versant O-O database product [Versant, 1999].
Note that we use the term oid instead of the vendor
term SelfOid, as oid is more generic. The motiva-
tion was to ensure that these OQL queries can ac-
tually be expressed in at least one vendor product,
and to demonstrate the mappings between ‘native’
OQL and a typical O-O database vendor. Most of
the examples use the local_news view which is par-
tially displayed in figure 2 and represent a federa-
tion of video clips from multiple video servers. These
examples demonstrate how a query language based
on OQL could be used to simplify querying opera-
tions against the schema repository. These types of
queries are crucial to schema integrators who require
metadata information in order to determine the struc-
tural makeup of a schema, before subsequently re-
structuring and merging different schemata. Initial
queries when connecting to a database for the first
time will be: what are the names of export schemata?
What are the names of classes within a specific export
schema? How many attributes does a particular class
contain? What is the type of attribute x? In exam-
ples 3.1 to 3.3 it is assumed that this type of data
has already been acquired, and more specific class
level meta-information is needed. In the following ex-
amples metaclasses with a d_ prefix are ODMG base

metaclasses [Jordan, 1998], and those with a v_ prefix
represent the extension metaclasses originally speci-
fied in the OASIS project [Roantree et al. (2), 2001].
A small subset of the complex ODMG metamodel is
shown in figure 3 to illustrate how the major meta-
classes relate to each other.

Example 3.1: Retrieve a base class object called
‘RTE_news’.

This query must use the d_Meta_Object super-
class (of d_Class), although a set of references to
d_Class objects are generated as output.

Example 3.1(a): ODMG OQL
select C from d_Class
where C.name = ‘RTE_news’

Example 3.1(b): Vendor OQL
select oid from d_Class
where d_Meta_Object::name = ‘RTE_news’

The mapping between the ODMG specification
and the C++ implementation is clear by the vendor
OQL expression in 3.1(b). The SRQL equivalent is
provided in 3.1(c) below.

Example 3.1(c): SRQL
select class RTE_news

The result of this query will be the set of base class
(d_Class) instances which have the name attribute
value of RTE_news. For base class instances, this
will always be a single object reference, but for virtual
classes it is possible for many to share the same name,
providing they belong inside different subschemata.
This is explained in [Roantree et al. (2), 2001] where
each subschema has its own scope and class hierarchy,
and thus class names can be repeated across different
view definitions.

Example 3.2: Retrieve virtual class object called
‘RTE_news’ from subschema local_news.

Example 3.2(a): ODMG OQL
select C from v_Class
where C.name = ‘RTE_news’
and C.SchemaContainer =

(select S from v_SubSchema where S.name = ‘lo-
cal_news’)

Example 3.2(b): Vendor OQL
s_oid = (select oid from v_Subschema
where v_Meta_Object::name = ‘local_news’);
select oid from v_Class
where v_Meta_Object::name = ‘RTE_news’
and SchemaContainer = s_oid;

Example 3.2(c): SRQL
select virtual class local_news.RTE_news

In this example, the SRQL makes the OQL query
easier as a subschema qualifier is used to specify the
correct class. It was necessary to break the vendor
query into two segments as it was not possible to
pass object references from an inner query. With our
SRQL approach in example 3.2(c), the implementa-
tion is hidden behind the language extensions.

Example 3.3: Retrieve a virtual attribute ‘broad-
cast_date’ from class ‘RTE_news’ in subschema
local_news.

In this example we again have the problem of re-
trieving the correct v_Class reference and then se-
lecting the appropriate v_Attribute object reference.
Assume that the virtual class is from the same sub-
schema (local_news) as the previous example.

