
Modeling and Engineering
Adaptive Complex Systems

Leszek A. Maciaszek
Macquarie University, Department of Computing,

NSW 2109, Sydney, Australia
leszek@ics.mq.edu.au

Abstract
This paper describes a strategy for modeling and
engineering complex e-business systems with built-in
quality of adaptiveness. The paper explains the
philosophical and scientific foundations for research
findings and for the proposed strategy. After ascertaining
that complexity relates to the fact that higher levels of
organization manifest features not predictable from the
lower ones, the paper uses a holonic approach to science
that reconciles reductionism and holism. The strategy is
centered on a six-layer meta-architecture (called
PCBMER and described comprehensively elsewhere).
The meta-architecture facilitates development of adaptive
systems such that property of emergence is controlled and
supplanted by the property of resultance.

Keywords: Software system, complex system, adaptive
system, software engineering, system modeling,
reductionism, holism, holon, holarchy.

1 Epigraph
This paper is about a strategy for the development of
large software systems. It is about a scientific vision for
software development (synthesized from many years of
research and experience) rather than a targeted (delta)
research contribution proving a theory or solving a
particular problem. As such, a usual ‘Introduction’ is
replaced here by an ‘Epigraph’, which should give the
reader some idea of what this piece or writing is about.
This paper is set against the background of reductionism
and holism as two contrasting approaches to science
(Looijen 2000, Kanitscheider 2002, Jackson 2003, Capra
1982, Koestler, Smythies 1969). It makes a strong call for
the importance of a middle-ground holonic approach
(Koestler 1967, Koestler 1978, Koestler 1980) as the
most promising way to understand and take control of the
complexity of large software systems. In doing so, this
paper provides further philosophical and pragmatic
arguments for holonic software architectures advocated
by the author in (Maciaszek 2007b, Maciaszek, Liong
2005, Maciaszek 2007a, Maciaszek 2006) and elsewhere.

Copyright (c).2007, Australian Computer Society, Inc. This
paper appeared at 26th International Conference on Conceptual
Modeling - ER 2007, Auckland, New Zealand. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 83. J. Grundy, S. Hartmann, A.H.F. Laender, L.
Maciaszek, and J.F. Roddick, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included

A holonic architectural design provides a framework on
which to build quality into software, and in particular to
achieve the overriding quality of adaptiveness.

This paper takes on the task on convincing the reader that
to build complex software systems, which can adapt to
the ever changing requirements and environment, an
intellectual freedom of ‘cutting code’ has to be curtailed.
The studies of structure and behavior of natural systems
provide guidance for construction of human-made
systems. Even if this guidance is incomplete or
controversial, it gives an explanation to software
implementation and provides a hope that the resulting
system will be understandable, maintainable and scalable.
Without this assurance, and in the face of ever increasing
dependence of people on software solutions, the
consequences on every-day lives of people may be indeed
serious.

To cover the breadth of the subject area and to address a
large number of interdependent concepts and theories, the
paper takes a ‘build-up’ approach of explaining terms in
the title starting from the least descriptive last term
(“systems”) and going backwards to the most descriptive
terms of “engineering’ and “modeling”. Accordingly, the
following sections of the paper are titled:

• Systems
• Complex (i.e. complex systems)
• Adaptive (i.e. adaptive complex systems)
• Modeling and Engineering (of adaptive complex

systems)

2 Systems
From all the terms in the paper’s title, the concept of
system is the least contentious. The general consensus is
that a system is “a complex whole the functioning of
which depends on its parts and the interactions between
those parts” (Jackson 2003, p.3). Moreover, a system is
“an integrated whole whose properties cannot be reduced
to those of its parts” (Capra 1982, p.26).
While the first definition is neutral with regard to
scientific methods of studying systems, the second
definition places the concept firmly within the realms of
holism. Pivoted on the idea that “the whole is greater than
the sum of the parts”, holism searches for new qualities
and complex higher-level phenomena at the macroscopic
level and it claims credibility on the basis of emergence
alone. Holistic views in the philosophy of science have
conquered various sectors in physical sciences (quantum
mechanics, deterministic chaos), biological sciences
(evolutionary biology) and elsewhere. Holistic views

have also made a considerable footprint in information
and communication sciences (Jackson 2003).

