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Abstract 
This paper describes a strategy for modeling and 
engineering complex e-business systems with built-in 
quality of adaptiveness. The paper explains the 
philosophical and scientific foundations for research 
findings and for the proposed strategy. After ascertaining 
that complexity relates to the fact that higher levels of 
organization manifest features not predictable from the 
lower ones, the paper uses a holonic approach to science 
that reconciles reductionism and holism. The strategy is 
centered on a six-layer meta-architecture (called 
PCBMER and described comprehensively elsewhere). 
The meta-architecture facilitates development of adaptive 
systems such that property of emergence is controlled and 
supplanted by the property of resultance. 

Keywords:  Software system, complex system, adaptive 
system, software engineering, system modeling, 
reductionism, holism, holon, holarchy. 

1 Epigraph 
This paper is about a strategy for the development of 
large software systems. It is about a scientific vision for 
software development (synthesized from many years of 
research and experience) rather than a targeted (delta) 
research contribution proving a theory or solving a 
particular problem. As such, a usual ‘Introduction’ is 
replaced here by an ‘Epigraph’, which should give the 
reader some idea of what this piece or writing is about. 
This paper is set against the background of reductionism 
and holism as two contrasting approaches to science 
(Looijen 2000, Kanitscheider 2002, Jackson 2003, Capra 
1982, Koestler, Smythies 1969). It makes a strong call for 
the importance of a middle-ground holonic approach 
(Koestler 1967, Koestler 1978, Koestler 1980) as the 
most promising way to understand and take control of the 
complexity of large software systems. In doing so, this 
paper provides further philosophical and pragmatic 
arguments for holonic software architectures advocated 
by the author in (Maciaszek 2007b, Maciaszek, Liong 
2005, Maciaszek 2007a, Maciaszek 2006) and elsewhere.  
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A holonic architectural design provides a framework on 
which to build quality into software, and in particular to 
achieve the overriding quality of adaptiveness. 

This paper takes on the task on convincing the reader that 
to build complex software systems, which can adapt to 
the ever changing requirements and environment, an 
intellectual freedom of ‘cutting code’ has to be curtailed. 
The studies of structure and behavior of natural systems 
provide guidance for construction of human-made 
systems. Even if this guidance is incomplete or 
controversial, it gives an explanation to software 
implementation and provides a hope that the resulting 
system will be understandable, maintainable and scalable. 
Without this assurance, and in the face of ever increasing 
dependence of people on software solutions, the 
consequences on every-day lives of people may be indeed 
serious. 

To cover the breadth of the subject area and to address a 
large number of interdependent concepts and theories, the 
paper takes a ‘build-up’ approach of explaining terms in 
the title starting from the least descriptive last term 
(“systems”) and going backwards to the most descriptive 
terms of “engineering’ and “modeling”. Accordingly, the 
following sections of the paper are titled: 

• Systems 
• Complex (i.e. complex systems) 
• Adaptive (i.e. adaptive complex systems) 
• Modeling and Engineering (of adaptive complex 

systems) 

2 Systems 
From all the terms in the paper’s title, the concept of 
system is the least contentious. The general consensus is 
that a system is “a complex whole the functioning of 
which depends on its parts and the interactions between 
those parts” (Jackson 2003, p.3). Moreover, a system is 
“an integrated whole whose properties cannot be reduced 
to those of its parts” (Capra 1982, p.26).  
While the first definition is neutral with regard to 
scientific methods of studying systems, the second 
definition places the concept firmly within the realms of 
holism. Pivoted on the idea that “the whole is greater than 
the sum of the parts”, holism searches for new qualities 
and complex higher-level phenomena at the macroscopic 
level and it claims credibility on the basis of emergence 
alone. Holistic views in the philosophy of science have 
conquered various sectors in physical sciences (quantum 
mechanics, deterministic chaos), biological sciences 
(evolutionary biology) and elsewhere. Holistic views 



have also made a considerable footprint in information 
and communication sciences (Jackson 2003). 