Example 3.3(a): ODMG OQL
select A from v_Attribute

where A.name = ‘broadcast_date’
and A.in_class in
(select C from v_Class
where C.name = ‘RTE_news’
and C.SchemaContainer in

(select S from v_SubSchema

where S.broadcast_date = ‘local_news’))

Example 3.3(b): Vendor OQL
s_oid = (select oid from v_Subschema
where v_Meta_Object::name = ‘local_news’);
c_oid = (select oid from v_Class
where v_Meta_Object::name = ‘RTE_news’
and SchemaContainer = s_oid);
select oid from v_Attribute
where v_Meta_Object::name = ‘broad-
cast_date’
and v_Attribute::in_class = c_oid);

In example 3.3(a) the pure OQL version of the
query is expressed by adding another layer to the
nested query. However, the vendor product in 3.3(b)
requires three separate queries, and thus, it will be
necessary to embed the OQL inside a programming
language such as C++ or Java. Since this is the most
likely scenario for an O-O database program, it does
not raise any major problems, but it does demon-
strate the unwieldy nature of some of the OQL im-
plementations when building O-O database software.
In example 3.3(c) the SRQL version of the query is
illustrated.

Example 3.3(c): SRQL
select virtual attribute

local_news.RTE_news.broadcast_date

In the following examples we will illustrate more
general queries, but will use only OQL and SRQL
as the problem regarding vendor-specific versions of
OQL has now been shown.

Example 3.4: Retrieve all classes within sub-
schema local_news

In examples 3.4(a) and (b) the syntax for both
expressions to retrieve all references to v_Class ob-
jects within the subschema local_news is illustrated.
As these queries are simpler than those in previous
examples, the OQL expressions are straightforward.

Example 3.4(a): ODMG OQL

select C from v_Class
where C.SchemaContainer =

(select S from v_SubSchema

where S.name = ‘local_news’)

Example 3.4(b): SRQL
select virtual class in local_news

The keyword virtual is used to distinguish be-
tween base and virtual classes, but this predicate can
be dropped in circumstances where all instances are
required. In example 3.4(c) five possible formats are
illustrated. The semantics for the selection of base
classes is clear: in example (i) the complete set of
d_Class object references is returned, and in exam-
ple (ii) a single d_Class reference is returned. For
virtual classes, there are three possibilities with ex-
amples (iii) and (v) similar to their base query equiv-
alents. However, example (iv) is different: all virtual
classes called RTE_news are returned.

Example 3.4(c): class selection formats
(i) select class
(ii) select class RTE_news
(iii) select virtual class
(iv) select virtual class RTE_news
(v) select virtual class local_news.RTE_news

A subschema can comprise both base and vir-
tual classes [Roantree et al. (2), 2001]. The in key-
word was used in the previous section to select classes
within a specified subschema. If base classes are re-
quired, the keyword virtual is dropped. Both for-
mats are illustrated in example 3.4(d).

Example 3.4(d): retrieve classes within a specified
subschema
select class in local_news
select virtual class in local_news

Example 3.5: retrieve all relationships within
RTE_news within the local_news schema.

In this example a reference to all relationship ob-
jects inside the RTE_news class is required.

Example 3.5(a): ODMG OQL
select R from v_Relationship
where R.defined_in_class in
(select C from v_Class
where C.name = ‘RTE_news’

and C.SchemaContainer =

(select S from v_SubSchema

where S.name = ‘local_news’)

Example 3.5(b): SRQL
select virtual relationship in

local_news.RTE_news

In example 3.5(b) it is clear that the SRQL format
is far easier to express than the base OQL query. Ad-
ditionally, queries regarding inheritance are unwieldy
due to the complexity of the O-O model. This is
demonstrated in example 3.6.

Example 3.6: Retrieve all attributes, including de-
rived ones for the class Radio_Sport.

Assume it were necessary to retrieve all attributes
for class Radio_Sport, which is derived from classes
Radio, Audio, Sport, and Recent (in subschema
Sports_Coverage).

Example 3.6(a): ODMG OQL
select A from v_Attribute
where A.in_class in
(select C from v_Class
where C.name = ‘Radio_Sport’
and C.SchemaContainer in

(select S from v_SubSchema

where S.name = ‘Sports_Coverage’)
union
select A from v_Attribute
where A.in_class in
(select i.inherits_to from v_Inheritance
where i.inherits_to.name = ‘Radio_Sport’
and i.inherits_to.SchemaContainer in
(select S from v_SubSchema

where S.name = ‘Sports_Coverage’))

In example 3.6(a) the OQL query to return the
required v_Attribute references for the class Ra-
dio_Sport is illustrated. In the first segment (before
the union operator is applied) it is necessary to pro-
vide nested queries to obtain the correct v_Subschema
instance, and then the correct v_Class instance,
before the attributes for class Radio_Sport are re-
trieved. In the second segment, it is necessary to re-
trieve all v_Class references which are superclasses of
class Radio_Sport, and perform the same operations
on these classes. This is not shown in full in 3.6(a)
due to the length of the query expression.