Despite its successes, holism faces a stiff opposition from
traditional scientific quarters, which base their scientific
methods on the Cartesian philosophy of reductionism
(atomism). Propelled by undeniable successes (most
notably in the molecular biology research that has
resulted in the unraveling of the genetic code),
reductionists treat holism as a form of art rather than
science. Theories that cannot be explained in reductionist
terms (i.e. by reducing the problem to elementary parts
and by synthesizing through the analysis of these parts
and their interactions) are deemed unworthy of scientific
investigation. Yet, the limitations of such analytic or
mechanistic world view are evident across all sciences,
including biology (in particular with its relation to
medicine).

 With regard to the uncontroversial aspects of the
definition of system, i.e. by looking at system as a
complex whole, we have to acknowledge that systems
theory is all-embracing, interdisciplinary and even
transdisciplinary. Information systems, living organisms,
societies, and ecosystems are all systems. From this
paper’s perspective, it is therefore valuable to try to
derive the desired characteristics of human-made
systems, such as business systems, from the studies of
structures and behavior of natural systems, in particular
the most complex systems that exist – living organisms.

Fig.1 shows a classification of business systems in a
Venn diagram. An e-business system is understood as a
software system (an integrated set of software
applications). Most software systems are, or strive to be,
network- and Internet-enabled. It, therefore, makes sense
to use the concept of e-business to mean: “the use of the
Internet and other networks and information technologies
to support electronic commerce, enterprise
communications and collaboration, and Web-enabled
business processes, both within a networked enterprise
and with its customers and business partners” (O’Brien,
Marakas 2007, p.234)

Environment (incl. other enterprises)

Enterprise System

Information System

E-Business
System

(Applications)

Environment (incl. other enterprises)

Enterprise System

Information System

E-Business
System

(Applications)

Fig. 1. Systems in the world of business.

In general, e-business refers to any commercial
transactions involving the exchange of value (e.g. money)
across organizations and individuals in return for
products or services. It includes, therefore, consumer-to-
consumer (C2C) e-business, such as an auction site, and
peer-to-peer (P2P) exchanges in which products or

services are openly shared. E-business includes also
systems based on a service-oriented architecture (SOA).
SOA systems differ from systems that merely use web
services in that SOA advocates the use of a services
discovery mechanism (a service broker or discovery
agent).

An information system is concerned with generating and
managing information for people. Some of this
information is generated automatically by software
systems. Other information is obtained manually by
people. The point is that information systems are social
systems that encompass and use software and other
components such as: people, information, procedures,
hardware, and personal and automated communications.

An implication is that the development of a software
system is just an activity (albeit a fundamental one) in the
development of an information system. An information
system operates within the context of an enterprise
system – an organization (perhaps a virtual organization)
created under applicable laws for a business endeavor.
The enterprise is further constrained by the rules and
conditions of the business environment. The environment
includes other enterprises that may become the
collaborating partners in a networked organization. At
this layer, a business to business (B2B) integration takes
place.

Placing software development in the context of enterprise
means that a software process is derived from a wider
business model and it tries to support and implement a
particular business process in that model. This means that
a software product/service cannot be just an information
service. It should also implement and assist in business
actions. The design of an information system should
either explicitly identify a business process it serves or,
better, it should be a part of a (business) knowledge
management system. One aspect of such design is to
coordinate automated informational actions, manual
supportive actions, and creative decision making actions.

Usually, a particular software system services a single
management level – operational, tactical or strategic. The
operational level is concerned with processing business
operational data and documents, such as orders and
invoices. This is the realm of OnLine Transaction
Processing (OLTP) systems assisted by conventional
database technology. The tactical level processes
information obtained from the analysis of data, such as
monthly trends in product orders. This is the realm of
OnLine Analytical Processing (OLAP) systems assisted
by data warehouse technology. The strategic level
processes the organizational knowledge, such as rules and
facts behind a highly profitable product selling. This is a
realm of knowledge systems assisted by knowledge base
technology.

Systems at operational management level are
indispensable to the enterprise. Without them, a modern
enterprise cannot function. However, operational
software does not provide to the enterprise any
competitive edge. Competitors already have similar
systems. The business value of software increases with

increasing levels of management to which the system
applies.

3 Complex
Systems are complex by their very definition. But what
do we really mean by complexity? While there have been
many attempts to define complexity in absolute terms, we
tend to agree with propositions that ‘complex’ is a
primitive and relative term, which can only be given a
contextual definition. As such, ‘complex’ can only be
understood by its relation to its specific contrary notion of
‘simple’. There are many primitive concepts like that, e.g.
‘part’ as contrary to ‘whole’, ‘same’ as the opposite of
‘different’ (Agazzi 2002).
If the notion of complexity (as well as simplicity) is not
absolute but relative, then what is complex from one
point of view may not be complex from another point of
view. Short of stating that the complexity is in the eye of
the beholder, we can identify four kinds of software
complexity:

• Problem complexity – the complexity of the
problem domain itself. This is also known as
computational complexity. Problem complexity is
an offshoot of the Brooks’ essential characteristics
of software, i.e. the four difficulties of software
production that are not amenable to breakthroughs
or ‘silver bullets’ (the inherent software
complexity, conformity, changeability, and
invisibility) (Brooks 1987).