Despite its successes, holism faces a stiff opposition from 
traditional scientific quarters, which base their scientific 
methods on the Cartesian philosophy of reductionism 
(atomism). Propelled by undeniable successes (most 
notably in the molecular biology research that has 
resulted in the unraveling of the genetic code), 
reductionists treat holism as a form of art rather than 
science. Theories that cannot be explained in reductionist 
terms (i.e. by reducing the problem to elementary parts 
and by synthesizing through the analysis of these parts 
and their interactions) are deemed unworthy of scientific 
investigation. Yet, the limitations of such analytic or 
mechanistic world view are evident across all sciences, 
including biology (in particular with its relation to 
medicine).  

 With regard to the uncontroversial aspects of the 
definition of system, i.e. by looking at system as a 
complex whole, we have to acknowledge that systems 
theory is all-embracing, interdisciplinary and even 
transdisciplinary. Information systems, living organisms, 
societies, and ecosystems are all systems. From this 
paper’s perspective, it is therefore valuable to try to 
derive the desired characteristics of human-made 
systems, such as business systems, from the studies of 
structures and behavior of natural systems, in particular 
the most complex systems that exist – living organisms. 

Fig.1 shows a classification of business systems in a 
Venn diagram. An e-business system is understood as a 
software system (an integrated set of software 
applications). Most software systems are, or strive to be, 
network- and Internet-enabled. It, therefore, makes sense 
to use the concept of e-business to mean: “the use of the 
Internet and other networks and information technologies 
to support electronic commerce, enterprise 
communications and collaboration, and Web-enabled 
business processes, both within a networked enterprise 
and with its customers and business partners” (O’Brien, 
Marakas 2007, p.234) 
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Fig. 1. Systems in the world of business.  

In general, e-business refers to any commercial 
transactions involving the exchange of value (e.g. money) 
across organizations and individuals in return for 
products or services. It includes, therefore, consumer-to-
consumer (C2C) e-business, such as an auction site, and 
peer-to-peer (P2P) exchanges in which products or 

services are openly shared. E-business includes also 
systems based on a service-oriented architecture (SOA). 
SOA systems differ from systems that merely use web 
services in that SOA advocates the use of a services 
discovery mechanism (a service broker or discovery 
agent). 

An information system is concerned with generating and 
managing information for people. Some of this 
information is generated automatically by software 
systems. Other information is obtained manually by 
people. The point is that information systems are social 
systems that encompass and use software and other 
components such as: people, information, procedures, 
hardware, and personal and automated communications. 

An implication is that the development of a software 
system is just an activity (albeit a fundamental one) in the 
development of an information system. An information 
system operates within the context of an enterprise 
system – an organization (perhaps a virtual organization) 
created under applicable laws for a business endeavor. 
The enterprise is further constrained by the rules and 
conditions of the business environment. The environment 
includes other enterprises that may become the 
collaborating partners in a networked organization. At 
this layer, a business to business (B2B) integration takes 
place. 

Placing software development in the context of enterprise 
means that a software process is derived from a wider 
business model and it tries to support and implement a 
particular business process in that model. This means that 
a software product/service cannot be just an information 
service. It should also implement and assist in business 
actions. The design of an information system should 
either explicitly identify a business process it serves or, 
better, it should be a part of a (business) knowledge 
management system. One aspect of such design is to 
coordinate automated informational actions, manual 
supportive actions, and creative decision making actions. 

Usually, a particular software system services a single 
management level – operational, tactical or strategic. The 
operational level is concerned with processing business 
operational data and documents, such as orders and 
invoices. This is the realm of OnLine Transaction 
Processing (OLTP) systems assisted by conventional 
database technology. The tactical level processes 
information obtained from the analysis of data, such as 
monthly trends in product orders. This is the realm of 
OnLine Analytical Processing (OLAP) systems assisted 
by data warehouse technology. The strategic level 
processes the organizational knowledge, such as rules and 
facts behind a highly profitable product selling. This is a 
realm of knowledge systems assisted by knowledge base 
technology. 

Systems at operational management level are 
indispensable to the enterprise. Without them, a modern 
enterprise cannot function. However, operational 
software does not provide to the enterprise any 
competitive edge. Competitors already have similar 
systems. The business value of software increases with 



increasing levels of management to which the system 
applies. 

