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Preface

This book is a collection of advanced topics in R. References to previous sections, as well as descriptions

of datasets, are to the book by Duursma, Powell and Stone: Data analysis and visualization with R.
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Chapter 1

Mixed-effects models

1.1 Introduction

In Chapter 7, we used linear models to estimate ’fixed’ effects, which consist of specific and repeatable

categories/variables that are representative of an entire population (e.g., species, age). In longitudinal

studies (repeated measures) and in studies using hierarchical (nested) sampling, it is also possible to

estimate effects associated with individuals sampled at random from the population of interest. These

are ’random’ effects and convey information about the degree that individuals in a population differ

but not how or why they differ.

One way to differentiate fixed and random effects is that fixed effects contain levels that are informa-

tive beyond the current analysis (e.g., a species of tree or a specific management type) while random

effects contain levels that are not informative beyond the current analysis (e.g., a group of trees within

an observation plot or a field under specific management). Another way to understand the difference

is that fixed effects influence the mean of the response while random effects influence the variance of

the response.

Mixed-effects models estimate both fixed and random effects and are particularly useful when dealing

with potential pseudoreplication and unbalanced designs. Including random effects can also account

for variation that could mask patterns in an analysis considering only fixed effects.

Two commonly used packages for fitting mixed-effects models are nlme and lme4. In this chapter, we

will use the newer lme4 package, but note that more complex correlation structures are only possible

with the nlme package.

Rather than to present the theory underlyingmixed-effects models, which is very complex, we will treat

this topic by example, and thus aim at a practical application. An example of this is given in Section 1.2.

1.1.1 A note about p-values

The lme4 package does not report p-values. The developers made this decision because p-values re-

quire calculating degrees of freedom. Random effects don’t necessarily have to expend the same

degrees of freedom as treating them as fixed effects, so the package developers have decided not to

fudge this by calculating them for you.

In this chapter, we use two approaches to calculate p-values of fixed effects. To obtain the p-values

of all fixed effects in a model, we use the Kenward-Roger approximation to the degrees of freedom,
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as recommended by Halekoh and Höjsgaard (2014)
1
. This approximation is most conveniently imple-

mented in the Anova function from the car package (not anova!), and used like this (if you have a fitted

model mymodel returned by lmer),

library(car)

Anova(mymodel, test="F")

Note that we cannot use test="F" for generalized linear mixed-effects models (i.e. fit with glmer), and

some caution needs to be applied with the Anova default use of the chi-squared test statistic.

The second approach is to use likelihood-ratio tests to test the significance of a single fixed effect in a

model. To do this, we fit two models (one with, and one without the fixed effect of interest), and use

the KRmodcomp function from the pbkrtest package (again using the Kenward-Roger approximation as

mentioned above). Note that the results are usually slightly different, and sometimes very different, if

you use the standard likelihood-ratio test with the anova function.

Finally, you may wish to inspect p-values for individual coefficients in the summary statement of the

fitted model. With the lmerTest package loaded, fit the model with lmer, which will now show p-values

in the summary. This even works for glmer, but the z-score approximation is probably quite poor. Use

with caution.

We will demonstrate the use of each of these functions in the examples that follow.

Further reading See the help page ?pvalues for references to several options to calculate

p-values with lme4.

1.2 Example: individual-level variation in tree canopy
gradients

The following example uses the pref data (not yet described in Appendix A, download the file ‘prefdata.csv’).

The dataset contains measurements of leaf mass per area (LMA), and distance from the top of the tree

(dfromtop) on 35 trees of two species. We want to know whether LMA decreases with dfromtop, as

expected, and whether this decrease in LMA with distance from top differs by species.

# Read the data and inspect the first few rows, and the species factor variable.

pref <- read.csv("prefdata.csv")

head(pref)

## ID species dfromtop totheight height LMA narea

## 1 FP11 Pinus ponderosa 8.88 22.40 13.52 319.4472 2.779190

## 2 FP11 Pinus ponderosa 0.62 22.40 21.78 342.7948 4.010700

## 3 FP11 Pinus ponderosa 4.72 22.40 17.68 329.5399 3.365579

## 4 FP15 Pinus ponderosa 2.74 27.69 24.95 312.4467 3.682907

## 5 FP15 Pinus ponderosa 5.48 27.69 22.21 278.4037 2.524224

## 6 FP15 Pinus ponderosa 8.40 27.69 19.29 255.9716 2.351546

levels(pref$species)

## [1] "Pinus monticola" "Pinus ponderosa"

Before we fit mixed-effects models, let’s start with a linear regression that includes dfromtop and

species as the predictor variables to observe the general patterns. We use visreg to quickly visualize

the fitted linear model. The following code produces Fig. 1.1.

1
Ulrich Halekoh and Sören Höjsgaard, 2014, A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in

Linear Mixed Models – The R Package pbkrtest, J. Stat. Software 59, 1-30
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Figure 1.1: Leaf mass per area as a function of tree species (two colours) and the distance from the top

of each tree, as fitted with a simple linear model and visualized with visreg.

# Fit a linear regression by species (ignoring individual-level variation)

lm1 <- lm(LMA ~ species + dfromtop + species:dfromtop, data=pref)

# Plot predictions

library(visreg)

visreg(lm1, "dfromtop", by="species", overlay=TRUE)

As we can see in Fig. 1.1, there is a strong effect of species, but it appears that LMA and dfromtop are not

significantly correlated.

Try this yourself Look at the anova table for the fitted linear regression model from the

example above to confirm that LMA does not significantly change with dfromtop.

To see whether the relationship between LMA and dfromtop potentially varies from tree to tree, we fit a

linear regression separately for each tree using the lmList function in the lme4 package and then plot

the outcome (in Fig. 1.2).

# For the lmList function (Note: the nlme package also includes the lmList function)

library(lme4)

# fit linear regression by tree ('ID')

lmlis1 <- lmList(LMA ~ dfromtop | ID, data=pref)

# Extract coefficients (intercepts and slopes) for each tree

liscoef <- coef(lmlis1)
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Figure 1.2: Leaf mass per area as a function of tree species (two colours) and the distance from the top

of each tree. The solid lines represent the slope of the relationship for each individual tree.

# load plottix for the 'ablineclip' function, which clips lines within the range of x

library(plotrix)

# split pref by tree (prefsp is a list)

prefsp <- split(pref, pref$ID)

# Plot

palette(c("red","blue"))

with(pref, plot(dfromtop, LMA, col=species, pch=16, cex=0.8))

for(i in 1:length(prefsp)){

# Find min and max values of dfromtop, to send to ablineclip

xmin <- min(prefsp[[i]]$dfromtop)

xmax <- max(prefsp[[i]]$dfromtop)

# add regression lines

ablineclip(liscoef[i,1], liscoef[i,2], x1=xmin, x2=xmax,

col=prefsp[[i]]$species)

}

From the figure we can conclude (informally) that:

1. Intercepts vary a lot between trees

2. There seems to be a negative relationship for many trees

3. It seems there is less variation between slopes than intercepts
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We know the individual data points are not independent, as they are nested within trees (that is, multi-

ple samples were collected for each tree). To properly account for this non-independence, we have to

use a mixed-effects model. In the example below, we will fit two models: one with a random intercept

only, and one with a random intercept and slope.

1.2.1 A simple equation for a mixed-effects model

Before we fit a mixed-effects model, let’s write down an equation that illustrates the roles of the fixed

effects and random effects in the model.

For a simple linear regression of Y versus X (where X is numeric), we fit the model:

Y = β0 + β1 ⋅X

where the β’s are the intercept and the slope of the fitted regression line.

A mixed-effects model additionally fits two random parameters, and we can write the model as:

Y = (β0 + b0)+ (β1 + b1) ⋅X

where b0 is the random intercept (which is normally distributed with mean zero, and some standard

deviation), and b1 is the random slope (also assumed to be normally distributed with mean of zero and

some standard deviation).

When we fit a mixed-effects model, not only do we get an estimate of the variance (or standard de-

viation) of the random effects, we also get estimates of this random effect for each individual. These

estimates are known as the BLUPs (best linear unbiased predictors).

1.2.2 Fitting the mixed-effects model

To specify random effects with lmer, we add it to the formula in the right-hand side. For example, a

random intercept for ’ID’ (that is, the intercept will vary randomly among ID’s) is coded as (1|ID). If we

also allow the slope of the relationship to vary, we specify it as (dfromtop|ID) so that the slope and

intercept of the relationship between LMA and dfromtop will vary randomly between tree ID’s.

# Random intercept only

pref_m1 <- lmer(LMA ~ species + dfromtop + species:dfromtop + (1|ID), data=pref)

# Random intercept and slope

pref_m2 <- lmer(LMA ~ species + dfromtop + species:dfromtop + (dfromtop|ID), data=pref)

# The AIC and a likelihood-ratio test tell us that we don't need a random slope.

# lower AIC indicates that model fit is better (more efficient)

AIC(pref_m1, pref_m2)

## df AIC

## pref_m1 6 2251.997

## pref_m2 8 2255.735

# Likelihood ratio test : the more complex model is not supported by the data.

# Note: the models will be re-fitted with ML instead of REML; this is necessary

# when performing likelihood-ratio tests.

anova(pref_m1, pref_m2)
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## Data: pref

## Models:

## pref_m1: LMA ~ species + dfromtop + species:dfromtop + (1 | ID)

## pref_m2: LMA ~ species + dfromtop + species:dfromtop + (dfromtop | ID)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## pref_m1 6 2263.2 2284.3 -1125.6 2251.2

## pref_m2 8 2267.1 2295.2 -1125.5 2251.1 0.1274 2 0.9383

# Output from the random intercept model - not shown (inspect yourself!)

# summary(pref_m1)

# Using Anova from car, we get p-values for the main effects.

library(car)

Anova(pref_m1)

## Analysis of Deviance Table (Type II Wald chisquare tests)

##

## Response: LMA

## Chisq Df Pr(>Chisq)

## species 147.475 1 <2e-16 ***

## dfromtop 86.832 1 <2e-16 ***

## species:dfromtop 2.531 1 0.1116

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that in the above, we use the familiar anova function to test between models with different ran-

dom effects structure. Since we use anova on an object returned by lmer, this command invokes the

anova.merMod function, from the lme4 package.