• Algorithmic complexity – aiming at measuring the
efficiency of software algorithms. This is a kind
of complexity with diminishing relevance due to
the shift of computing paradigm from algorithms
to interactions. Unlike algorithmic systems,
interactive systems can learn and adapt and as a
result can produce outputs that are only partially
determined by their inputs (Wegner 1997).

• Cognitive complexity – measuring the effort
required to understand the software.

• Structural complexity – aiming at establishing the
relationship between the structure of the software
and the ease of its maintenance and evolution. The
measurements are applied to control flow
structures, hierarchical structures, modular
structures, etc.

If the problem complexity is an ‘essence’ of software
production and the algorithmic complexity is an old hat,
then the last two kinds of complexity must take priority in
considerations related to modeling and engineering of e-
business systems. A closer look at these two kinds of
complexity reveals that the cognitive complexity is a
necessary condition of structural complexity. The
structural complexity subsumes cognitive complexity.
Accordingly, in what follows complexity is understood as
structural complexity.

The complexity of software systems is in the wires – in
the linkages and communication paths between software
objects. The “wires” create dependencies between
distributed objects that may be difficult to understand and

manage (a software object A depends on an object B, if a
change in B necessitates a change in A).

The realization that the ways objects are interconnected
and integrated are more important than the objects
themselves places software systems on the holistic end of
scientific investigation. The resulting whole is more than
the sum of its parts. This also places software systems
firmly within the context of general systems theory.
“Systems theory looks at the world in terms of the
interrelatedness and interdependence of all phenomena,
and in this framework an integrated whole whose
properties cannot be reduced to those of its parts is called
a system.” (Capra, p.26).

These observations bring us to another point about the
nature of complexity – the difference between
‘compound’ and ‘complex’. “… in a compound we have a
plurality of components, but are not concerned about their
relations, whereas a complex is a compound in which the
relations among its constituents are significant, since they
make of this compound a whole endowed with an identity
and evincing an analytical complexity.” (Agazzi 2002,
p.7).

Another way of looking at this point is by distinguishing
between analytic and synthetic simplicity (Dilworth
2001), and then by counter-supposition distinguishing
between analytic and synthetic complexity. An object is
analytically simple if it has no internal relations and it is
synthetically simple if it has no external relations. Vice
versa, an object is analytically complex if it has internal
relations and it is synthetically complex if it has external
relations.

Regarding the definition of system (Section 2), a whole is
the effect of synthetically complex parts. Thus, a part is
anything that is either analytically and synthetically
simple or analytically complex but synthetically simple.
In the context of a software system, the “wires” express
the relations, both internal and external. An analytically
complex object is considered a part if its internal relations
are encapsulated (as per the object-oriented software
engineering paradigm). Otherwise it is a whole. We can
say that a part becomes a whole when its internal
relations (if any) are externalized (un-encapsulated).

This line of reasoning, when applied to natural systems,
has led Arthur Koestler (Koestler 1967, Koestler,
Smithies 1969, Koestler 1978, Koestler 1980) to the
notion of holon (from the Greek word: ‘holos’ = whole
and with the suffix ‘on’ suggesting a part, as in neutron or
proton). A holon is an object that is both a whole and a
part, and which exhibits two opposite tendencies: an
integrative tendency to function as part of the larger
whole, and a self assertive tendency to preserve its
individual autonomy. Looking downward, a holon is
something complete and unique, a whole. Looking
upward, a holon is an elementary component, a part.

Like the entire notion of complexity, the notion of holon
is placed within the context of an order or a structure. “A
living organism is not an aggregation of elementary parts,
and its activities cannot be reduced to reeling off a chain
of conditioned responses. In its bodily aspects, the
organism is a whole consisting of “sub-wholes”, such as

the circulatory system, digestive system, etc., which in
turn branch into sub-wholes of a lower order, such as
organs and tissues - and so down to individual cells. In
other words, the structure and behaviour of an organism
... is a multi-levelled, stratified hierarchy of sub-wholes,
... where the sub-wholes form the nodes, and the
branching lines symbolise channels of communication
and control.” (Koestler 1980, p.447). “Generally
speaking, a holon on the /n/ level of the hierarchy is
represented on the /n+1/ level as a unit and triggered off
as a unit. Or, to put it differently: the holon is a system of
relations which is represented on the next higher level as
a unit, i.e., a relatum.” (Koestler 1967, p.72).