 

3 Complex 
Systems are complex by their very definition. But what 
do we really mean by complexity? While there have been 
many attempts to define complexity in absolute terms, we 
tend to agree with propositions that ‘complex’ is a 
primitive and relative term, which can only be given a 
contextual definition. As such, ‘complex’ can only be 
understood by its relation to its specific contrary notion of 
‘simple’. There are many primitive concepts like that, e.g. 
‘part’ as contrary to ‘whole’, ‘same’ as the opposite of 
‘different’ (Agazzi 2002).  
If the notion of complexity (as well as simplicity) is not 
absolute but relative, then what is complex from one 
point of view may not be complex from another point of 
view. Short of stating that the complexity is in the eye of 
the beholder, we can identify four kinds of software 
complexity: 

• Problem complexity – the complexity of the 
problem domain itself. This is also known as 
computational complexity. Problem complexity is 
an offshoot of the Brooks’ essential characteristics 
of software, i.e. the four difficulties of software 
production that are not amenable to breakthroughs 
or ‘silver bullets’ (the inherent software 
complexity, conformity, changeability, and 
invisibility) (Brooks 1987). 

• Algorithmic complexity – aiming at measuring the 
efficiency of software algorithms. This is a kind 
of complexity with diminishing relevance due to 
the shift of computing paradigm from algorithms 
to interactions. Unlike algorithmic systems, 
interactive systems can learn and adapt and as a 
result can produce outputs that are only partially 
determined by their inputs (Wegner 1997). 

• Cognitive complexity – measuring the effort 
required to understand the software. 

• Structural complexity – aiming at establishing the 
relationship between the structure of the software 
and the ease of its maintenance and evolution. The 
measurements are applied to control flow 
structures, hierarchical structures, modular 
structures, etc. 

If the problem complexity is an ‘essence’ of software 
production and the algorithmic complexity is an old hat, 
then the last two kinds of complexity must take priority in 
considerations related to modeling and engineering of e-
business systems. A closer look at these two kinds of 
complexity reveals that the cognitive complexity is a 
necessary condition of structural complexity. The 
structural complexity subsumes cognitive complexity. 
Accordingly, in what follows complexity is understood as 
structural complexity. 

The complexity of software systems is in the wires – in 
the linkages and communication paths between software 
objects. The “wires” create dependencies between 
distributed objects that may be difficult to understand and 

manage (a software object A depends on an object B, if a 
change in B necessitates a change in A).  

The realization that the ways objects are interconnected 
and integrated are more important than the objects 
themselves places software systems on the holistic end of 
scientific investigation. The resulting whole is more than 
the sum of its parts. This also places software systems 
firmly within the context of general systems theory. 
“Systems theory looks at the world in terms of the 
interrelatedness and interdependence of all phenomena, 
and in this framework an integrated whole whose 
properties cannot be reduced to those of its parts is called 
a system.” (Capra, p.26). 

These observations bring us to another point about the 
nature of complexity – the difference between 
‘compound’ and ‘complex’. “… in a compound we have a 
plurality of components, but are not concerned about their 
relations, whereas a complex is a compound in which the 
relations among its constituents are significant, since they 
make of this compound a whole endowed with an identity 
and evincing an analytical complexity.” (Agazzi 2002, 
p.7). 

Another way of looking at this point is by distinguishing 
between analytic and synthetic simplicity (Dilworth 
2001), and then by counter-supposition distinguishing 
between analytic and synthetic complexity. An object is 
analytically simple if it has no internal relations and it is 
synthetically simple if it has no external relations. Vice 
versa, an object is analytically complex if it has internal 
relations and it is synthetically complex if it has external 
relations. 

Regarding the definition of system (Section 2), a whole is 
the effect of synthetically complex parts. Thus, a part is 
anything that is either analytically and synthetically 
simple or analytically complex but synthetically simple. 
In the context of a software system, the “wires” express 
the relations, both internal and external. An analytically 
complex object is considered a part if its internal relations 
are encapsulated (as per the object-oriented software 
engineering paradigm). Otherwise it is a whole. We can 
say that a part becomes a whole when its internal 
relations (if any) are externalized (un-encapsulated). 