Try this yourself Inspect the help file ?anova.merMod, and find out that you can name the

two models, simplifying the interpretation of the command anova(lme1, lme2) from the above

example.

We now conclude that LMA decreases significantly with dfromtop. Compare this with the fixed-effects

model we started with:

summary(lm1)

##

## Call:

## lm(formula = LMA ~ species + dfromtop + species:dfromtop, data = pref)

##

## Residuals:

## Min 1Q Median 3Q Max

## -80.047 -21.737 -2.908 17.231 109.207

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 164.0749 4.5800 35.824 <2e-16 ***

## speciesPinus ponderosa 125.2444 6.2581 20.013 <2e-16 ***

## dfromtop -0.3062 0.4406 -0.695 0.4878

## speciesPinus ponderosa:dfromtop 1.1855 0.6923 1.712 0.0881 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Residual standard error: 31.34 on 245 degrees of freedom

## Multiple R-squared: 0.8211,Adjusted R-squared: 0.8189

## F-statistic: 374.9 on 3 and 245 DF, p-value: < 2.2e-16

Ignoring the tree-to-tree variance thus resulted in drawing the wrong conclusion from our data. When

we accounted for this variation with amixed-effects model, we did find a significant overall relationship

between LMA and dfromtop. The reason for this discrepancy is that the large variation in intercepts

between the individual trees (between-subject variation) masked the relationship between the two

variables within individuals (within-subject variation).

Finally, we may be interested in quantifying the variation between individuals in terms of the intercept

and slope. These are the standard deviations of the random effects, and can be extracted with the

VarCorr function (it is also shown in the summary statement of the mixed-effects model).

# Standard deviation of the intercept and slope ('dfromtop') between individuals,

# as estimated from the random effects.

VarCorr(pref_m2)

## Groups Name Std.Dev. Corr

## ID (Intercept) 31.36023

## dfromtop 0.47658 -0.304

## Residual 17.96337

Try this yourself Try using ranef on lme1 and lme2; the first will show intercepts for each

of the random effects (trees), while the second will show both estimated intercepts and slopes for

the random effects. Repeat the above example looking at the relationship between narea (leaf

nitrogen per unit area), dfromtop, and species.

1.3 Example: individual-level variation in metabolic rate
of mice

In this example we will look at a dataset containing metabolic rate measured on mice at three differ-

ent temperatures. Measurements on every mouse were repeated three times. We are interested in

estimating the change in metabolic rate with temperature, and whether this relationship changes with

bodymass, sex (male or female), whether themice were fed on the day of measurements, and whether

they were using a wheel.

First we read and inspect the dataset (data not yet described in the Appendix).

mouse <- read.csv("wildmousemetabolism.csv")

# Make sure the individual label ('id') is a factor variable

mouse$id <- as.factor(mouse$id)

As a first step let’s look at the data. We would like to visualize whether temperature has an effect on

metabolic rate, and whether individuals were very different in terms of metabolic rate (rmr) at a fixed

temperature. The following code makes Fig. 1.3.

# Raw data of rmr versus temperature (temp). Note use of jitter()

# to minimize overlap between data.

with(mouse, plot(jitter(temp),rmr, pch=21, bg="#BEBEBE99", ylim=c(0,0.6)))

# Take a subset, and reorder the 'id' factor levels by rmr.
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Figure 1.3: Resting metabolic rate (rmr) for individual mice. Left panel: raw data against temperature,

demonstrating increase in rmr with decreasing temperature, and larger variance at lower temperature.

Right panel: rmr at a measurement temperature of 15C, by individual (id).

mouse15 <- subset(mouse, temp == 15)

mouse15$id <- with(mouse15, reorder(id, rmr, median, na.rm=T))

# A simple boxplot showing variation in rmr across and within individuals

boxplot(rmr ~ id, data=mouse15, xlab="id", ylab="rmr",ylim=c(0,0.6))

A practical way to test for multiple variables is to start with a simple model that includes the most

important variables, and gradually increase model complexity. Every time we add one variable to a

model, the significance can be tested with a likelihood ratio test. As discussed, we can use the built-in

anova function, but probably more precise is the use of KRmodcomp from the pbkrtest package. We will

demonstrate its use in this example but note that all conclusions will be the same when using anova.

We know for sure that resting metabolic rate should increase when the temperature decreases, so let’s

start with a model that only includes temp and appropriate random effects. Since each individual was

measured multiple times (indicated by the run variable), we specify a run random effect nested within

individual (id).

mouse_m0 <- lmer(rmr ~ temp + (1|id/run), data=mouse )

In this first model we only allow the intercept to vary between individuals (1|id/run). A side-effect of

the nested random effect is that we can quickly quantify the variation between individuals, as well as

runs within individuals, using the VarCorr function:

VarCorr(mouse_m0)

## Groups Name Std.Dev.

## run:id (Intercept) 0.029825

## id (Intercept) 0.027776

## Residual 0.071433

This demonstrates that the variation between individuals (id) is in fact similar to variation between
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runs within individuals (run:id). It is quite obvious that the fixed effect temp is significant in this model

(inspect the Anova table yourself). We could add a random slope effect by id, but since there are few

data points for every individual, this causes some problem that we would like to avoid (but feel free to

try this for yourself).

Next, we can see in the summary statement of the mouse_m1 model that the slope and intercept are

highly correlated. This can be a problem when we want to interpret those estimates. Note that the

intercept of the model is defined as the value of the response variable (rmr) when the predictor (temp)

is zero. This is not very informative since we did not measure metabolic rate at zero C. In a case like

this, it is advisable to recenter the data so that the intercept is more meaningful. We will subtract 31C

from temp, so that the intercept can now be interpreted as the metabolic rate at 31C. This is no choice

of convenience, but rather has a biological justification: 31C approximates the lower critical limit of

the thermal neutral zone (the range of temperature where metabolic rate does not vary). Below this

temperature, metabolic rate increases to counter heat loss.

We will make a new variable and add it to the dataset, and refit the model.

mouse$temp31 <- mouse$temp - 31

mouse_m1 <- lmer(rmr ~ temp31 + (1|id/run), data=mouse )

Compare the summary statement from this model with mouse_m0, and also note that the two models

are identical in goodness of fit (compare the AIC, for example). We are only expressing the intercept

differently, allowing biological interpretation of the coefficients.

Next we include body mass as a predictor, as well as the interaction with temperature. It is well known

that body mass is an important determinant of metabolic rate, so we should not be surprised by a

strong significant effect:

mouse_m2 <- lmer(rmr ~ temp31*bm + (1|id/run), data=mouse )

library(pbkrtest)

KRmodcomp(mouse_m2, mouse_m1)

## F-test with Kenward-Roger approximation; computing time: 0.28 sec.

## large : rmr ~ temp31 * bm + (1 | id/run)

## small : rmr ~ temp31 + (1 | id/run)

## stat ndf ddf F.scaling p.value

## Ftest 13.429 2.000 57.968 0.98865 1.613e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The F-test shows that body mass is highly significant overall. The Anova shows that both the main effect

and interaction are significant:

Anova(mouse_m2, test="F")

## Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

##

## Response: rmr

## F Df Df.res Pr(>F)

## temp31 465.240 1 784.03 < 2.2e-16 ***

## bm 17.146 1 22.63 0.0004074 ***

## temp31:bm 10.021 1 784.03 0.0016075 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

An interesting side effect of including body mass as a fixed effect is that the estimated variance of the

id is now much smaller. This makes sense because body mass varies between individuals, and thus
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including it in the model reduces the individual-level variation after having accounted for body mass.
Compare the standard deviation for id for the mouse_m2model (see below) with that estimated for the

mouse_m0model above.

# Random effects for the mixed-effects model including body mass

VarCorr(mouse_m2)

## Groups Name Std.Dev.

## run:id (Intercept) 0.029872

## id (Intercept) 0.012096

## Residual 0.071025

Next we test whether individuals vary significantly in terms of their response to temperature, by adding

a random slope effect. The models above only allowed the intercept (i.e. rmr at 31C) to vary between

individuals. To test whether a more complex random effects structure is supported by the data, we fit

two models and compare them with a likelihood ratio test (with anova), like so:

# Like mouse_m2, but with random slope (temp31)

mouse_m3 <- lmer(rmr ~ temp31*bm + (temp31|id/run), data=mouse )

anova(mouse_m3, mouse_m2)

## refitting model(s) with ML (instead of REML)

## Data: mouse

## Models:

## ..1: rmr ~ temp31 * bm + (1 | id/run)

## object: rmr ~ temp31 * bm + (temp31 | id/run)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## ..1 7 -1962.4 -1929.3 988.2 -1976.4

## object 11 -1981.4 -1929.4 1001.7 -2003.4 26.998 4 1.99e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test shows that the more complex model is better, providing evidence that individuals differ sub-

stantially in their response to temperature.