A stratified hierarchy of holons is called by Koestler a
holarchy to distinguish it from a network, but also from a
hierarchy. Clearly, a holarchy is a kind of hierarchy for
otherwise the very containment of a part in any whole
cannot be defined and understood. What is special about a
holarchy is dispensing with any traces of ranking or
dominance between holons. A holarchy is not linear in
nature. It is rather a nested conception, a composition or
containment. As observed by Wilber (1995), a whole
contains parts in a way reminiscent of what can be seen in
one mirror in a house of mirrors.

A holarchy seems to be a hint given by nature for how to
develop and manage complex human-made systems. The
various stratified layers are stable holons of differing
complexities and with a degree of autonomy that enables
them to adapt to new circumstances and to changes in the
environment. “Nonstratified systems, on the other hand,
would totally disintegrate and would have to start
evolving again from scratch. Since living systems
encounter many disturbances during their long history of
evolution, nature has sensibly favored those which exhibit
stratified order. As a matter of fact, there seem to be no
records of survival of any others.” (Capra 1982, p.304).

4 Adaptive
In the Epigraph Section, we alluded to the definition of
adaptiveness as a trio of concepts – understandability,
maintainability, and scalability (evolution). In the
previous Section, we concentrated on the notion of
complexity in its interpretation of structural complexity
(that in turn subsumes cognitive complexity). Complexity
in this sense refers to the level of ease (or difficulty)
associated with the same trio of concepts as in the
definition of adaptiveness.
Clearly, adaptiveness and complexity are two sides of the
same coin. Adaptiveness is a desirable quality of a
complex system. A quality that should be first built into
the system and then managed. An adaptive system has an
ability to change to suit different conditions; an ability to
continue into the future by meeting existing expectations
(requirements) and by adjusting to accommodate any new
and changing requirements. Adaptiveness is a complexity
management notion.

As for the complexity issue, to understand the various
dimensions of adaptiveness (or adaptation), a reference to
natural systems is proper. Living organisms seem to

possess three levels of adaptation: reversible, somatic,
and geno-typic (Capra 1982).

A reversible adaptation is a temporal change due to a
short-term stress on an organism. Hangovers after
drinking too much alcohol or initial symptoms associated
with an ascending to a high altitude are examples of
reversible adaptations. In software terms, any “stress’ on
the program resulting in error or exception conditions is a
reversible adaptation.

A somatic adaptation is a change in an organism due to a
long-term stress. Although still reversible, a somatic
change is a physiological response of an organism aimed
at absorbing the environmental impact. Addiction and
acclimatization are somatic changes. In software terms,
all forms of maintenance (including ‘perfective
maintenance’) are somatic adaptations.

A geno-typic adaptation refers to the change in the
genetic makeup of an organism. Such a change is
irreversible within the lifetime of an organism. It is a
change to the lowest levels of a holarchy and to the most
‘stable’ holons – cells, organelles, molecules. Adaptation
of the species (evolution) is a geno-typic adaptation. In
software terms, a re-design and re-implementation of the
system reaching to the majority of its smallest
components while retaining its architectural backbone is a
form of the geno-typic adaptation.

In passing, we described the notion of a complex system
in terms of emergent complex behaviour that they exhibit.
Therefore, a question to be asked is how ‘adaptive’
relates to ‘emergence’. In complexity theory, emergence
is used “to indicate the presence of properties that can not
be explained as the consequence of the properties of the
analytic simples.” (Agazzi 2002, p.9).

If something cannot be explained then it cannot be
managed. Yet, ‘adaptive complexity’ refers to a complex
system that is managed to exhibit the quality of being
adaptable. Emergence is a feature of a complex system,
but it is a feature that needs to be controlled and
suppressed in adaptive complex systems. A permitted
feature in adaptive systems is resultance defined as the
“properties of the whole that are produced by properties
of the analytic simples by virtue of certain internal
relations of the whole.” (Agazzi 2002, p.9).

Allowing resultance and disallowing emergence in
software systems excludes certain more advantageous
systems from consideration. Most notably it excludes
multi-agent systems in which dynamic agent interactions
can result in potentially unpredictable (emergent) patterns
and outcomes (Maciaszek 2007a). Multi-agent systems
are designed as sets of autonomous software entities
(agents) that are embedded in an organizational structure
(the environment). Agents perform tasks by acting in the
environment and interacting with one another. Being
autonomous, agents have control over their internal state
as well as over their behavior.