Example 3.6(b): SRQL
select virtual attribute in

Sports_Coverage.Radio_Sport inherit

Using the SRQL, the query expression is very sim-
ple: the keyword inherit is applied to the end of
the expression to include the additional v_Attribute
objects in the result set.
Both the select attribute and select

relationship expressions can take different forms
as illustrated in example 3.6(c). Only examples (iii)
and (vii) will definitely return a collection containing
a single object reference.

Example 3.6(c): attribute selection formats
(i) select attribute
(ii) select attribute duration
(iii) select attribute RTE_news.duration
(iv) select virtual attribute
(v) select virtual attribute duration
(vi) select virtual attribute

RTE_news.duration
(vii) select virtual attribute

local_news.RTE_news.duration

The area of query transformation and the resolu-
tion of mappings between virtual and (other virtual
objects and) base objects requires a different form of
metadata query expression. Suppose it is necessary
to retrieve the base attribute to which a particular
virtual attribute is mapped.

Example 3.7: retrieve mapped attribute (without
SRQL)

Assume that local_news.RTE_news.broadcast is
mapped to RTE_news.date in the base schema. It
is necessary to retrieve the mapped attribute date to
assist in the query transformation process. Assuming
the query expressed in example 3.3 returns an object
reference R (the broadcast attribute in RTE_news
class in local_news), then example 3.7(a) can be used
to retrieve its mapped base attribute.

Example 3.7(a): ODMG OQL (requires result set
R)
select A.VirtualConnector from v_Attribute
where A in R

Example 3.7(b): SRQL (full query expression)
select link attribute

local_news.RTE_news.broadcast

In example 3.7(b) the entire query expression is
illustrated. Whereas the basic OQL expression re-
quires three nested queries, the entire expression us-
ing SRQL can be expressed in a single select link
statement. The resolution of mappings becomes even
more complex when there are a series of mappings
from virtual entities to the base entity, eg. where a
number of subschema definitions are stacked on top
of each other. To retrieve the base attribute in this
type of situation requires an unwieldy OQL expres-
sion, whereas a single select statement will suffice
using SRQL.

Example 3.8: retrieve size details for objects

Before moving physical data from one server to an-
other, it can be useful to determine the size of each
object in the result or view collection. This is not a
feature of a query language such as OQL, but has been
added to the repository query language to aid the per-
formance of transactions which require the movement
of data.

Example 3.8:
select datasize local_news.RTE_news
The result of the expression is a set of meta-
objects containing the identifier of each object
in the collection together with the size of each
object in bytes.

4 Implementation

The ODMG 2.0 standard uses the ‘d_’ prefix to de-
note metaclasses and to avoid confusion with stan-
dard metaclasses we employed a ‘v_’ prefix to denote
virtual metaclasses in our extended model. A small
portion of the schema repository for ODMG data-
bases was illustrated in figure 3 with full details avail-
able in [Jordan, 1998]. Two design goals were iden-
tified before planning our extension to the ODMG
metamodel: virtual metaclasses need contain only
mapping information to base (or virtual) metaclasses;
yet virtual subschemata must contain enough infor-
mation for high-level graphical tools to browse and
display virtual types. This has been well-documented
in the past: for example [Subieta, 1996] stating that
modern database systems require a richer means of
querying data than that offered by simple ASCII-
based query editors.
A prototype system was built using Visual C++

6.0 for the Versant O-O database running on NT plat-
forms. It is assumed that client applications may be
either software modules or user interfaces that have
a requirement for dynamic queries. In example 4.1 a
query is required to return the names of all classes
inside a subschema named local_news. The SRQL
implementation parses the expression, opens the ap-
propriate database, and generates the result set as a
collection of objects of type Any,1 to which the pro-
gram has access. The objects in each collection can
then be ‘repackaged’ as objects of a specific metaclass
depending on the type of query.