As always, when we have a significant main effect and interaction, it is not easy to see how they affect
the response variable. It is most convenient to plot themodel predictions with the visreg package. The

following codemakes Fig. 1.4. The figure shows that rmr increases with bodymass (bm) and temperature

(temp), and the temperature effect increases with body mass.

# Model predictions as a function of body mass, for the three temperatures.

# The argument 'partial=FALSE' turns off the partial residuals, producing a cleaner plot.

visreg(mouse_m3, "bm", by="temp31",overlay=TRUE, partial=FALSE, ylim=c(0,0.4))

Next, we test for the effect of three additional fixed effects on metabolic rate. As before, we test these

effects one by one. The following code shows tests of sex, food and wheel on the rmr response variable.

# No effect of sex

mouse_m4 <- lmer(rmr ~ bm*temp31 + sex + (temp31|id/run), data=mouse)

KRmodcomp(mouse_m4, mouse_m3)

## F-test with Kenward-Roger approximation; computing time: 0.44 sec.

## large : rmr ~ bm * temp31 + sex + (temp31 | id/run)

## small : rmr ~ temp31 * bm + (temp31 | id/run)

## stat ndf ddf F.scaling p.value

## Ftest 0.2303 1.0000 26.1885 1 0.6353

# We add 'wheel' only as an additive effect. The interaction cannot be estimated because
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Figure 1.4: Plot fitted effects of the mouse m2 model, demonstrating significant effects of body mass

and temperature on resting metabolic rate (rmr).

# the only cases where 'wheel=No' were at a temperature of 31C:

with(mouse, table(temp,wheel))

## wheel

## temp No Yes

## 15 0 288

## 20 0 288

## 31 144 144

mouse_m5 <- lmer(rmr ~ bm*temp31 + wheel + (temp31|id/run), data=mouse)

KRmodcomp(mouse_m5, mouse_m3)

## F-test with Kenward-Roger approximation; computing time: 0.45 sec.

## large : rmr ~ bm * temp31 + wheel + (temp31 | id/run)

## small : rmr ~ temp31 * bm + (temp31 | id/run)

## stat ndf ddf F.scaling p.value

## Ftest 46.551 1.000 740.237 1 1.857e-11 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We finish with the standard anova table, showing p-values for the main effects.

Anova(mouse_m5, test="F")

## Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

##

## Response: rmr

## F Df Df.res Pr(>F)
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## bm 12.1872 1 31.45 0.001449 **

## temp31 106.7154 1 35.02 3.579e-12 ***

## wheel 46.5513 1 740.24 1.857e-11 ***

## bm:temp31 4.4921 1 36.61 0.040899 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally we visualize the individual-level variation in resting metabolic rate and its response to tempera-

ture, as estimated by the mixed-effects model. We use the mouse_m2 model to visualize the predicted

effects for every individual, ignoring effects of wheel and food. One interesting aspect of the data is

that the variance in rmr was clearly higher for lower temp. The mixed-effects model is able to partially

account for this as a result of a) the variation in body mass between individuals (which, as you re-

call, interacted with the temperature response), and b) the random variation in intercepts and slopes

between individuals. This is a good result because it is otherwise very difficult to model changes in

variance with response variables.

The following, more advanced, code produces Fig. 1.5.

# Make a dataframe with all combinations of temp and id, for run 1 only

pred_dfr <- expand.grid(temp31=c(-16,-11,0),

id=levels(mouse$id), run=1)

# Get average body mass by individual, merge onto pred_dfr

library(doBy)

bmid <- summaryBy(bm ~ id, FUN=mean, data=mouse, keep.names=TRUE)

pred_dfr <- merge(pred_dfr, bmid)

# Predict rmr for every id and temp, from the mouse_m3 model

# The default behaviour is to make predictions including the random

# effects (i.e. id and run:id)

pred_dfr$rmr_pred <- predict(mouse_m3, pred_dfr)

# Plot the data for run 1

with(subset(mouse, run==1), plot(jitter(temp),rmr, pch=21, bg="#BEBEBE99", ylim=c(0,0.6)))

# Add a prediction line for every individual. This is an alternative implementation,

# avoiding a for loop. The use of invisible() avoids lapply from printing output.

invisible(lapply(split(pred_dfr, pred_dfr$id), function(x)lines(x$temp31 + 31, x$rmr_pred)))

1.4 Example: blocked designs in the litter decomposi-
tion data

Blocked designs are often used in field experiments to account for known or suspected environmental

gradients at the study site. By blocking the experimental design, the effect of the environmental gra-

dient can be separated from the effect of the treatment(s) of interest increasing the ability to detect

significant effects. Let’s look at the effects of herbicide and profile on soybean litter decomposition as

a function of agricultural management (herbicide usage), microenvironment, and time. In this experi-

ment, herbicide treatments were applied at the level of whole plots, with both treatments represented

within each of four blocks. Both levels of variety and profile were each represented within each plot,

with six replicates of each treatment added to each plot. The data description can be found in Sec-

tion A.19.
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Figure 1.5: Measured (symbols) and predicted (lines) resting metabolic rate for the mouse dataset.

Lines are predictions from the mouse m3 model for the individuals in the dataset, using the random

variation in intercepts and slopes as well as the individual level variation in body mass.

The following code prepares the dataset for analysis, and produces Fig. 1.6.

# Read data

litter <- read.csv("masslost.csv")

# Make sure the intended random effects (plot and block) are factors

litter$plot <- as.factor(litter$plot)

litter$block <- as.factor(litter$block)

# Represent date as number of days since the start of the experiment

library(lubridate)

litter$date <- as.Date(mdy(litter$date))

litter$date2 <- litter$date - as.Date("2006-05-23")

# Quickly visualize the data to look for treatment effects

library(lattice)

bwplot(masslost ~ factor(date) | profile:herbicide, data=litter)

From inspecting Fig. 1.6, the buried litter appears to be decomposing faster than the surface litter

(masslost is higher for buried compared to surface). If there are effects of herbicide (gly vs. conv),

they are not immediately clear from the figure.

The blocking can be treated as a fixed effect or random effect. However, the design is unbalanced

because some litter bags were lost, resulting in a variable number of litter bags recovered from each

treatment. This affects the calculation of sums of squares, which vary depending on the order the

terms are introduced to the model. It is therefore more appropriate to treat the blocking factor as a

random effect, and use a mixed-effects model.

We first fit a simple linear model which ignores some details of the experimental design, and use block

as a fixed effect. It is often very useful to start with a linear model, perhaps on subsets of the data, to

gradually try to make sense of the data.
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Figure 1.6: Proportion of litter mass lost from bags during field incubation as a function of microenvi-

ronment and herbicide program.

# Count the data to confirm that the design is unbalanced (ignore blocks for brevity)

ftable(xtabs(~ date2 + profile + herbicide, data=litter))

## herbicide conv gly

## date2 profile

## 56 buried 22 22

## surface 21 21

## 98 buried 23 23

## surface 20 20

## 157 buried 19 16

## surface 18 21

# Simple linear model with 'herbicide' as the first predictor in the model,

m1fix <- lm(masslost ~ date2 + herbicide * profile + block, data = litter)

anova(m1fix)

## Analysis of Variance Table

##

## Response: masslost

## Df Sum Sq Mean Sq F value Pr(>F)

## date2 1 3.1696 3.1696 122.0249 < 2.2e-16 ***

## herbicide 1 0.4327 0.4327 16.6579 6.113e-05 ***

## profile 1 13.7225 13.7225 528.3018 < 2.2e-16 ***

## block 3 0.4674 0.1558 5.9987 0.0005891 ***

## herbicide:profile 1 0.3207 0.3207 12.3475 0.0005284 ***

## Residuals 238 6.1820 0.0260

## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# ... or listing 'profile' first in the model.

m2fix <- lm(masslost ~ date2 + profile * herbicide + block, data = litter)

anova(m2fix)

## Analysis of Variance Table

##

## Response: masslost

## Df Sum Sq Mean Sq F value Pr(>F)

## date2 1 3.1696 3.1696 122.0249 < 2.2e-16 ***

## profile 1 13.8335 13.8335 532.5749 < 2.2e-16 ***

## herbicide 1 0.3217 0.3217 12.3848 0.0005184 ***

## block 3 0.4674 0.1558 5.9987 0.0005891 ***

## profile:herbicide 1 0.3207 0.3207 12.3475 0.0005284 ***

## Residuals 238 6.1820 0.0260

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The sums of squares and p-values differ for profile and herbicide across the two fits (although they

are still highly significant). Note that the order of the variables entered in the model matters because

each next term is tested against a model that includes all terms preceding it (so-called Type-I tests).
These standard tests with anova are sequential tests, which is perhaps not themost intuitive behaviour.

In many cases it is more intuitive to use so-called Type-II tests, in which each main effect is tested

against a model that includes all other terms. We can use Anova (from the car package) to do this.
library(car)

Anova(m1fix, test="F")

## Anova Table (Type II tests)

##

## Response: masslost

## Sum Sq Df F value Pr(>F)

## date2 3.7056 1 142.6601 < 2.2e-16 ***

## herbicide 0.3330 1 12.8198 0.0004157 ***

## profile 13.6594 1 525.8732 < 2.2e-16 ***

## block 0.4933 3 6.3311 0.0003793 ***

## herbicide:profile 0.3207 1 12.3475 0.0005284 ***

## Residuals 6.1820 238

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Anova(m2fix, test="F")

## Anova Table (Type II tests)

##

## Response: masslost

## Sum Sq Df F value Pr(>F)

## date2 3.7056 1 142.6601 < 2.2e-16 ***

## profile 13.6594 1 525.8732 < 2.2e-16 ***

## herbicide 0.3330 1 12.8198 0.0004157 ***

## block 0.4933 3 6.3311 0.0003793 ***

## profile:herbicide 0.3207 1 12.3475 0.0005284 ***

## Residuals 6.1820 238

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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If the data were in fact balanced, the sequential (Type-I) and Type-II tests would be identical.