This line of reasoning, when applied to natural systems, 
has led Arthur Koestler (Koestler 1967, Koestler, 
Smithies 1969, Koestler 1978, Koestler 1980) to the 
notion of holon (from the Greek word: ‘holos’ = whole 
and with the suffix ‘on’ suggesting a part, as in neutron or 
proton). A holon is an object that is both a whole and a 
part, and which exhibits two opposite tendencies: an 
integrative tendency to function as part of the larger 
whole, and a self assertive tendency to preserve its 
individual autonomy. Looking downward, a holon is 
something complete and unique, a whole. Looking 
upward, a holon is an elementary component, a part. 

Like the entire notion of complexity, the notion of holon 
is placed within the context of an order or a structure. “A 
living organism is not an aggregation of elementary parts, 
and its activities cannot be reduced to reeling off a chain 
of conditioned responses. In its bodily aspects, the 
organism is a whole consisting of “sub-wholes”, such as 



the circulatory system, digestive system, etc., which in 
turn branch into sub-wholes of a lower order, such as 
organs and tissues - and so down to individual cells. In 
other words, the structure and behaviour of an organism 
... is a multi-levelled, stratified hierarchy of sub-wholes, 
... where the sub-wholes form the nodes, and the 
branching lines symbolise channels of communication 
and control.” (Koestler 1980, p.447). “Generally 
speaking, a holon on the /n/ level of the hierarchy is 
represented on the /n+1/ level as a unit and triggered off 
as a unit. Or, to put it differently: the holon is a system of 
relations which is represented on the next higher level as 
a unit, i.e., a relatum.” (Koestler 1967, p.72). 

A stratified hierarchy of holons is called by Koestler a 
holarchy to distinguish it from a network, but also from a 
hierarchy. Clearly, a holarchy is a kind of hierarchy for 
otherwise the very containment of a part in any whole 
cannot be defined and understood. What is special about a 
holarchy is dispensing with any traces of ranking or 
dominance between holons. A holarchy is not linear in 
nature. It is rather a nested conception, a composition or 
containment.  As observed by Wilber (1995), a whole 
contains parts in a way reminiscent of what can be seen in 
one mirror in a house of mirrors. 

A holarchy seems to be a hint given by nature for how to 
develop and manage complex human-made systems. The 
various stratified layers are stable holons of differing 
complexities and with a degree of autonomy that enables 
them to adapt to new circumstances and to changes in the 
environment. “Nonstratified systems, on the other hand, 
would totally disintegrate and would have to start 
evolving again from scratch. Since living systems 
encounter many disturbances during their long history of 
evolution, nature has sensibly favored those which exhibit 
stratified order. As a matter of fact, there seem to be no 
records of survival of any others.” (Capra 1982, p.304). 

4 Adaptive 
In the Epigraph Section, we alluded to the definition of 
adaptiveness as a trio of concepts – understandability, 
maintainability, and scalability (evolution). In the 
previous Section, we concentrated on the notion of 
complexity in its interpretation of structural complexity 
(that in turn subsumes cognitive complexity). Complexity 
in this sense refers to the level of ease (or difficulty) 
associated with the same trio of concepts as in the 
definition of adaptiveness.  
Clearly, adaptiveness and complexity are two sides of the 
same coin. Adaptiveness is a desirable quality of a 
complex system. A quality that should be first built into 
the system and then managed. An adaptive system has an 
ability to change to suit different conditions; an ability to 
continue into the future by meeting existing expectations 
(requirements) and by adjusting to accommodate any new 
and changing requirements. Adaptiveness is a complexity 
management notion. 

As for the complexity issue, to understand the various 
dimensions of adaptiveness (or adaptation), a reference to 
natural systems is proper. Living organisms seem to 

possess three levels of adaptation: reversible, somatic, 
and geno-typic (Capra 1982).  

A reversible adaptation is a temporal change due to a 
short-term stress on an organism. Hangovers after 
drinking too much alcohol or initial symptoms associated 
with an ascending to a high altitude are examples of 
reversible adaptations. In software terms, any “stress’ on 
the program resulting in error or exception conditions is a 
reversible adaptation. 

A somatic adaptation is a change in an organism due to a 
long-term stress. Although still reversible, a somatic 
change is a physiological response of an organism aimed 
at absorbing the environmental impact. Addiction and 
acclimatization are somatic changes. In software terms, 
all forms of maintenance (including ‘perfective 
maintenance’) are somatic adaptations. 