1Most databases and template software will use an Any (or sim-
ilarly named) class as an abstract class for all possible return types.
In this ob ject library, the small number of possible return types
keeps the type conversion simple.

Example 4.1 Repository Query

database NEWS_ARCHIVE

srql {

MetaName (select virtual class in
local_news) ; };

Internally, the program accesses the metadata
query layer by creating an instance of type srql and
passing the query string to the constructor. The same
srql instance provides access to the result set.
Ideally, all ODMG databases should provide a

standard interface for functions such as opening the
database and accessing the schema repository. How-
ever, this is not the case, and it was necessary to
develop an adaptor for the Versant ODMG data-
base for all I/O actions. The problems involved
in constructing generic applications are covered in
[Roantree and Subieta, 2001]. However, those func-
tions which are non-generic were isolated and placed
inside the srql class implementation. Thus, to use
the metadata software layer with other implementa-
tions of ODMG databases, it is necessary to imple-
ment only those functions isolated within the srql
class. Specifically, these functions are opening and
closing the database, query execution, the construc-
tion of the result set, and the transfer of data from
database-specific (eg Versant) objects to C++ ob-
jects. The SRQL parser, and the semantic actions
for each production are all generic, and thus require
no modification. Similarly, it was necessary to imple-
ment the view mechanism for an ORDB implemen-
tation (to provide views of virtual classes connected
using inheritance and association relationships) and
the subsequent ‘repository’ interface. Although this
has been fully implemented for a Versant ODMG
database, it is only partially completed for an Ora-
cle object-relational database.
When developing semantic actions (C++ program

code) for each production, it was possible to take
one of two routes: map the SRQL expression to
the equivalent OQL expression (shown informally in
§3), and then to the vendor implementation of OQL
(VQL for the Versant product in our case); or alter-
natively, use C++ to retrieve the objects from the
database directly. Our initial prototype used the for-
mer approach [Roantree et al. (1), 2001] but this lead
to problems as not all SRQL (or OQL) queries could
be expressed in the vendor implementation of the lan-
guage. For this reason we adopted the latter solution
and bypassed the ODMG OQL and vendor specific
OQL query transformations. By doing so we had
more control over the performance of queries as we
could take advantage of the structure of the schema
repository, and construct intermediate collections and
indices depending on the type of query expression.
The parser component was developed using

ANTLR [ANTLR, 1999] and the semantic actions for
each of the query expressions were written in C++.
Thus many of the federated services (such as query-
ing and data extraction from local ISs) use the SRQL
for metadata retrieval. The system also contains a
view display module which generates extents for vir-
tual classes and displays them. The implementation
of this software was greatly simplified by the SRQL.

5 Conclusions and Future Research

In this paper we described the design and implemen-
tation of a metadata query language for ODMG and
object-relational databases. Due to the complex na-
ture of the schema repository interface, we defined
simple constructs to facilitate the easy expression

of metadata queries. It was felt that these exten-
sions provide a far simpler general purpose interface
to both the ODMG schema repository, and the ex-
tended repository used by our view mechanism. In
particular, these extensions can be used by integra-
tion engineers who have a requirement to query meta-
data dynamically, the builders of view (and wrapper)
software, and researchers and developers of high-level
query and visualization tools for ODMG databases.
Furthermore, in multimedia federations, the language
can be used to query the size and content of view or
result data in circumstances where data is required
for transfer between database systems.
Although the ODMG group has not addressed the

issue of O-O views, their specification of the meta-
model provides a standard interface for metadata
storage and retrieval, a necessary starting point for
the design of a view mechanism. Our work extended
this metamodel to facilitate the storage of view defi-
nitions, and provided simple query extensions to re-
trieve base and virtual metadata. A cleaner approach
would have been to re-engineer the schema repository
interface completely rather than implement a software
layer to negotiate the complexity problem, and this
has been suggested by some ODMG commentators.
On the other hand, standards are an obvious benefit
to systems interoperability. The complex nature of
the ODMG metamodel requires a substantial learn-
ing curve for programmers and users who require ac-
cess to metadata: we believe that we have reduced
this learning curve with our metadata language ex-
tensions. By implementing a prototype view system,
we have also shown how this metadata query ser-
vice can be utilized by other services requiring meta-
information.
The view mechanism and original schema repos-