We also have not yet accounted for the fact that multiple litter bags were placed within single plots and

that the ’herbicide’ treatment was applied at the level of the plots, not the individual bags, which further

complicates the analysis. Treating block and plot as random effects addresses both the imbalance and

the hierarchical nature of the design.

In this example, we specify the nested nature of the data (plots within blocks) in the formula for the

random effects as (1|block/plot).

# fit model with random effects, plots nested within blocks

litter_m1 <- lmer(masslost ~ date2 + herbicide * profile + (1|block/plot),

data = litter)

Anova(litter_m1, test="F")

## Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

##

## Response: masslost

## F Df Df.res Pr(>F)

## date2 142.317 1 235.489 < 2.2e-16 ***

## herbicide 12.738 1 2.997 0.0376270 *

## profile 525.467 1 235.564 < 2.2e-16 ***

## herbicide:profile 12.177 1 235.270 0.0005774 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# As you can see for yourself with anova(m1, m2), plot explains

# essentially zero variance.

litter_m2 <- lmer(masslost ~ date2 + herbicide * profile + (1|block),

data = litter)

Anova(litter_m2, test="F")

## Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

##

## Response: masslost

## F Df Df.res Pr(>F)

## date2 142.509 1 238.04 < 2.2e-16 ***

## herbicide 12.746 1 238.03 0.0004315 ***

## profile 526.217 1 238.03 < 2.2e-16 ***

## herbicide:profile 12.184 1 238.09 0.0005743 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that in the model, we used date2 as a numeric variable, which assumes that the relationship be-

tween masslost and date2 is more or less linear. Figure 1.7 shows that this is a resonable assumption

However, in the case where you have a timeseries where no transformation exists to linearize the rela-

tionship, youwill have to represent your time variable as a factor. We return to this issue in Section 1.5.1,

after we treat another repeated measures example where time was continuous in Section 1.5.1.

Finally we visualize the fit, to make sense of the fitted coefficients, and to make sure we draw the right

conclusions as to the direction of the significant effects. As we saw in Chapter 7, we can use visreg to

quickly visualize the fitted model.

library(visreg)

# Because we have three fixed effects, we can make two plots to visualize

# certain pairs of combinations.

visreg(litter_m2, "date2", by="profile", overlay=TRUE)
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Figure 1.7: Visualization of the fixed effects of the mixed-effects model fit to the litter decomposition

data.

visreg(litter_m2, "profile", by="herbicide", cond=list(date2=100), overlay=TRUE)

1.4.1 More about p-values

As we mentioned at the top of this chapter, p-values in lme4 are a bit controversial. We here used

the Anova function, but another option is to use the LMERConvenienceFunctions package. This package

includes functions to estimate of p-values from conservative and liberal assumptions about random
effect degrees of freedom, and thus gives a range of possible p-values.

library(LMERConvenienceFunctions)

# To use the function below, we must fit with ML, not REML.

litter_m2ml <- update(litter_m2, REML=FALSE)

# calculate upper- and lower-bounds on p-values

pamer.fnc(litter_m2ml)

## Df Sum Sq Mean Sq F value upper.den.df upper.p.val

## date2 1 3.1860 3.1860 124.7135 241 0e+00

## herbicide 1 0.4439 0.4439 17.3742 241 0e+00

## profile 1 13.6726 13.6726 535.2013 241 0e+00

## herbicide:profile 1 0.3153 0.3153 12.3406 241 5e-04

## lower.den.df lower.p.val expl.dev.(%)

## date2 237 0e+00 13.1139

## herbicide 237 0e+00 1.8269

## profile 237 0e+00 56.2776

## herbicide:profile 237 5e-04 1.2976

Each main effect and interaction has two p-values: one assuming that each random effect accounts

for one degree of freedom (lower.p.val) or no degrees of freedom (upper.p.value). The ’true’ p-value

will be somewhere in between these two bounds.
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In this particular case, the results are highly significant (both lower and upper p-values are very small)

because the effect size is quite large, but this will not always be the case.

Try this yourself Use pamer.fnc on the model above that contains random effects for both

Block and Plot. What effect does this have on the degrees of freedom and p-value calculations?

Why?

Another approach is to evaluate the importance of a term by comparing models that contain or do not

contain that term using likelihood ratio tests (as already mentioned in Section 1.1.1). The recommended

method for this is the KRmodcomp function (from the pbkrtest package), but the familiar anova can also

be used (though p-values are approximate since likelihood ratios don’t quite fit a chi-square distribu-

tion). You could also rely on model selection based on AIC (the lower the better). The following code

shows all three approaches, and shows, as is often the case, that all methods show similar results.

# remove the interaction term from the model

litter_m2.int <- lmer(masslost ~ date2 + herbicide + profile + (1|block), data = litter)

# 1. anova

# Note that anova() will refit the models with ML (not REML) automatically,

# this is necessary when comparing models with different fixed or random effects terms.

anova(litter_m2, litter_m2.int)

## refitting model(s) with ML (instead of REML)

## Data: litter

## Models:

## ..1: masslost ~ date2 + herbicide + profile + (1 | block)

## object: masslost ~ date2 + herbicide * profile + (1 | block)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## ..1 6 -173.68 -152.64 92.838 -185.68

## object 7 -183.70 -159.16 98.848 -197.70 12.02 1 0.0005263 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# 2. KRmodcomp

library(pbkrtest)

KRmodcomp(litter_m2ml, litter_m2.int)

## F-test with Kenward-Roger approximation; computing time: 0.09 sec.

## large : masslost ~ date2 + herbicide + profile + (1 | block) + herbicide:profile

## small : masslost ~ date2 + herbicide + profile + (1 | block)

## stat ndf ddf F.scaling p.value

## Ftest 12.184 1.000 238.087 1 0.0005743 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# 3. AIC

AIC(litter_m2ml, litter_m2.int)

## df AIC

## litter_m2ml 7 -183.6958

## litter_m2.int 6 -141.5371

The model that includes the interaction provides the much better model fit. We can tell this by the

significant p-value from anova and KRmodcomp result and by the lower AIC score for the model that in-

cludes an interaction. When an interaction is significant, the automatic follow-up question is ’what is

the source of this interaction?’. Again inspecting Fig. 1.7, it appears bthat the herbicide treatments af-
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fected decomposition differently, but only on the surface of the soil. To further understand the nature

of the interactions, it is useful to combine variables into a single variable, as the following example

illustrates.

# Create a new variable containing the combinations of herbicide and profile.

# This new variable will have 4 levels

litter$combtrt <- paste(litter$herbicide, litter$profile, sep='-')

# Lump all observations for which the bags were buried into a single level,

# we now have just three levels in the new combined variable.

litter$combtrt[litter$profile == 'buried'] <- 'buried'

# Make this new variable into a factor

litter$combtrt <- as.factor(litter$combtrt)

# Fit a models using this new factor (3 levels) and a model without herbicide (2 levels)

litter_m3 <- lmer(masslost ~ date2 + combtrt + (1|block), data = litter, REML=FALSE)

litter_m3.herb <- lmer(masslost ~ date2 + profile + (1|block), data = litter, REML=FALSE)

# Compare the models by AIC (lower is 'better')

AIC(litter_m2ml, litter_m3, litter_m3.herb)

## df AIC

## litter_m2ml 7 -183.6958

## litter_m3 6 -185.6860

## litter_m3.herb 5 -163.6908

The model with the lowest AIC is m3, which is the model describing the relationship where herbicide

affected decomposition rates only at the soil surface (because for that model, we combined all ’buried’

litter samples into one level, regardless of the herbicide application).

1.5 Example: repeated measures in tree measurements

This example shows a very common use ofmixed-effectsmodels in repeatedmeasurements. The basic

idea is that when you have measurements on the same individuals (or plots, or some other unit) over

time, you cannot treat the measurements as independent because that would be pseudo-replication,

inflation of your sample size, and anti-conservative conclusions about significant effects.

We use data from the Hawkesbury Forest Experiment irrigation by fertilisation experiment (HFEIF, see

Section A.16 for description of the data). In this experiment, sixteen plots of 72 Eucalyptus saligna trees
were remeasured 20 times for height and diameter (although on a number of dates, not all trees were

measured). Four treatments were applied (control, irrigated, fertilised, irrigated + fertilised). We ask in

the following example whether tree height differs by treatment.

It is important that you recognize that the experimental unit in this example is the plot, not the tree,

because the treatments were applied at a plot level. We therefore have to take into account the fact

that trees are nested in plots, to avoid pseudoreplication.

# Read data, make proper date and make sure the intended factor variables are factors.

hfeif <- read.csv("HFEIFbytree.csv")

hfeif$Date <- as.Date(hfeif$Date)

# Make sure plot number (plotnr) is a factor; it is read in as a numeric variable.

hfeif$plotnr <- as.factor(hfeif$plotnr)
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Figure 1.8: Plot tree height over time for the HFE irrigation x fertilisation experiment.