A geno-typic adaptation refers to the change in the 
genetic makeup of an organism. Such a change is 
irreversible within the lifetime of an organism. It is a 
change to the lowest levels of a holarchy and to the most 
‘stable’ holons – cells, organelles, molecules. Adaptation 
of the species (evolution) is a geno-typic adaptation. In 
software terms, a re-design and re-implementation of the 
system reaching to the majority of its smallest 
components while retaining its architectural backbone is a 
form of the geno-typic adaptation. 

In passing, we described the notion of a complex system 
in terms of emergent complex behaviour that they exhibit. 
Therefore, a question to be asked is how ‘adaptive’ 
relates to ‘emergence’. In complexity theory, emergence 
is used “to indicate the presence of properties that can not 
be explained as the consequence of the properties of the 
analytic simples.” (Agazzi 2002, p.9). 

If something cannot be explained then it cannot be 
managed. Yet, ‘adaptive complexity’ refers to a complex 
system that is managed to exhibit the quality of being 
adaptable. Emergence is a feature of a complex system, 
but it is a feature that needs to be controlled and 
suppressed in adaptive complex systems. A permitted 
feature in adaptive systems is resultance defined as the 
“properties of the whole that are produced by properties 
of the analytic simples by virtue of certain internal 
relations of the whole.” (Agazzi 2002, p.9). 

Allowing resultance and disallowing emergence in 
software systems excludes certain more advantageous 
systems from consideration. Most notably it excludes 
multi-agent systems in which dynamic agent interactions 
can result in potentially unpredictable (emergent) patterns 
and outcomes (Maciaszek 2007a). Multi-agent systems 
are designed as sets of autonomous software entities 
(agents) that are embedded in an organizational structure 
(the environment). Agents perform tasks by acting in the 
environment and interacting with one another. Being 
autonomous, agents have control over their internal state 
as well as over their behavior.  

Having run-time control over their behavior distinguishes 
agents from objects as normally implemented in object-
oriented systems. Objects encapsulate state and some of 
their behavior (through private and protected visibility 



modifiers). However, most object services are public and 
do not (in typical implementations) discriminate how 
these services are used by other objects. This means that 
objects do not have control over their choice of action and 
they only become active when requested by other objects. 
We stress, however, that this prevalent computational 
model for objects is merely the implementation issue. A 
system could be implemented to allow computations at 
the knowledge level such that the software entities 
(whether called objects, components, agents or holons) 
exert autonomy over their run-time choice of actions 
based on the definition of the organizational context in 
which the system executes. 

It turns out that by and large the reality of enterprises is 
(and must remain) much more deterministic and, hence, 
the behavior of e-business systems is more prescriptive. 
They operate within the context of prescribed business 
rules. Biological and agent-like features, such as dynamic 
(execution-time) learning and emergence, are only 
required in more strategic e-business applications 
associated with decision-making, data mining, knowledge 
discovery and artificial intelligence domains. E-business 
systems need rather to be adaptive in the sense that the 
required changes are made as a software development 
effort (i.e. at compile-time, not at run-time).  

Restricting adaptiveness to resultance rather than 
emergence places software systems on the reductionist 
end of scientific investigation. This is exactly opposite to 
what we stated in Section 2 when we argued that 
complexity places software systems on the holistic end of 
scientific investigation. However, there is no 
contradiction here. Complex systems can be classified 
into those that show resultant properties reducible to 
analytic simples and those that (also) show emergent 
properties. It is just that for a system to be truly adaptive, 
emergent properties must be limited and controlled. 

By correlation, the holonic view of scientific 
investigation gains additional credence as the middle 
ground between holonic and reductionist views. In some 
ways, the holonic view offers the middle ground between 
intuitive and rational knowledge, between ecological and 
mechanistic view of the world. It also acknowledges that: 
“Scientific theories can never provide a complete and 
definitive description of reality. They will always be 
approximations of the true nature of things. To put it 
bluntly, scientists do not deal with truth; they deal with 
limited and approximate descriptions of reality.” (Capra 
1982, p.33). 