Having run-time control over their behavior distinguishes
agents from objects as normally implemented in object-
oriented systems. Objects encapsulate state and some of
their behavior (through private and protected visibility

modifiers). However, most object services are public and
do not (in typical implementations) discriminate how
these services are used by other objects. This means that
objects do not have control over their choice of action and
they only become active when requested by other objects.
We stress, however, that this prevalent computational
model for objects is merely the implementation issue. A
system could be implemented to allow computations at
the knowledge level such that the software entities
(whether called objects, components, agents or holons)
exert autonomy over their run-time choice of actions
based on the definition of the organizational context in
which the system executes.

It turns out that by and large the reality of enterprises is
(and must remain) much more deterministic and, hence,
the behavior of e-business systems is more prescriptive.
They operate within the context of prescribed business
rules. Biological and agent-like features, such as dynamic
(execution-time) learning and emergence, are only
required in more strategic e-business applications
associated with decision-making, data mining, knowledge
discovery and artificial intelligence domains. E-business
systems need rather to be adaptive in the sense that the
required changes are made as a software development
effort (i.e. at compile-time, not at run-time).

Restricting adaptiveness to resultance rather than
emergence places software systems on the reductionist
end of scientific investigation. This is exactly opposite to
what we stated in Section 2 when we argued that
complexity places software systems on the holistic end of
scientific investigation. However, there is no
contradiction here. Complex systems can be classified
into those that show resultant properties reducible to
analytic simples and those that (also) show emergent
properties. It is just that for a system to be truly adaptive,
emergent properties must be limited and controlled.

By correlation, the holonic view of scientific
investigation gains additional credence as the middle
ground between holonic and reductionist views. In some
ways, the holonic view offers the middle ground between
intuitive and rational knowledge, between ecological and
mechanistic view of the world. It also acknowledges that:
“Scientific theories can never provide a complete and
definitive description of reality. They will always be
approximations of the true nature of things. To put it
bluntly, scientists do not deal with truth; they deal with
limited and approximate descriptions of reality.” (Capra
1982, p.33).

Adaptiveness offers an important distinction to the
characterization of complexity as related to the thing as
opposed to complexity as related to its description. This
is precisely the distinction that motivated Kolmogorov in
his search to make the notion of complexity precise and
in defining some forty years ago his measure of
complexity known as Kolmogorov complexity or K-
complexity (Mosterin 2002). The premise of K-
complexity was to reduce the qualitative notion of
complexity to the quantitative notion of size – the
minimum length of a Turing machine program needed to
generate the whole description of the thing. Similarly, in
our complexity metrics (Maciaszek 2007a, Maciaszek

2006), we measure complexity in terms of the minimum
number of dependencies between objects (holons) in the
system.

5 Modeling and Engineering
Software is a product of engineering as a branch of
knowledge aiming at solving practical problems for the
needs of humanity. It uses scientific principles to design
and construct structures and machines (e.g. software
systems). In engineering, goal or target comes first
(Endres, Rombach 2003). Solving a problem is equivalent
to developing an artifact by using certain methods and
following particular process. To verify if the artifact
meets its goal, metrics are defined and measurements are
taken both during the development and on the artifact
delivery. If the measurements indicate departures from
the goals, the method and process need to be changed and
re-applied.
Engineering can be considered as part of modeling.
Models are abstract representations of reality. Short of
putting forward an untenable argument that a software
program is a reality, software production (including
engineering) is all about modeling and working with
abstraction. A software program is the final and most
detailed model that executes on a computer.

Our approach to modeling and engineering of adaptive
complex systems is called adHOCS (Maciaszek 2007a). It
derives from the holon hypothesis and is centered on a
‘holarchical’ meta-architecture. In any given layer of
such a holarchy, a software holon (‘H’ in the adHOCS
acronym) is defined as an object that provides a specific
service to the next higher layer and that uses services
from the next lower layer. A holon is a recursive concept,
i.e. a holon can contain other holons. Likewise, an object
is a recursive concept, as per the dominant contemporary
programming paradigm – the object-oriented paradigm.
At run-time, an object (‘O’) is an instance of a class.

The inclusion of the component ‘C’ concept in the
adHOCS acronym refers to objects as components, i.e.
units of object composition with contractually specified
interfaces and which need to be loaded, installed,
composed, deployed and initialized before they can be
run. In general, a software holon can represent a
holarchical layer or a set of layers in any given system.
Accordingly, an object can refer to a subsystem
representing a layer or to the entire system. However, ‘S’
in the adHOCS acronym is chosen to stand for web
services rather than subsystem/system (but the broader
interpretation of ‘S’ would have its merits as well).