# Days since start of experiment

# The as.numeric statement converts this into a simple numeric variable

hfeif$Time <- as.numeric(with(hfeif, Date - min(Date)))

Before we do anything, always explore the data with a few simple figures. Here we show tree height

over time, colored by treatment (Fig. 1.8). The data show some separation between at least some of

the treatments over time. Also note that the increase in height over time is perhaps not exactly linear,

but we will ignore this in the remainder of the example (and further note that no straightforward

transformation exists in this case).

Note the use of jitter in the example below, this adds some random noise to the Time variable to

avoid excessive overlap of data points on each Date. We also use sample to randomly reorder the rows

of the dataset to avoid the final treatment in the dataset to be plotted on top (this way, it is easier to

see treatment differences).

The following code produces Fig. 1.8.

# For the alpha() function (transparency)

library(scales)

# Set colours, transparent

palette(alpha(c("blue","red","forestgreen","darkorange"), 0.5))

with(hfeif[sample(nrow(hfeif)),],

plot(jitter(Time,3), height, col=treat, pch=19,

xlab="Time (days)", ylab="Height (m)"))

legend("topleft", levels(hfeif$treat), pch=19, col=palette())

Again, the reason we want to use mixed-effects models in this case is because we want to use the

correct number of degrees of freedom to test for the treatment effect. If you are not sure what that
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should be, let’s start with a linear model on the data from just one date, when we have averaged the

data by plot (our experimental unit). In this case we can simply use lm, as follows.

The following example produces Fig. 1.9.

# Take subset of data at last Date

hfeif_last <- subset(hfeif, Date == max(Date))

# Average all variables by plot (and include the 'treat' factor variable in the result)

library(doBy)

hfeif_last_plot <- summaryBy(. ~ Date + plotnr, data=hfeif_last,

FUN=mean, na.rm=TRUE,

id=~treat, keep.names=TRUE)

# Linear model with treatment only.

lm_last <- lm(height ~ treat, data=hfeif_last_plot)

# Note that height is highly significant, and that we use 3 numerator df

# to test for treatment effects

anova(lm_last)

## Analysis of Variance Table

##

## Response: height

## Df Sum Sq Mean Sq F value Pr(>F)

## treat 3 74.160 24.7201 19.137 7.226e-05 ***

## Residuals 12 15.501 1.2917

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# A quick visualization of the fitted model shows much taller trees

# in I and IL,

library(visreg)

visreg(lm_last, "treat", xlab="Treatment", ylab="Tree height (m)")

The above shows 3 numerator degrees of freedom in the F-test, which makes sense because we have 4

levels of our treatment (thus df = 4 - 1). You can do no such simple check for the denominator degrees

of freedom, but it’s a useful check nonetheless.

To account for the repeated measures nature of the data as well as the fact that the experimental unit

is the plot, not the tree, all we need is to specify the plot as the random effect. We will fit two models,

one without and one with the interaction between Time and treat, and again use Anova (from the car

package) to test for significant effects.

Note that we specify Time as a numeric variable, which assumes that the relationship between height

and Time is more or less linear, which according to Figure 1.8 is a reasonable assumption. We return to

this issue in Section 1.5.1.

# Effect of treatment on intercept only.

lmeif1 <- lmer(height ~ treat + Time + (1|plotnr), data=hfeif)

Anova(lmeif1)

## Analysis of Deviance Table (Type II Wald chisquare tests)

##

## Response: height

## Chisq Df Pr(>Chisq)

## treat 27.752 3 4.095e-06 ***

## Time 48339.942 1 < 2.2e-16 ***
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Figure 1.9: Simple visualization of fitted linear model (with lm) of tree height on the last date of the HFE

IF data.

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Effect of treatment on intercept and slope (i.e. main effect + interaction)

lmeif2 <- lmer(height ~ treat*Time + (1|plotnr), data=hfeif)

Anova(lmeif2)

## Analysis of Deviance Table (Type II Wald chisquare tests)

##

## Response: height

## Chisq Df Pr(>Chisq)

## treat 27.389 3 4.879e-06 ***

## Time 72342.647 1 < 2.2e-16 ***

## treat:Time 3208.442 3 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# A likelihood ratio tests shows the interaction is highly significant

anova(lmeif1, lmeif2)

## refitting model(s) with ML (instead of REML)

## Data: hfeif

## Models:

## object: height ~ treat + Time + (1 | plotnr)

## ..1: height ~ treat * Time + (1 | plotnr)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## object 7 22654 22702 -11320 22640
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Figure 1.10: Visualized effect of Time on height, by treatment for the HFE IxF dataset, fitted with a linear

mixed-effects model.

## ..1 10 20054 20122 -10017 20034 2605.9 3 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Try this yourself Repeat the likelihood-ratio test with the more accurate KRmodcomp function

from the pbkrtest package.

Note that in the above, we have correctly used 3 numerator degrees of freedom to test for the effect of

treatment on height. The individual Anova statements summarize the significance of the fixed effects in

eachmodel, whereas the anova of the twomodels uses a likelihood-ratio test on the twomodels. In this

case, it effectively tests for significance of the interaction (because the only difference between the two

models was the inclusion of the treat by Time interaction in lmeif2). The interaction is overwhelmingly

significant.

The final step is to try to understand this interaction, how large is the effect size, and which direction

does it point? The time by treatment interaction is significant, but in which way? It is never sufficient

in an analysis to state that an interaction was ’significant’, we must make more sense of it. One simple

approach is to use the visreg package to visualize the fit (see Fig. 1.10).

library(visreg)

visreg(lmeif2,"Time", by="treat", overlay=TRUE)

In this case it is abundantly clear that irrigated (I) and irrigated + fertilised (IL) have a steeper slope of

height with Time (that is, they have a faster height growth), compared to control (C) and fertilised (F). If

there was no significant interaction (or a small effect size), the lines would be parallel to each other.

We can further look at the p-values for the individual effects (slopes and intercepts by treatment). Note
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that p-values in the summary statement are only computed if we have loaded the lmerTest package

before fitting the model. Consider this example,

# Loading this package first affects both summary and anova methods

library(lmerTest)

# ... we must refit the model after loading lmerTest

lmeif2 <- lmer(height ~ treat*Time + (1|plotnr), data=hfeif)

# Print just the coefficients table from the summary

summary(lmeif2)$coefficients

## Estimate Std. Error df t value Pr(>|t|)

## (Intercept) 2.073764669 2.992535e-01 12.32252 6.9297919 1.377196e-05

## treatF 0.093074081 4.233121e-01 12.33460 0.2198711 8.295684e-01

## treatI -0.535359455 4.232604e-01 12.32858 -1.2648466 2.293128e-01

## treatIL -0.246322580 4.232390e-01 12.32609 -0.5819940 5.710624e-01

## Time 0.006921244 6.399533e-05 6453.01255 108.1523211 0.000000e+00

## treatF:Time -0.000141759 9.111223e-05 6453.02451 -1.5558723 1.197875e-01

## treatI:Time 0.003514427 9.095049e-05 6453.01005 38.6411001 0.000000e+00

## treatIL:Time 0.003645960 9.085136e-05 6453.02770 40.1310445 0.000000e+00

Try this yourself The lmerTest package also modifies the anova function, so that it calculates

p-values for a fittedmodel with lmer. Compare anova(lmeif2)with Anova(lmeif2), these will rarely

be exactly the same as they use different methods to approximate the degrees of freedom of the

random effects.

Looking at the interaction terms (treat:Time),the summary table shows that treatF:Time is not signifi-

cantly different from the first level (treatC:Time), that is, there is no difference between fertilized and

control in terms of the interaction with Time. But both irrigated (I) and irrigated + fertilised (IF) are

highly significant, again, this comparison is in relation to the first level of the factor (control, C).

Although there is a significant main effect of treatment, none of the levels are actually different from

the first (the control). This shows that the intercept itself is different from zero, but the treatments are

not actually different in terms of the intercept. This makes sense, because seedlings were planted at

time zero before any treatment was applied.

1.5.1 Repeated measures: is time numeric or factor?

In both examples in this chapter where we used time as a predictor in our models, we treated time as

a continuous (numeric) variable. This was appropriate in both cases because the relationship between

the dependent variable (masslost or height) showed a nearly linear relationship with time, allowing

us to estimate and interpret an intercept and a slope of the variable with time. In the example with

the tree height measurements, the slope of height with time can actually be interpreted as the height

growth rate.

But there are many cases in which it would be more appropriate to use time as a factor variable. These

include cases where the relationship is highly non-linear and cannot be transformed, or you only have

two or three dates of measurements. The example below shows a simple example for the latter case.

(see also Fig. 1.11).

# A repeated measures example with only two dates of measurement.

# Though it is possible to have time as a continuous variable, it is much

# more useful to code it as a factor.
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Figure 1.11: Boxplots of height vs. treatment and time (days since start of experiment, shown in the

panel label) for a subset of the HFE IF data.

# We take a subset of hfeif.

hfeif2 <- subset(hfeif, Date %in% as.Date(c("2010-09-01","2011-06-01")))

# Convert Time to a factor

hfeif2$Time_fac <- as.factor(hfeif2$Time)

# As before, we can quickly use bwplot to inspect the data

library(lattice)

bwplot(height ~ treat | Time_fac, data=hfeif2)

Try this yourself Repeat the above example, but using the entire dataset (rather than a

subset of the data for two dates). Inspect the model with Anova, and also look at the summary

statement.

Let’s fit the mixed-effects model on this small subset of the data to test whether a) treatment affects

height, b) there is an effect of time on height, c) there is an interaction (i.e. height response to treatment

depends on time).

