
Modelling for Lazy Clause Generation

Olga Ohrimenko2 and Peter J. Stuckey1,2

1 NICTA Victoria Research Lab
2 Department of Comp. Sci. and Soft. Eng,

University of Melbourne, Victoria 3010, Australia,
Email: {olgao,pjs}@csse.unimelb.edu.au

Abstract

Lazy clause generation is a hybrid SAT and finite
domain propagation solver that tries to combine
the advantages of both: succinct modelling using
finite domains and powerful nogoods and back-
jumping search using SAT technology. It has been
shown that it can solve hard scheduling problems
significantly faster than SAT or standard finite do-
main propagation alone. This new hybrid opens
up many choices in modelling problems because
of its dual representation of problems as both fi-
nite domain and SAT variables. In this paper
we investigate some of those choices. Arising out
of the modelling choices comes a novel combina-
tion of bounds representation and domain prop-
agation which creates a form of propagation of
disjunctions. We show this novel modelling ap-
proach can outperform more standard approaches
on some problems.

1 Introduction

We consider the problem of solving Constraint Sat-
isfaction Problems (CSPs) defined in the sense of
[7], which can be stated briefly as follows:

We are given a set of variables, a do-
main of possible values for each variable,
and a set (read as a conjunction) of con-
straints. Each constraint is a relation de-
fined over a subset of the variables, lim-
iting the combination of values that the
variables in this subset can take. The
goal is to find a consistent assignment of
values to the variables so that all the con-
straints are satisfied simultaneously.

Finite domain propagation systems solve CSPs
using elaborate search strategies working in tan-
dem with propagation to reduce the search space
by removing inconsistent assignments as early as
possible. There has been a significant amount of
research on how to solve CSPs by encoding them

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Computing: The Aus-
tralasian Theory Symposium (CATS2008), Wollongong, NSW.
Conferences in Research and Practice in Information Technol-
ogy(CRPIT), Vol. 77. James Harland and Prabhu Manyem,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

in a Boolean clausal representation and then using
Boolean satisfiability (SAT) solver to find a solu-
tion. Although this approach is quite successful for
some problem classes, on other problems it turns
out that the brute-force translation of the problem
is too big to be handled effectively.

Finite domain propagation solvers effectively
represent the possible values of variables by a set
of choices which can be naturally modelled as
Boolean variables. Recently [11] we described how
we can mimic a finite domain propagation engine,
by mapping propagators into clauses in a SAT
solver. This immediately results in strong nogoods
for finite domain propagation. We showed how we
can convert propagators to lazy clause generators
for a SAT solver. The resulting system can solve
scheduling problems significantly faster than gen-
erating the clauses from scratch, or using Satis-
fiability Modulo Theories [10] solvers with differ-
ence logic. The resulting hybrid [11] combines the
advantages of SAT solving, in particular power-
ful and efficient nogood learning and backjumping,
with the advantages of finite domain propagation,
simple and powerful modelling and specialized and
efficient propagation of information.

In this paper we extend our previous work by
exploiting the possibilities that the new system of-
fers.

We show that this approach allows indepen-
dence between the Boolean representation of in-
teger variables and the propagators that act upon
them. This representation independence leads to
a new type of propagation: mixing bounds repre-
sentation and domain propagators. The new prop-
agator results in disjunctive propagation, where
new information is created by propagation which
is disjunctive in nature, even though the propaga-
tor was not a disjunctive at the start. Since the
underlying SAT representation of propagation can
represent disjunctive information efficiently, it al-
lows us to create new “disjunctive propagators”
from scratch.

The next section introduces notations and the
lazy clause generation solving approach. We then
explore modelling choices that arise in lazy clause
generation solving, in particular we show that the
choice of propagator can be independent of the
choice of Boolean variable representation. In Sec-
tion 4 we discuss the implementation of lazy clause
generation and how it has to be extended to sup-

port new features of the modelling. We give ex-
perimental results in Section 5, and then conclude.

2 Lazy Clause Generation

2.1 Finite Domain Propagation

We consider a set of integer variables V . A domain
D is a complete mapping from V to finite sets of
integers. We can understand a domain D as a
formula ∧v∈V(v ∈ D(v)) stating for each variable
v that its value is in its domain.

Let D1 and D2 be domains and V ⊆ V . We say
that D1 is stronger than D2, written D1 v D2, if
D1(v) ⊆ D2(v) for all v ∈ V and that D1 and D2
are equivalent modulo V , written D1 =V D2, if
D1(v) = D2(v) for all v ∈ V . The intersection of
D1 and D2, denoted D1 u D2, is defined by the
domain D1(v) ∩ D2(v) for all v ∈ V .

We use range notation: [l .. u] denotes the set
of integers {d | l 6 d 6 u, d ∈ Z}. We assume an
initial domain Dinit such that all domains D that
occur will be stronger i.e. D v Dinit.

A valuation θ is a mapping of variables to val-
ues, written {x1 7→ d1, . . . , xn 7→ dn}. We extend
the valuation θ to map expressions or constraints
involving the variables in the natural way. Let vars
be the function that returns the set of variables ap-
pearing in an expression, constraint or valuation.
In an abuse of notation, we define a valuation θ to
be an element of a domain D, written θ ∈ D, if
θ(v) ∈ D(v) for all v ∈ vars(θ).