Services are running software instances. In adHOCS, they
account for ‘societies’ of software holons akin of
societies in nature, such as ant colonies, human social
networks or economic markets. In software systems, ‘S’
refers to e-business systems created by orchestrating
services of various business partners, suppliers and
customers.

System adaptiveness is a function of dependencies in the
software. A necessary but not sufficient condition for an
adaptive system is that dependencies are explicit, i.e.
readily visible and discoverable from the code. To ensure

adaptiveness the number of dependencies must be
manageable to start with and grow at most polynomially
with the growth of the system. This second condition can
be achieved by a holonic organization of the system, i.e.
by constructing it according to some meta-architecture
that conforms to the adHOCS model. Over years we have
advanced a number of adHOCS conformant meta-
architectures. The latest and most elaborate one is called
PCBMER and consists of six main layers – Presentation,
Controller, Bean, Mediator, Entity, and Resource
(Maciaszek 2007b, Maciaszek 2007a, Maciaszek 2006).

Fig. 2 presents the holonic view of a PCBMER system
(Maciaszek 2007b). The arrowed lines represent
dependency relationships between PCBMER layers.
Hence, for example, Presentation depends on Controller
and on Bean, and Controller depends on Bean. Note that
the PCBMER hierarchy is not strictly linear and a more
complex layer can have more than one adjacent layer
above it (and that adjacent layer may terminate within the
scope of the presented system, i.e. it may have no layers
above it, although in general the open-ended property of
holons allows creating new dependencies as the system
grows or integrates with other systems).

Fig. 2. The PCBMER meta-architecture.

By contrast with more traditional top-down presentations
of software architectural layers, the presentation in Fig. 2
is a bottom-up tree-like structure. The tree emphasizes
here the changing levels of complexity within the
holarchy and it de-emphasizes the domination and control
aspect of traditional top-down hierarchies (for which the
pyramid is a typical symbol). The trunk of the tree
signifies that the software system can be connected to or
integrated with other software systems, which have
similar holonic organization. Each layer has a degree of
independence and may, therefore, provide its services to
other software systems (it can be re-used).

The relationships between layers are those of composition
or containment. Each layer is a whole for layers with
lower levels of complexity (i.e. higher in the tree in Fig.
2), and also a part for larger wholes at higher levels of
complexity (i.e. lower in the tree). The relative sizes of
the circles in Fig. 2 capture the nature of these
relationships.

The Presentation layer represents the screen and user
interface (UI) objects on which the data (beans) from the
Bean layer can be rendered. It is responsible for
maintaining consistency in its presentation when the
beans change. So, it depends on the Bean layer. This
dependency can be realized in one of two ways – by
direct calls to methods (message passing) using the pull
model or by event processing followed by message
passing using the push model (or rather push-and-pull
model)

The Bean layer represents the data classes and value
objects that are destined for rendering on UI. Unless
entered by the user, the bean data is built up from the
entity objects (the Entity layer). The Core PCBMER
framework does not specify or endorse if access to Bean
objects is via message passing or event processing as long
as the Bean layer does not depend on other subsystems.

The Controller layer represents the application logic.
Controller objects respond to the UI requests that
originate from Presentation and that result from user
interactions with the system. In a programmable GUI
client, UI requests may be menu or button selections. In a
web browser client, UI requests appear as HTTP Get or
Post requests.

The Entity layer responds to Controller and Mediator. It
contains classes representing “business objects”. They
store (in the program’s memory) objects retrieved from
the database or created in order to be stored in the
database. Many entity classes are container classes.

The Mediator layer establishes a channel of
communication that mediates between Entity and
Resource classes. This layer manages business
transactions, enforces business rules, instantiates business
objects in the Entity layer, and in general manages the
memory cache of the application. Architecturally,
Mediator serves two main purposes. Firstly, to isolate the
Entity and Resource layers so that changes in any one of
them can be introduced independently. Secondly, to
mediate between the Controller and Entity/Resource
layers when Controller requests data but it does not know
if the data has been loaded into memory or it is only
available in the database.

The Resource layer is responsible for all communications
with external persistent data sources (databases, web
services, etc.). This is where the connections to the
database and SOA servers are established, queries to
persistent data are constructed, and the database
transactions are instigated.