# Fit the model

lmeif4 <- lmer(height ~ treat*Time_fac + (1|plotnr), data=hfeif2)

# Overall significance shows no interaction

Anova(lmeif4, test="F")

## Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

##
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## Response: height

## F Df Df.res Pr(>F)

## treat 23.0111 3 12 2.89e-05 ***

## Time_fac 359.1285 1 1333 < 2.2e-16 ***

## treat:Time_fac 2.8048 3 1333 0.03859 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Try this yourself Use visreg to visualize the fit, and compare it to the box plots produced

above.

1.6 Example: repeated measures in leaf photosynthesis

In this example we look at another case of repeatedmeasurements, this time for measurements of leaf

photosynthesis at the EucFACE. Measurements were repeated during four campaigns in 2013 (labelled

simply as A-D), in all six rings at the EucFACE (three of which have an ambient CO2 concentration, and

three an elevated CO2 concentration), on a few trees per ring. The random effects naturally follow from

the experimental design, as measurements were performed on trees nested within rings.

In this example we are particulary interested in comparing the four dates with each other - we would

like to know not only if leaf photosynthesis was enhanced by elevated CO2, but also whether this

enhancement differed between the campaigns.

We start out with a simple barplot showing averages by campaign and treatment. The following code

produces Fig. 1.12. Note that the error bars cannot be used for judging differences between treatments,

as these are simply calculated across all the individual data points.

eucgas <- read.csv("eucface_gasexchange.csv")

library(sciplot)

bargraph.CI(Date, Photo, CO2, data=eucgas, legend=TRUE,

ylab="Photo")

Next, we fit the mixed-effects model. We have just two fixed effects in themodel: Date and CO2, and the

random effects structure is tree within ring (1|Ring/Tree). We can test whether we need to include a

Date x CO2 interaction by fitting twomodels and comparing themwith a likelihood ratio test, as before.

We also load the lmerTest package here because wewould like to inspect the p-values for the individual

coefficients printed in the summary statement, in what follows.

library(lmerTest)

eucgas_m0 <- lmer(Photo ~ Date + CO2 + (1|Ring/Tree), data=eucgas)

eucgas_m1 <- lmer(Photo ~ Date * CO2 + (1|Ring/Tree), data=eucgas)

# Compare the two models - this tests for the significance of Date:CO2

library(pbkrtest)

KRmodcomp(eucgas_m0, eucgas_m1)

## F-test with Kenward-Roger approximation; computing time: 0.17 sec.

## large : Photo ~ Date * CO2 + (1 | Ring/Tree)

## small : Photo ~ Date + CO2 + (1 | Ring/Tree)

## stat ndf ddf F.scaling p.value

## Ftest 2.2889 3.0000 57.2479 0.99996 0.08806 .
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Figure 1.12: Average net leaf photosynthesis (Photo) by Date and CO2 treatment for the eucgas dataset.

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The F-test shows that the interaction is at best marginally significant (p = 0.088). Make sure that you un-

derstand the difference between these twomodels: the interaction allows for a different CO2 response

at different dates. The model fits are visualized in Fig. 1.13, produced by the following code.

visreg(eucgas_m0, "Date", by="CO2", overlay=TRUE)

visreg(eucgas_m1, "Date", by="CO2", overlay=TRUE)

Note: if you are using an older version of visreg, you will see some warnings printed that you can
ignore.

Comparing the two panels in Fig. 1.13, we are not quite yet convinced that the CO2 response was the

same for all dates. For Date B, the response seems particularly small. Also, although the F-test above

did not give us evidence for a significant interaction, the model with the interaction does have a lower

AIC, suggesting it does improve the model somewhat:

AIC(eucgas_m0, eucgas_m1)

## df AIC

## eucgas_m0 8 437.1154

## eucgas_m1 11 427.9704

Before we continue, it is a good idea as always to check the model diagnostics. The following code

makes a plot (Fig. 1.14) of the residuals versus fitted, and a quantile-quantile plot of the residuals.

These diagnostics look quite good, so we are happy to continue.

plot(fitted(eucgas_m0), residuals(eucgas_m0))

abline(h=0)

29



10

15

20

25

30

35

Date

f(
D

at
e)

A B C DA B C D

Amb Ele

10

15

20

25

30

35

Date

f(
D

at
e)

A B C DA B C D

Amb Ele

Figure 1.13: A model for net leaf photosynthesis without (left) and with (right) an interaction between

Date and CO2 treatment.

library(car)

qqPlot(residuals(eucgas_m0))

To address our question, we are interested to find out whether there was a significant CO2 response on

each of the four dates. With the standard way that R codes the factor levels, this is not straightforward
to address. Recall that each factor level is tested against the first level, as we can see in the coefficients

printed as part of the summary table. Here is a subset of the output of summary(eucgas_m1):

## Estimate Std. Error df t value Pr(>|t|)

## (Intercept) 24.8925064 1.037901 73.47517 23.9835135 < 2.22e-16 ***

## DateB -2.4697297 1.369405 47.05959 -1.8035060 0.077713 .

## DateC -7.5340656 1.283741 48.75124 -5.8688380 3.7846e-07 ***

## DateD -7.3220721 1.283741 48.75124 -5.7037007 6.7726e-07 ***

## CO2Ele 4.4314124 1.469861 72.57121 3.0148506 0.003541 **

## DateB:CO2Ele -3.3755079 1.921530 43.25287 -1.7566769 0.086051 .

## DateC:CO2Ele 1.2836021 1.808643 46.55320 0.7097047 0.481427

## DateD:CO2Ele -0.2763754 1.808643 46.55320 -0.1528082 0.879210

In this table, (Intercept) is the estimated Photo for the first Date (A), for the first level of CO2 (Amb). All

other values are expressed relative to this value. Thus, CO2Ele tests the CO2 effect for the first Date.

It shows that for Date A, Photo was 4.43 units higher in elevated compared to the ambient treatment.

The next three parameters (DateB:CO2Ele and so on) are expressed relative to the first date, so that

DateB:CO2Ele tests the difference in CO2 response between Date B and Date A.

This table therefore does not address our question: was CO2 significant on each date? A straightfor-

ward way to compute the right tests is to refit the model without an intercept, so that the individual

coefficients are not tested against the first level, but against zero.

# Refit the model, without an intercept ("-1"), and including CO2 only as

# the interaction

eucgas_m2 <- lmer(Photo ~ Date + Date:CO2 -1 + (1|Ring/Tree), data=eucgas)
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Figure 1.14: Diagnostic plots for the eucgas_m0model.

# Note that this model is exactly the same as before - see the AIC for example

AIC(eucgas_m1, eucgas_m2)

## df AIC

## eucgas_m1 11 427.9704

## eucgas_m2 11 427.9704

The newmodel expresses the coefficients very differently, as we can see from this extract from summary(eucgas_m2):

## Estimate Std. Error df t value Pr(>|t|)

## DateA 24.892506 1.0379007 73.47516 23.9835135 < 2.22e-16 ***

## DateB 22.422777 1.0386388 73.12648 21.5886184 < 2.22e-16 ***

## DateC 17.358441 0.9050977 67.83184 19.1785280 < 2.22e-16 ***

## DateD 17.570434 0.9050977 67.83184 19.4127496 < 2.22e-16 ***

## DateA:CO2Ele 4.431412 1.4698613 72.57121 3.0148506 0.0035410 **

## DateB:CO2Ele 1.055904 1.4703826 72.37632 0.7181155 0.4749978

## DateC:CO2Ele 5.715014 1.2814115 66.59206 4.4599370 3.2301e-05 ***

## DateD:CO2Ele 4.155037 1.2814115 66.59206 3.2425470 0.0018526 **

This time, the first four rows give the estimates for the four dates in the ambient CO2 treatment,

together with the p-values of a test against zero (not very meaningful in this case). The next four rows

give the actual CO2 response, that is, the difference between elevated and ambient CO2 for each of the

four dates. Since we loaded the lmerTest package before fitting this model, the p-values are computed

for each of these effects. The results show that, as we suspected, there was no significant CO2 effect

on Date B (p = 0.47).

Finally we show another method to test individual coefficients against zero, using the glht function

from the multcomp package. We have met this package before for performing Tukey tests on fitted

models.

To test coefficients against zero, we can do:
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library(multcomp)

summary(glht(eucgas_m2, linfct=c("DateA:CO2Ele = 0",

"DateB:CO2Ele = 0",

"DateC:CO2Ele = 0",

"DateD:CO2Ele = 0")))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Fit: lme4::lmer(formula = Photo ~ Date + Date:CO2 - 1 + (1 | Ring/Tree),

## data = eucgas)

##

## Linear Hypotheses:

## Estimate Std. Error z value Pr(>|z|)

## DateA:CO2Ele == 0 4.431 1.470 3.015 0.01020 *

## DateB:CO2Ele == 0 1.056 1.470 0.718 0.91947

## DateC:CO2Ele == 0 5.715 1.281 4.460 < 1e-04 ***

## DateD:CO2Ele == 0 4.155 1.281 3.243 0.00472 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- single-step method)

Note that the p-values will be different from the ones computed above because a) lmerTest approxi-

mates the degrees of freedom and uses a t-test, whereas glht relies on a normal approximation (the

two will be closer together for larger sample sizes), and b) glht adjusts the p-values for multiple com-

parisons. This time, though, the conclusions are no different using either method.