Adaptiveness offers an important distinction to the 
characterization of complexity as related to the thing as 
opposed to complexity as related to its description. This 
is precisely the distinction that motivated Kolmogorov in 
his search to make the notion of complexity precise and 
in defining some forty years ago his measure of 
complexity known as Kolmogorov complexity or K-
complexity (Mosterin 2002). The premise of K-
complexity was to reduce the qualitative notion of 
complexity to the quantitative notion of size – the 
minimum length of a Turing machine program needed to 
generate the whole description of the thing. Similarly, in 
our complexity metrics (Maciaszek 2007a, Maciaszek 

2006), we measure complexity in terms of the minimum 
number of dependencies between objects (holons) in the 
system. 

5 Modeling and Engineering 
Software is a product of engineering as a branch of 
knowledge aiming at solving practical problems for the 
needs of humanity. It uses scientific principles to design 
and construct structures and machines (e.g. software 
systems). In engineering, goal or target comes first 
(Endres, Rombach 2003). Solving a problem is equivalent 
to developing an artifact by using certain methods and 
following particular process. To verify if the artifact 
meets its goal, metrics are defined and measurements are 
taken both during the development and on the artifact 
delivery. If the measurements indicate departures from 
the goals, the method and process need to be changed and 
re-applied. 
Engineering can be considered as part of modeling. 
Models are abstract representations of reality. Short of 
putting forward an untenable argument that a software 
program is a reality, software production (including 
engineering) is all about modeling and working with 
abstraction. A software program is the final and most 
detailed model that executes on a computer. 

Our approach to modeling and engineering of adaptive 
complex systems is called adHOCS (Maciaszek 2007a). It 
derives from the holon hypothesis and is centered on a 
‘holarchical’ meta-architecture. In any given layer of 
such a holarchy, a software holon (‘H’ in the adHOCS 
acronym) is defined as an object that provides a specific 
service to the next higher layer and that uses services 
from the next lower layer. A holon is a recursive concept, 
i.e. a holon can contain other holons. Likewise, an object 
is a recursive concept, as per the dominant contemporary 
programming paradigm – the object-oriented paradigm. 
At run-time, an object (‘O’) is an instance of a class.  

The inclusion of the component ‘C’ concept in the 
adHOCS acronym refers to objects as components, i.e. 
units of object composition with contractually specified 
interfaces and which need to be loaded, installed, 
composed, deployed and initialized before they can be 
run. In general, a software holon can represent a 
holarchical layer or a set of layers in any given system. 
Accordingly, an object can refer to a subsystem 
representing a layer or to the entire system. However, ‘S’ 
in the adHOCS acronym is chosen to stand for web 
services rather than subsystem/system (but the broader 
interpretation of ‘S’ would have its merits as well). 

Services are running software instances. In adHOCS, they 
account for ‘societies’ of software holons akin of 
societies in nature, such as ant colonies, human social 
networks or economic markets. In software systems, ‘S’ 
refers to e-business systems created by orchestrating 
services of various business partners, suppliers and 
customers. 

System adaptiveness is a function of dependencies in the 
software. A necessary but not sufficient condition for an 
adaptive system is that dependencies are explicit, i.e. 
readily visible and discoverable from the code. To ensure 



adaptiveness the number of dependencies must be 
manageable to start with and grow at most polynomially 
with the growth of the system. This second condition can 
be achieved by a holonic organization of the system, i.e. 
by constructing it according to some meta-architecture 
that conforms to the adHOCS model. Over years we have 
advanced a number of adHOCS conformant meta-
architectures. The latest and most elaborate one is called 
PCBMER and consists of six main layers – Presentation, 
Controller, Bean, Mediator, Entity, and Resource 
(Maciaszek 2007b, Maciaszek 2007a, Maciaszek 2006). 

Fig. 2 presents the holonic view of a PCBMER system 
(Maciaszek 2007b). The arrowed lines represent 
dependency relationships between PCBMER layers. 
Hence, for example, Presentation depends on Controller 
and on Bean, and Controller depends on Bean. Note that 
the PCBMER hierarchy is not strictly linear and a more 
complex layer can have more than one adjacent layer 
above it (and that adjacent layer may terminate within the 
scope of the presented system, i.e. it may have no layers 
above it, although in general the open-ended property of 
holons allows creating new dependencies as the system 
grows or integrates with other systems). 