The PCBMER meta-architecture provides a model upon
which to engineer a specific instance of an adaptive
complex system. The development of such an instance
assumes adherence to the meta-architecture and the

conformance to related engineering principles and
patterns (Maciaszek 2007b, Maciaszek 2007a, Maciaszek
2006, Maciaszek, Liong 2005). It also assumes that the
development takes the form of roundtrip engineering
consisting of cycles of forward- and reverse-engineering
activities (Maciaszek 2005).

The forward-engineering process is from design to
implementation. The aim is to implement a software
product that minimizes dependencies by imposing an
architectural solution on programmers. A related aim is to
disallow exponential growth of complexity with the
introduction of more objects and with the modifications
to relations between objects.

This process must be monitored by the reactive approach
that aims at measuring dependencies in implemented
software. This starts a reverse-engineering process – from
implementation to design. The implementation may or
may not conform to the desired architectural design. If it
does not, the aim is to compare the metric values in the
software with the values that the desired architecture
would have delivered. The troublesome dependencies
need to be pinpointed and addressed for the implemented
system in order to reach the quality of adaptiveness.

In software systems, dependencies can be identified for
objects of varying granularity – components, packages,
classes, methods. The dependencies between more
specific objects at lower levels of granularity propagate
up to create dependencies at higher level of granularity.
Accordingly, dependency management necessitates a
detailed study of the program code to identify all
relationships between data structures and code invocation
between software objects.

Graph-theoretically, the holarchy representing a
PCBMER-compliant system (Fig. 2) is a DAG (Directed
Acyclic Graph) in which the nodes are ordered (parent
and child) and there are no cycles (no path returns to the
same node).

Let the PCBMER layers be l1, l2 … ln. For any layer li, let:
• s (li) be the number of objects in li
• l’

I be the number of parents of li
• pj(li) be the jth parent of li

Then, the cumulative object dependency COD for a
PCBMER holarchy as in Fig. 2 is calculated according to
Equation 1 (Maciaszek 2007a):

)))(()((
2

)1)(()(
'

111
i

l

j
ji

n

i

n

i

ii
PCBMER lpslslslsCOD

i

∑∑∑
===

∗+
−∗

=
(1)

Metrics to measure complexity compute actual
dependencies in the code as long as the code shows
adherence to the meta-architecture. However, as soon as
the metrics reveal any violation of the meta-architecture,
the complexity must be measured in terms of potential
dependencies between objects. This is because the system
is not a holarchy (is not adaptive) any more; it has
degenerated to a random network of intercommunicating
objects. Therefore, a change in an object can potentially
impact (can have a “ripple effect” on) any other object in
the system. To account for potential dependencies,
metrics formulas, such as Equation 1, need to be
modified.

Measuring adaptiveness of designs and programs cannot
be done manually. A tool called DQ (Design Quantifier)
is described in (Maciaszek, Liong 2003). It is able to
analyze any Java programs, establish its conformance
with a chosen adaptive meta-architecture, compute
dependency metrics, and visualize the computations in
UML class diagrams.

Although not supported by DQ, tools like DQ should be
able to visualize dependencies by producing call graphs.
Ideally, a call graph could be a variant of a UML
sequence diagram. A call graph can be used for the
change impact analysis and to answer “what-if” questions
such as “which methods are affected if a particular
method is modified?”

6 Epilogue
We started this paper with the epigraph. It is therefore
proper to conclude with the epilogue which would allude
to what might happen to the “story” next. The research

reported here has a long history dating back more than ten
years. It had its own ups and downs, but it has been
always regaining momentum based on generated interests
and hopeful practical experiences in university
laboratories and within the IT industry.
The problem domain is large and diverse. There are at
least four aspects of it: ontological, epistemological, and
methodological. All these aspects require further
intensive research to unfold the “story”.

Ontological aspects relate to the question of the nature of
being and reality. They relate to the study of what
actually a complex system is, what it is made up of, what
properties are assigned to it, and what functions or
relations exist within it. Within the broad agreement that
entities of higher levels of organization are complex
composites of entities of lower levels, we have opted for
the holonic view of the world as the basis for an
ontological conceptual model.

Epistemological aspects relate to the question of the
nature of human knowledge and cognition (how do we
know what we know?). They relate to the study of how to
obtain (and assess) knowledge of what a complex system
is, how this knowledge is embodied in theories, what are
the assumptions for a theory, and what are the logical
relations between theories. Epistemological aspects
border on empiricism and rationalism in the quest to
obtain knowledge. From this perspective we admit an
initial bias to empiricism - the motivation for our studies
of complex systems came from experience and
observation of many hardly-maintainable or
unmaintainable e-business systems. However, reason and
factual analysis have guided us when looking for criteria

and metrics to allow judgments of comparative
complexity.