Using the glht function, we can also test various parameter combinations quite easily. This final ex-

ample shows how we can test whether the CO2 response was different on Date C from Date D:

summary(glht(eucgas_m2, linfct="DateC:CO2Ele - DateD:CO2Ele = 0"))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Fit: lme4::lmer(formula = Photo ~ Date + Date:CO2 - 1 + (1 | Ring/Tree),

## data = eucgas)

##

## Linear Hypotheses:

## Estimate Std. Error z value Pr(>|z|)

## DateC:CO2Ele - DateD:CO2Ele == 0 1.560 1.657 0.942 0.346

## (Adjusted p values reported -- single-step method)

From this test we can conclude that there is no evidence to suggest that CO2 increased photosynthesis

more on Date C compared to Date D.

1.7 Example: analysis of count data with the ground-
cover data (glmer)

We have seen how to fit generalised linear models (Section 7.5) and linear mixed models (above). Once

you know how to fit these models in R, fitting GLMMs is fairly easy using the glmer function in the lme4
package.

The EucFACE ground cover dataset (see Section A.20) contains estimates of plant and litter cover within
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Figure 1.15: Counts of forbs within plant communities exposed to ambient or elevated carbon dioxide

concentrations at two dates. Points represent estimates within subplots, subplots common to the

same plot within each ring have a common colour.

the rings of the EucFACE experiment, evaluating forest ecosystem responses to elevated CO2, on two

dates. There are six rings (Ring), three for each treatment (Trt; ambient and elevated CO2). Within each

ring are four plots (Plot) and within each plot are four 1m by 1m subplots (Sub). Here we will test for an

interaction between Trt and Date on ground cover measurements of Forbes (these are count data).

The following code produces Fig. 1.15, showing a plot of the raw groundcover data.

# read data and convert random effects to factors

eucface <- read.csv("eucfaceGC.csv")

eucface$Ring <- as.factor(paste(eucface$Ring, eucface$Trt, sep='-'))

eucface$Plot <- as.factor(eucface$Plot)

eucface$Sub <- as.factor(eucface$Sub)

# load packages

library(lme4)

library(lattice)

# A quick plot to visualize ground cover by Date and Ring.

# Colours represent 'Plot'.

xyplot(Forbes~Date|Ring,groups=Plot,data=eucface,pch=16,jitter.x=T)

Since the data are count data, it is usually appropriate to use the Poisson distribution. The following

code fits a glmer with the poisson error family, and produces diagnostic plots in Fig. 1.16.

To usual way to decide on the appropriate family is to inspect the diagnostic plots, especially a plot

of residuals versus the fitted values. In the following, we fit the model three times, first with normal
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Figure 1.16: Diagnostic plots for three model fits of the EucFACE groundcover data.

errors (using lmer), then with Poisson errors (the distribution we expect to be appropriate), and a

Poisson distribution with square-root link function.

The following code produces three diagnostic plots (Fig. 1.16).

forb.norm <- lmer(Forbes~Date*Trt+(1|Ring/Plot/Sub),

data=eucface)

forb.pois <- glmer(Forbes~Date*Trt+(1|Ring/Plot/Sub),

family=poisson, data=eucface)

forb.pois.sqrt <- glmer(Forbes~Date*Trt+(1|Ring/Plot/Sub),

family=poisson('sqrt'), data=eucface)

# The standard plot() on an (g)lmer object makes a 'grid-based'

# plot. To arrange plots side-by-side we have to use gridExtra, like so.

library(gridExtra)

p1 <- plot(forb.norm, main="Normal")

p2 <- plot(forb.pois, main="Poisson (log-link)")

p3 <- plot(forb.pois.sqrt, main="Poisson (sqrt-link)")

grid.arrange(p1,p2,p3,ncol=3)

Note that the syntax of glmer is identical to that of lmer, with the exception of the family argument.

Inspecting Fig. 1.16, the residuals look better for the models fit with the Poisson family compared to

the gaussian error (as assumed by lmer). The residuals improve a bit more when using the sqrt link

function in the Poisson family.

Note that the fit of the model may be improved further by using one of the other plant cover variables

as a covariate or by incorporating other data from the site, but for the purpose of this chapter the fit is

good enough.

Something else to consider when it comes to poisson errors is that overdispersion can result in the

underestimation of error terms for the model coefficients. Overdispersion occurs when you have a

large number of zeros in the data and/or an important predictor is not accounted for. Testing hy-

potheses from models where overdispersion is evident is dangerous as the probability of Type I error
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is increased. A good model fit should result in the ratio of residual deviance to degrees of freedom

being close to one.

# Calculate the residual deviance

sum(resid(forb.pois.sqrt, type='pearson')^2)

## [1] 171.408

# Excerpt of the model summary, showing only the AIC and related parameters.

# From here we learn that the df.resid is 185

summary(forb.pois.sqrt)$AICtab

## AIC BIC logLik deviance df.resid

## 612.5734 635.3758 -299.2867 598.5734 185.0000

Overdispersion does not appear to be a problem here as the ratio (171.4 / 185) is less than one. If it

was, we could use a quasipoisson family as for GLMs (but unfortunately glmer does not support that

family). It has also been suggested that including individual-level random effects in the model could

alleviate the problem of overdispersion. We try this in the following example.

# Create a variable for individual-level random effects

eucface$Ind <- as.factor(1:nrow(eucface))

# fit the model and look at the model summary

forb.pois.ind <- glmer(Forbes~Date*Trt+(1|Ring/Plot/Sub/Ind),

family=poisson(sqrt), data=eucface)

# The estimated variances of the random effects

VarCorr(forb.pois.ind)

## Groups Name Std.Dev.

## Ind:(Sub:(Plot:Ring)) (Intercept) 0.26215

## Sub:(Plot:Ring) (Intercept) 0.10949

## Plot:Ring (Intercept) 0.35224

## Ring (Intercept) 0.57035

# Inspect the entire summary yourself:

# summary(forb.pois.ind)

The random effects block indicates that a small amount of variance is accounted for by the individual

level random effects. This is expected as we did not observe overdispersion.

We can use Anova function from the car package to calculate significance associated with the main

effects and interaction. Note that is is only one way of many to calculate p-values, as we discussed

above linear mixed models.

library(car)

Anova(forb.pois.ind)

## Analysis of Deviance Table (Type II Wald chisquare tests)

##

## Response: Forbes

## Chisq Df Pr(>Chisq)

## Date 16.8793 1 3.983e-05 ***

## Trt 0.3659 1 0.54527

## Date:Trt 4.4273 1 0.03537 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There appears to be a significant interaction between Date and Trt. Again, when an interaction is
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Figure 1.17: Model predictions, looking at treatment effects by date (left) and date effects by treatment

(right).

significant we must dig deeper to understand the source of the interaction. Looking at Fig. 1.17, it

appears that :

1. Forbs decreased in frequency between the two dates in the control but not in the elevated CO2
treatment

2. Forb abundance was lower in the control than in the elevated CO2 treatment on the second date,

but not the first date.

# set up graphics window for two plots

par(mfrow=c(1, 2))

# plot model preditions and data

visreg(forb.pois.ind, 'Date', 'Trt', overlay=TRUE)

visreg(forb.pois.ind, 'Trt', 'Date', overlay=TRUE)

We can evaluate each of these hypotheses through model selection after combining treatment levels.

# create a three level factor that combines both dates in the 'elev' treatment

eucface$trtcomb.elev <- with(eucface, paste(Trt, Date, sep='-'))

eucface$trtcomb.elev[eucface$Trt == 'elev'] <- 'elev'

eucface$trtcomb.elev <- as.factor(eucface$trtcomb.elev)

levels(eucface$trtcomb.elev)

## [1] "ctrl-11/06/13" "ctrl-3/09/13" "elev"

# create a three level factor that combines both treatments for the '11/06/13' sampling

eucface$trtcomb.date <- with(eucface, paste(Trt, Date, sep='-'))

eucface$trtcomb.date[eucface$Date == '11/06/13'] <- '11/06/13'

eucface$trtcomb.date <- as.factor(eucface$trtcomb.date)

levels(eucface$trtcomb.date)

## [1] "11/06/13" "ctrl-3/09/13" "elev-3/09/13"
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# fit model with three level combination factors

m2.elev <- glmer(Forbes ~ trtcomb.elev + (1|Ring/Plot/Sub/Ind),

family=poisson('sqrt'), data=eucface)

m2.date <- glmer(Forbes ~ trtcomb.date + (1|Ring/Plot/Sub/Ind),

family=poisson('sqrt'), data=eucface)

# fit models with only one main effect (Date or Trt)

m3.Trt <- glmer(Forbes~Date+(1|Ring/Plot/Sub/Ind), family=poisson(sqrt), data=eucface)

m3.Date <- glmer(Forbes~Trt+(1|Ring/Plot/Sub/Ind), family=poisson(sqrt), data=eucface)

# compare models (model with the lowest AIC is the most efficient at predicting the response)

AIC(forb.pois.ind, m2.elev, m2.date, m3.Trt, m3.Date)

## df AIC

## forb.pois.ind 8 611.9524

## m2.elev 7 611.9420

## m2.date 7 610.0109

## m3.Trt 6 612.6342

## m3.Date 6 627.4332

The three-level model in which date effects are estimated in the control treatment but not the elevated

treatment (m2.elev) is not a substantial improvement over the fully factorial model (forb.pois.ind), so

we do not consider it further. The three-level model in which treatment effects are estimated on the

second date but not the first date (m2.date) has the lowest AIC score in comparison to the fully factorial

model (forb.pois.ind) and to the two-level models that do not estimate an effect of treatment (m3.Trt)

or date (m3.Date), so is the model that we select as the one that best predicts forb dynamics.