 

Fig. 2. The PCBMER meta-architecture.  

By contrast with more traditional top-down presentations 
of software architectural layers, the presentation in Fig. 2 
is a bottom-up tree-like structure. The tree emphasizes 
here the changing levels of complexity within the 
holarchy and it de-emphasizes the domination and control 
aspect of traditional top-down hierarchies (for which the 
pyramid is a typical symbol). The trunk of the tree 
signifies that the software system can be connected to or 
integrated with other software systems, which have 
similar holonic organization. Each layer has a degree of 
independence and may, therefore, provide its services to 
other software systems (it can be re-used). 

The relationships between layers are those of composition 
or containment. Each layer is a whole for layers with 
lower levels of complexity (i.e. higher in the tree in Fig. 
2), and also a part for larger wholes at higher levels of 
complexity (i.e. lower in the tree). The relative sizes of 
the circles in Fig. 2 capture the nature of these 
relationships. 

The Presentation layer represents the screen and user 
interface (UI) objects on which the data (beans) from the 
Bean layer can be rendered. It is responsible for 
maintaining consistency in its presentation when the 
beans change. So, it depends on the Bean layer. This 
dependency can be realized in one of two ways – by 
direct calls to methods (message passing) using the pull 
model or by event processing followed by message 
passing using the push model (or rather push-and-pull 
model) 

The Bean layer represents the data classes and value 
objects that are destined for rendering on UI. Unless 
entered by the user, the bean data is built up from the 
entity objects (the Entity layer). The Core PCBMER 
framework does not specify or endorse if access to Bean 
objects is via message passing or event processing as long 
as the Bean layer does not depend on other subsystems. 

The Controller layer represents the application logic. 
Controller objects respond to the UI requests that 
originate from Presentation and that result from user 
interactions with the system. In a programmable GUI 
client, UI requests may be menu or button selections. In a 
web browser client, UI requests appear as HTTP Get or 
Post requests. 

The Entity layer responds to Controller and Mediator. It 
contains classes representing “business objects”. They 
store (in the program’s memory) objects retrieved from 
the database or created in order to be stored in the 
database. Many entity classes are container classes. 

The Mediator layer establishes a channel of 
communication that mediates between Entity and 
Resource classes. This layer manages business 
transactions, enforces business rules, instantiates business 
objects in the Entity layer, and in general manages the 
memory cache of the application. Architecturally, 
Mediator serves two main purposes. Firstly, to isolate the 
Entity and Resource layers so that changes in any one of 
them can be introduced independently. Secondly, to 
mediate between the Controller and Entity/Resource 
layers when Controller requests data but it does not know 
if the data has been loaded into memory or it is only 
available in the database. 

The Resource layer is responsible for all communications 
with external persistent data sources (databases, web 
services, etc.). This is where the connections to the 
database and SOA servers are established, queries to 
persistent data are constructed, and the database 
transactions are instigated. 

The PCBMER meta-architecture provides a model upon 
which to engineer a specific instance of an adaptive 
complex system. The development of such an instance 
assumes adherence to the meta-architecture and the 



conformance to related engineering principles and 
patterns (Maciaszek 2007b, Maciaszek 2007a, Maciaszek 
2006, Maciaszek, Liong 2005). It also assumes that the 
development takes the form of roundtrip engineering 
consisting of cycles of forward- and reverse-engineering 
activities (Maciaszek 2005).  

The forward-engineering process is from design to 
implementation. The aim is to implement a software 
product that minimizes dependencies by imposing an 
architectural solution on programmers. A related aim is to 
disallow exponential growth of complexity with the 
introduction of more objects and with the modifications 
to relations between objects.  

This process must be monitored by the reactive approach 
that aims at measuring dependencies in implemented 
software. This starts a reverse-engineering process – from 
implementation to design. The implementation may or 
may not conform to the desired architectural design. If it 
does not, the aim is to compare the metric values in the 
software with the values that the desired architecture 
would have delivered. The troublesome dependencies 
need to be pinpointed and addressed for the implemented 
system in order to reach the quality of adaptiveness. 