itory query language have been implemented for
ODMG databases, and are nearing completion for
object-relational databases. Future work is focused
on two key areas: the development of an XML-based
transaction language for multimedia queries; and the
inclusion of behaviour in views. The former project
will facilitate federated transactions is a controlled
federation of multimedia databases, and uses the
SRQL to determine the size of view objects. The
latter work will permit methods to appear in ODLv
views, and will require a further extension to the
SRQL to retrieve behavioural metadata.

References

[ANTLR, 1999] ANTLR Reference Manual.
http://www.antlr.org/doc/ 1999.

[Booch et al., 1999] Booch G., Rumbaugh J., and Ja-
cobson I. The Unified Modelling Language User
Guide. Addison-Wesley, 1999.

[Cattell, 2000] Cattel R. et. al. (eds.) (2000). The Ob-
ject Data Standard: ODMG 3.0, Morgan Kauf-
mann.

[Cattell and Barry, 1997] Cattell R. and Barry D.
(eds), The Object Database Standard: ODMG 2.0.
Morgan Kaufmann, 1997.

[Jordan, 1998] Jordan D. C++ Object Databases:
Programming with the ODMG Standard. Addison
Wesley, 1998.

[Pitoura et al., 1995] Pitoura E., Bukhres O. and El-
magarmid A. Object Orientation in federated data-
base Systems, ACM Computing Surveys, 27:2, pp
141-195, 1995.

[Roantree, 2000] The IOMPAR Project: Secure
Transport of Complex Objects. IOMPAR Tech-
nical Report IOM-01, Dublin City University,
(www.compapp.dcu.ie/~iompar), November 2000.

[Roantree, 2001] Roantree M. The ODLv View Lan-
guage for ODMG Databases. IOMPAR Technical
Report IOM-02, Dublin City University, February
2001.

[Roantree et al. (1), 2001] Roantree M., Kennedy J.,
and Barclay P. Using a Metadata Software Layer
in Information Systems Integration. 13th Con-
ference on Advanced Information Systems Engi-
neering (CAiSE 2001), pp. 299-314, LNCS 2068,
Springer, June 2001.

[Roantree et al. (2), 2001] Roantree M., Kennedy J.,
and Barclay P. Constructing View Schemata Us-
ing an Extended ODL. 9th International IFCIS
Conference on Cooperative Information Systems
(CoopIS 2001), pp. 150-162, LNCS 2172, Springer,
September 2001.

[Roantree et al., 1999] Roantree M., Murphy J. and
Hasselbring W. The OASIS Multidatabase Proto-
type. ACM SIGMOD Record, 28:1, March 1999.

[Roantree and Subieta, 2001] Roantree M. and Subi-
eta K. Generic Applications for Object Oriented
Databases. Submitted for publication 2001.

[Sheth and Larson, 1990] Sheth A. and Larson J.
Federated Database Systems for Managing Distrib-
uted, Heterogeneous, and Autonomous Databases.
ACM Computing Surveys, 22:3, pp 183-236, ACM
Press, 1990.

[Subieta, 1996] Subieta K. Object-Oriented Stan-
dards: Can ODMG OQL be extended to a Pro-
gramming Language? Proceedings of the In-
ternational Symposium on Cooperative Database
Systems for Advanced Applications, pp. 546-555,
Japan, 1996.

[Versant, 1999] Versant Corporation. Versant C++
Reference Manual 5.2, April 1999.

Appendix I: SRQL BNF
The Schema Repository Query Language (SRQL)

is an extended version of OQL which provides special
constructs to facilitate metadata queries. The core
BNF for OQL is provided in [Cattell and Barry, 1997]
(pp 115-119) and we have extended the production
rules with 15 repository rules, numbered r1 to r15.

Production r1: outline expression
specification :

(“database” db:Identifier { definition })+
EOF

Production r1 (Pr1) is simply a container expres-
sion for all the queries which are passed to the data-
base. The expression also expects the name of the
database.