1.8 Example: logistic regression with the ground cover
data (glmer)

Something that wasn’t mentioned regarding this EucFACE ground cover dataset is that vegetation was

assessed at a maximum of 16 points within each subplot and, therefore, the maximum number of

observations per plot is constrained. This does not affect our analysis of forb abundances because

these are generally low (less than ten in almost all plots) and so interpreting these as count data is

appropriate. This is not the case for other response variables. As an example, let’s look at grass cover

in Fig. 1.18.

# A quick plot to visualize ground cover by Date and Ring.

# Colours represent 'Plot'.

xyplot(Grass~Date|Ring,groups=Plot,data=eucface,pch=16,jitter.x=T)

The data are clearly bounded at both the lower and upper range. We can treat these as binomial

distributed, with the presence or absence of grass assessed at each of the sixteen points within each

subplot. Do do this, we use cbind to create a two-column response matrix indicating the number of

presences and absences within each subplot, as we did for logistic regression in Section 7.5.1. We also

specify the random effects as we did for the analysis of forb abundance above.

# fit model with binomial error distribution

grass.binom <- glmer(cbind(Grass, 16-Grass)~Date*Trt+(1|Ring/Plot/Sub),

family=binomial, data=eucface)

# test significance of main effects and interaction
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Figure 1.18: Grass cover within plant communities exposed to ambient or elevated carbon dioxide con-

centrations at two dates. Cover was assessed based on presence at each of sixteen locations within a

subplot. Points represent estimates within subplots, subplots common to the same plot within each

ring have a common colour.
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Figure 1.19: Model predictions, looking at treatment effects by date.

Anova(grass.binom)

## Analysis of Deviance Table (Type II Wald chisquare tests)

##

## Response: cbind(Grass, 16 - Grass)

## Chisq Df Pr(>Chisq)

## Date 145.3645 1 < 2.2e-16 ***

## Trt 0.0000 1 0.997748

## Date:Trt 8.3183 1 0.003925 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results suggest a highly significant effect of date and a signficant date by treatment interaction.

The model predictions are shown in Fig. 1.19. A similar approach could be used to tease apart the

source of the interaction as was used for forb abundances.

# plot model preditions and data

visreg(grass.binom, 'Date', 'Trt', overlay=TRUE)

1.9 Example: logistic regression with seed germination
data (glmer)

In this example we will take another look at logistic regression when we have random effects, using a

generalized linear mixed effects model. We have to related datasets on germination success of seeds.

Seeds of four Tea Tree (Melaleuca sp.) species were collected at 9 sites, and subjected to either a ’fire
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Figure 1.20: Germination success by species and as a function of water potential for the seedwater

data.

cue’ treatment (the seedfire dataset), or a dehydration treatment (seedwater data). Multiple cabinets

were used for the experiment in the seedfire data, but not for the seedwater data. Each replicate

contains ca. 20 seeds (given by the n variable), for which the germinated seeds were counted after

some time. We thus have tabulated data, which we can use in a generalized linear model with a simple

trick (we encountered this already in Section 7.5.1.1).

First we read the data, and make a simple plot of germination success (number of germinated seeds

divided by sample size) for the seedwater data, producing Fig. 1.20.

seedfire <- read.csv("germination_fire.csv")

# Make sure temperature treatment is a factor

seedfire$temp <- as.factor(seedfire$temp)

seedwater <- read.csv("germination_water.csv")

palette(terrain.colors(4))

with(seedwater, plot(jitter(water.potential), germ/n, pch=21, bg=species))

legend("topleft", levels(seedwater$species), pch=21, pt.bg=palette(), cex=0.8)

We will first work with the seedfire dataset to test for temperature effects, and whether the fire cue

treatment had any effect on germination success. We choose to treat the site variable as a random

effect, since we are at this point not interested in specific site-to-site comparisons, but we do wish to

account for the source of variation. It is also possible to treat site as a fixed effect, demonstrating that

a variable can be either fixed or random depending on the question.

As mentioned above, we use a trick to allow the use of tabulated data in the glmer specification, using

cbindgerm, n - germ, it represents a matrix with number of ’successes’ and ’failures’ tabulated in the
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two columns. We here treat the temperature treatment (temp) as a factor since the response is very

non-linear, as we will see.

# A simple first fit with species and temperature

firefit1 <- glmer(cbind(germ, n-germ) ~ species + temp +

(1|site), data=seedfire, family=binomial)

Anova(firefit1)

## Analysis of Deviance Table (Type II Wald chisquare tests)

##

## Response: cbind(germ, n - germ)

## Chisq Df Pr(>Chisq)

## species 271.18 3 < 2.2e-16 ***

## temp 2368.78 5 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly both species and temp are highly significant. Next we test whether the interaction between

species and temp is significant, as well as the fire cue treatment. We prefer to test additional variables

in steps, as follows.

# Fire cue is not significant

firefit2 <- glmer(cbind(germ, n-germ) ~ species + temp + fire.cues +

(1|site), data=seedfire, family=binomial)

# fire.cues is not significant

anova(firefit1, firefit2)

## Data: seedfire

## Models:

## firefit1: cbind(germ, n - germ) ~ species + temp + (1 | site)

## firefit2: cbind(germ, n - germ) ~ species + temp + fire.cues + (1 | site)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## firefit1 10 2712.6 2756.1 -1346.3 2692.6

## firefit2 11 2714.5 2762.4 -1346.3 2692.5 0.0367 1 0.8481

# Include the interaction between species and temperature.

firefit3 <- glmer(cbind(germ, n-germ) ~ species * temp +

(1|site), data=seedfire, family=binomial)

# The interaction is very significant (also note large decrease in AIC)

anova(firefit1, firefit3)

## Data: seedfire

## Models:

## firefit1: cbind(germ, n - germ) ~ species + temp + (1 | site)

## firefit3: cbind(germ, n - germ) ~ species * temp + (1 | site)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## firefit1 10 2712.6 2756.1 -1346.3 2692.6

## firefit3 25 2266.2 2375.1 -1108.1 2216.2 476.36 15 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: you will get a warning when fitting the firefit3model. For the purpose of this example, you can
ignore the warning.

We can now conclude that there is ample evidence that the different species respond very differently

to temperature, but that there is no evidence for the fire cue to have any effect on germination success.
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Figure 1.21: The firefit3model visualized.

Finally we visualize the effects estimated with the visreg package. When visualizing a fitted glmer

model, we have to specify scale="response" to convert the link function back to the original scale. The

following code makes Fig. 1.21. Note the various settings to simplify the plot, and the use of line.par

to change the colour of the lines.

visreg(firefit3, "temp", by="species", overlay=TRUE, band=FALSE,partial=FALSE,scale="response",

ylab="P(Germination)", line.par=list(col=terrain.colors(4)), legend=FALSE, rug=FALSE)

Next, we will use the seedwater dataset to test for effects of dehydration on germination success. The

degree of dehydration is measured as the water potential, where more negative values indicate drier

seed. The model fitted will be similar as for the seedfire data, except our main predictor (in addition to

species) is a numeric variable, not a factor.

fitwater1 <- glmer(cbind(germ, n-germ) ~ species + water.potential +

(1|site), data=seedwater, family=binomial)

fitwater2 <- glmer(cbind(germ, n-germ) ~ species * water.potential +

(1|site), data=seedwater, family=binomial)

anova(fitwater1, fitwater2)

## Data: seedwater

## Models:

## fitwater1: cbind(germ, n - germ) ~ species + water.potential + (1 | site)

## fitwater2: cbind(germ, n - germ) ~ species * water.potential + (1 | site)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## fitwater1 6 2623.9 2647.1 -1306.0 2611.9

## fitwater2 9 2482.8 2517.6 -1232.4 2464.8 147.14 3 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 1.22: The fitwater2model visualized, with the raw data superimposed

The following code makes Fig. 1.22, and shows a simple way to include the raw data alongside the fitted

model. Note that the model does not fit equally well for all species - the response is steeper than

expected for at least two of the species. This suggests some transformation of water potential would

be appropriate, but we have not included further analyses here.

visreg(fitwater2, "water.potential", by="species",

overlay=TRUE, rug=FALSE, legend=FALSE,

line.par=list(col=terrain.colors(4)),

scale="response", ylab="P(Germination)")

with(seedwater, points(jitter(water.potential), germ/n, pch=19, col=species))
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1.10 Exercises

In these exercises, we use the following colour codes:

∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.

⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.

▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.

We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.

1.10.1 PREF Canopy data

1. ⧫ In the analysis of the pref data, use model selection (AIC, anova) to evaluate the importance of

species and dfromtop.

1.10.2 Litter decomposition data

1. ⧫ The litter data contain a factor (variety) describing whether the litter is derived from a ge-

netically modified (gm) or conventional (nongm) soy variety. Plot the data to observe the effect of

variety. Use lmer to test the effect of variety, in addition to the other significant variables, on

litter decomposition.

1.10.3 EucFACE ground cover data

The file eucfaceGC.csv contains estimates of plant and litter cover within the rings of the EucFACE

experiment, evaluating forest ecosystem responses to elevated CO2, on two dates; the data description

can be found in Section A.20 (p. 271).

1. ⧫ Convert the variables indicating the nested sampling design to factors, then use glmer in lme4 to
test for an interaction between Trt and Date on Grass and Litter cover. Grass cover represents

a frequency across a maximum of 16 points within a quadrat (use the binomial family), while litter

cover represents counts (use the poisson family).

2. ▲ Following on from exercise 3, generate subsets to determine the sources of the interactions
(i.e., does the treatment effect differ between the two dates or does the date effect differ between

the two treatments?).
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