In software systems, dependencies can be identified for 
objects of varying granularity – components, packages, 
classes, methods. The dependencies between more 
specific objects at lower levels of granularity propagate 
up to create dependencies at higher level of granularity. 
Accordingly, dependency management necessitates a 
detailed study of the program code to identify all 
relationships between data structures and code invocation 
between software objects. 

Graph-theoretically, the holarchy representing a 
PCBMER-compliant system (Fig. 2) is a DAG (Directed 
Acyclic Graph) in which the nodes are ordered (parent 
and child) and there are no cycles (no path returns to the 
same node).  

Let the PCBMER layers be l1, l2 … ln. For any layer li, let: 
• s (li) be the number of objects in li 
• l’

I be the number of parents of li 
• pj(li) be the jth parent of li 

Then, the cumulative object dependency COD for a 
PCBMER holarchy as in Fig. 2 is calculated according to 
Equation 1 (Maciaszek 2007a): 
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Metrics to measure complexity compute actual 
dependencies in the code as long as the code shows 
adherence to the meta-architecture. However, as soon as 
the metrics reveal any violation of the meta-architecture, 
the complexity must be measured in terms of potential 
dependencies between objects. This is because the system 
is not a holarchy (is not adaptive) any more; it has 
degenerated to a random network of intercommunicating 
objects. Therefore, a change in an object can potentially 
impact (can have a “ripple effect” on) any other object in 
the system. To account for potential dependencies, 
metrics formulas, such as Equation 1, need to be 
modified. 

Measuring adaptiveness of designs and programs cannot 
be done manually. A tool called DQ (Design Quantifier) 
is described in (Maciaszek, Liong 2003). It is able to 
analyze any Java programs, establish its conformance 
with a chosen adaptive meta-architecture, compute 
dependency metrics, and visualize the computations in 
UML class diagrams. 

Although not supported by DQ, tools like DQ should be 
able to visualize dependencies by producing call graphs. 
Ideally, a call graph could be a variant of a UML 
sequence diagram. A call graph can be used for the 
change impact analysis and to answer “what-if” questions 
such as “which methods are affected if a particular 
method is modified?” 

6 Epilogue 
We started this paper with the epigraph. It is therefore 
proper to conclude with the epilogue which would allude 
to what might happen to the “story” next. The research 

reported here has a long history dating back more than ten 
years. It had its own ups and downs, but it has been 
always regaining momentum based on generated interests 
and hopeful practical experiences in university 
laboratories and within the IT industry. 
The problem domain is large and diverse. There are at 
least four aspects of it: ontological, epistemological, and 
methodological. All these aspects require further 
intensive research to unfold the “story”. 

Ontological aspects relate to the question of the nature of 
being and reality. They relate to the study of what 
actually a complex system is, what it is made up of, what 
properties are assigned to it, and what functions or 
relations exist within it. Within the broad agreement that 
entities of higher levels of organization are complex 
composites of entities of lower levels, we have opted for 
the holonic view of the world as the basis for an 
ontological conceptual model. 

Epistemological aspects relate to the question of the 
nature of human knowledge and cognition (how do we 
know what we know?). They relate to the study of how to 
obtain (and assess) knowledge of what a complex system 
is, how this knowledge is embodied in theories, what are 
the assumptions for a theory, and what are the logical 
relations between theories. Epistemological aspects 
border on empiricism and rationalism in the quest to 
obtain knowledge. From this perspective we admit an 
initial bias to empiricism - the motivation for our studies 
of complex systems came from experience and 
observation of many hardly-maintainable or 
unmaintainable e-business systems. However, reason and 
factual analysis have guided us when looking for criteria 



and metrics to allow judgments of comparative 
complexity. 

Methodological aspects relate to the methods, procedures, 
and techniques used to collect and analyze information in 
order to gain new knowledge. In this context, it is 
worthwhile to make a distinction between methodology 
as method of research and methodology as strategy of 
research (Looijen 2000). In the former sense, every 
scientist is a reductionist, and we are not an exception. In 
the latter sense, our approach has been rather holistic, 
phenomenological, and ‘top-down’.   
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