Production r2: format for query definition
definition :
(srql_dcl TOK_SEMIC)

Production r3: srql expression
srql_dcl :
(“srql” {
(sr_query_dcl | name_dcl | count_dcl)
TOK_SEMIC)+
}

Pr2 and Pr3 define the format and content of the
types of query expressions.

Production r4: srql expression
sr_query_dcl :
“select”
(subschema_dcl |
class_dcl |
attribute_dcl |
relationship_dcl |
link_dcl |
base_dcl)

Pr4 provides a further breakdown of the
sr_query_dcl declarator: it begins with the select
keyword, and can take one of six possible expressions.
These six expressions are provided in the next six pro-
ductions.

Production r5: subschema selection expression
subschema_dcl :
(“subschema” (Identifier)?)

Pr5 uses the subschema construct with an op-
tional identifier.

Production r6: class selection expression
class_dcl : (
(“class” (Identifier)?)
|
(“virtual” “class” (qualifier_dcl)?)
|
((“virtual”)? “class” “in” Identifier)
)

Pr6 uses the class construct with three possible
uses: the first for retrieval of base classes; the second
is used to retrieve virtual classes; and the final con-
struct can be used to return all base or virtual classes,
depending on the usage of the virtual keyword.

Production r7: select attribute expression
attribute_dcl : (
(“attribute” (qualifier_dcl)?)
|
(“virtual” “attribute” (dou-
ble_qualifier_dcl)?)
|
((“virtual”)? “attribute” “in” qualifier_dcl
(“inherit”)?)
)

Pr7 is similar to Pr6 but the third form of the
expression uses the inherit construct in conjunction
with the in construct. When the in keyword is used,
then all attributes for the specified class are returned;
when both in and inherit are used together, then
attributes from derived classes also form part of the
result set.

Production r8: select relationship expression
relationship_dcl : (
(“relationship” (qualifier_dcl)?)
|
(“virtual” “relationship” (dou-
ble_qualifier_dcl)?)
|
((“virtual”)? “relationship” “in” quali-
fier_dcl (“inherit”)?)
)

Production r9: select link expression
link_dcl : (
(“link” “class” qualifier_dcl)
|
(“link” “attribute” double_qualifier_dcl)
|
(“link” “relationship” double_qualifier_dcl)
)

Production r10: select base expression
base_dcl : (
(“base” “class” qualifier_dcl)
|
(“base” “attribute” double_qualifier_dcl)
|
(“base” “relationship” double_qualifier_dcl
)
)
In Pr9 and Pr10 the link and base con-
structs are used to return a mapped d_Class,
d_Attribute or d_Relationship class instance.
Using the class construct a qualifier is needed
(with the name of the virtual subschema
and class); and for both attribute and
relationship constructs, a double qualifier is
needed (with the names of the virtual subschema,
class and attribute or relationship name).

Production r11: the MetaName expression
name_dcl :
(“MetaName” (sr_query_dcl))

Production r12: the MetaCount expression
count_dcl :
(“MetaCount” (sr_query_dcl))

The MetaName and MetaCount constructs in Pr11
and Pr12 take a select query expression as argument,
with the former returning a set of (name) values, and
the latter returning a single (integer) value.

Production r13: the type expression
type_dcl : (
(“type” qualifier_dcl)
|
(“virtual” “type” double_qualifier_dcl))

The type construct is used to return the type of
a base property (attribute or relationship), and when
virtual and type are used in conjunction, the type
of a virtual property is returned.

Production r14: the qualifier expression
qualifier_dcl :
((Identifier .)? Identifier)

Production r15: the double qualifier expression
double_qualifier_dcl :
(((Identifier .)? Identifier .)? Identifier)

A qualifier_dcl takes the form x.y, and a
double_qualifier_dcl takes the form x.y.z. In the
first declarator, the x portion is optional, and in the
second declarator, valid formats are z, y.z and x.y.z.

Production r16: the datasize expression
datasize_dcl :
(“datasize” qualifier_dcl)

Production r17: the datacount expression
datasize_dcl :
(“datacount” qualifier_dcl)

The final two expressions return the size of all ob-
jects, and the count of all objects in a named class.