Methodological aspects relate to the methods, procedures,
and techniques used to collect and analyze information in
order to gain new knowledge. In this context, it is
worthwhile to make a distinction between methodology
as method of research and methodology as strategy of
research (Looijen 2000). In the former sense, every
scientist is a reductionist, and we are not an exception. In
the latter sense, our approach has been rather holistic,
phenomenological, and ‘top-down’.

7 References
Agazzi, E. (2002): What is. Complexity? In: Complexity

and Emergence. Proceedings of the Annual Meeting of
the International Academy of the Philosophy of
Science. pp. 3-11. Agazzi, E., Montecucco, L. (eds)
World Scientific

Brooks, F.P. (1987): No Silver Bullet: Essence and
Accidents of Software Engineering, IEEE Software, 4,
pp. 10-19

Capra, F. (1982): The Turning Point. Science, Society,
and the Rising Culture. Flamingo, 516p.

Dilworth, C. (2001): Simplicity, Epistemologia 24(2)
pp.173-201

Endres, A., Rombach, D. (2003): A Handbook of
Software and Systems Engineering. Empirical
Observations, Laws and Theories, Addison Wesley,
327p.

Fenton, N.E., Pfleeger, S.L. (1997): Software Metrics. A
Rigorous and Practical Approach, PWS Publ. Comp.,
638p.

Jackson, M. (2003): Systems Thinking: Creative Holism
for Managers. John Wiley & Sons, Ltd., 352p.

Looijen, R.C. (2000): Holism and Reductionism in
Biology and Ecology. The Mutual Dependence of
Higher and Lower Level Research Programmes.
Kluwer Academic Publishers, 350p.

Kanitscheider, B. (2002): Beyond Reductionism and
Holism. The Approach to Synergetics. In: Complexity
and Emergence. Proceedings of the Annual Meeting of
the International Academy of the Philosophy of
Science. pp. 39-44. Agazzi, E., Montecucco, L. (eds).
World Scientific

Koestler, A. (1967): The Ghost in the Machine.
Hutchinson, 384 pp.

Koestler, A. (1978): Janus. A Summing Up. Hutchinson,
354 pp.

Koestler, A. (1980): Bricks to Babel, Random House.
697p.

Koestler, A., Smythies, J.R. (1969): The Alpbach
Symposium 1968. Beyond Reductionism. New
Perspectives in the Life Sciences. Hutchinson of
London, 438p.

Maciaszek, L.A. (2005): Roundtrip Architectural
Modeling. In: Second Asia-Pacific Conference on
Conceptual Modelling (APCCM2005), pp.17-23.
Hartman, S., Stumper, M. (eds). Australian Computer
Science Communications 27 (6)

Maciaszek, L.A. (2006): From Hubs Via Holons to an
Adaptive Meta-Architecture – the “AD-HOC”
Approach. In: IFIP International Federation for
Information Processing, Volume 227, Software
Engineering Techniques: Design for Quality. pp.1-13.
K. Sacha (ed.), Boston: Springer.

Maciaszek, L.A. (2007a): An Investigation of Software
Holons – the ‘adHOCS’ Approach. Argumenta
Oeconomica, 19 (1-2), pp.1-40

Maciaszek, L.A. (2007b): Requirements Analysis and
System Design. 3rd ed. Addison-Wesley, 642p.

Maciaszek, L.A. and Liong, B.L. (2003): Designing
Measurably-Supportable Systems. In: Advanced
Information Technologies for Management. pp.120-
149. Niedzielska, E., Dudycz, H., Dyczkowski, M.
(eds). Wroclaw University of Economics Research
Papers 986

Maciaszek, L.A., Liong, B.L. (2005): Practical Software
Engineering. A Case-Study Approach. Addison-
Wesley, 864p.

Mosterin, J. (2002): Kolmogorov Complexity. In:
Complexity and Emergence. Proceedings of the Annual
Meeting of the International Academy of the
Philosophy of Science. pp. 45-56. Agazzi, E.,
Montecucco, L. (eds). World Scientific

O’Brien, J.A., Marakas, G.M. (2007): Enterprise
Information Systems. 13th ed. McGraw-Hill, 543p.

Wegner, P. (1997): Why interaction is more powerful
than algorithms, Comm. ACM 40 (5) pp.80–91

Wilber, K. (1995): Sex, Ecology, Spirituality: The Spirit
of Evolution, Shambhala Publ. Inc., Boston, MA.