A constraint is a restriction placed on the al-
lowable values for a set of variables. We define
the solutions of a constraint c to be the set of
valuations θ that make that constraint true, i.e.
solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}

We associate with every constraint c a set of
propagators. A propagator f for c is a monoton-
ically decreasing function on domains such that
for all domains D v Dinit: f(D) v D and {θ ∈
D | θ ∈ solns(c)} = {θ ∈ f(D) | θ ∈ solns(c)}.
This is a weak restriction since, for example, the
identity mapping is a propagator for any con-
straint.

Example 1 A common propagator fd for the con-
straint x 6= y is

f(D)(x) = D(x) − {d}, if D(y) = {d}
f(D)(x) = D(x), otherwise
f(D)(y) = D(y) − {d}, if D(x) = {d}
f(D)(y) = D(y), otherwise
f(D)(v) = D(v), v 6∈ {x, y}

Let D1(x) = {3, 4, 5, 6} and D1(y) = {5}, then
f(D1)(x1) = {3, 4, 6} and f(D1)(y) = {5}. �

A propagation solver for a set of propagators F
and current domain D, solv(F, D), repeatedly ap-
plies all the propagators in F starting from domain
D until there is no further change in resulting do-
main. solv (F, D) is the weakest domain D′ v D
which is a fixpoint (i.e. f(D′) = D′) for all f ∈ F .
In other words, solv (F, D) returns a new domain

defined by

solv(F, D) = gfp(λd.iter (F, d))(D)
iter(F, D) = uf∈F f(D).

where gfp denotes the greatest fixpoint w.r.t v
lifted to functions.

2.2 Atomic Constraints and Propagation
Rules

In order to convert propagation to clauses we need
to extract the “pointwise” behavior of a propaga-
tor. To do so we use atomic constraints and prop-
agation rules.

An atomic constraint represents the basic
changes in domain that occur during propagation.
For integer variables, the atomic constraints rep-
resent the elimination of values from an integer
domain, i.e. x 6 d, x > d, x 6= d or x = d where
x ∈ V and d is an integer. Note these correspond
to events in a propagation engine: upper bound
change, lower bound change, domain change and
fixing the variable. We also consider the atomic
constraint false which indicates that unsatisfiabil-
ity is the direct consequence of propagation.

Define a propagation rule as C � c where C
is a conjunction of atomic constraints, and c is a
single atomic constraint such that 6|= C → c. A
propagation rule C � c defines a propagator (for
which we use the same notation) in the obvious
way

(C � c)(D)(v) =

{

{θ(v) |θ ∈ D ∩ solns(c)}
vars(c) = {v}∧ |= D → C

D(v) otherwise.

In another words, C � c defines a propagator
that removes values from D based on c only when
D implies C.

A propagator f implements a propagation rule
C � c iff |= D → C implies |= f(D) → c for all
D v Dinit .

Example 2 The propagator fd of Example 1 im-
plements the following propagation rules (among
many others) for Dinit(x) = Dinit(y) = [l .. u].

x = d � y 6= d, l 6 d 6 u
y = d � x 6= d, l 6 d 6 u �

A set of propagation rules F ⊆ rules(f) imple-
ments f iff solv (F, D) = f(D), for all D v Dinit .

In order to translate a propagator f to Boolean
clauses we want to have a concise representation
in terms of propagation rules, rep(f), such that
rep(f) implements f .

Example 3 Consider the reified difference in-
equality c ≡ b ⇔ x+c 6 y where Dinit(b) = {0, 1},
Dinit(x) = [l .. u], Dinit(y) = [l .. u]. Then a set
of propagation rules rep(f) implementing the do-
main propagator f for c is

b > 1 ∧ x > d � y > d + c
b > 1 ∧ y 6 d � x 6 d − c
b 6 0 ∧ x 6 d � y 6 d + c − 1
b 6 0 ∧ y > d � x > d − c + 1

x > d − c + 1 ∧ y 6 d � b 6 0
x 6 d ∧ y > d + c � b > 1

where l 6 d 6 u, except for the last two where
l − c 6 d 6 u + c. �

A bound propagation rule only makes use of
atomic constraints of the form x 6 d, x > d and
false. We can classify a propagator f as a bounds
propagator if it has a representation rep(f) which
only makes use of bounds propagation rules.

Example 4 The propagator in Example 3 is
clearly a bounds propagator. A bounds propaga-
tor fb for the constraint x 6= y is defined by the
propagation rules for Dinit(x) = Dinit(y) = [l .. u]
where l 6 d 6 u:

x 6 d ∧ x > d ∧ y 6 d � y 6 d − 1
x 6 d ∧ x > d ∧ y > d � y > d + 1
y 6 d ∧ y > d ∧ x 6 d � x 6 d − 1
y 6 d ∧ y > d ∧ x > d � x > d + 1. �

2.3 SAT and Unit Propagation

A proposition p is a Boolean variable from a uni-
verse of Boolean variables, P . A literal l is either:
a proposition p, its negation ¬p, the false literal
⊥, or the true literal >. The complement of a
literal l, ¬l is ¬p if l = p or p if l = ¬p, while
¬⊥ = > and ¬> = ⊥. A clause C is a disjunction
of literals. An assignment is either a set of literals
A excluding ⊥ such that ∀p ∈ P .{p,¬p} 6⊆ A, or
the failed assignment {{⊥}}. We define A v {{⊥}},
and A t A′ = A ∪ A unless the union contains
⊥ or {p,¬p} for some literal p in which case
A t A′ = {{⊥}}.

An assignment A satisfies a clause C if one of
the literals in C appears in A. A theory T is a set
of clauses. An assignment is a solution to theory
T if it satisfies each C ∈ T .

A SAT solver takes a theory T and determines
if it has a solution. Complete SAT solvers typ-
ically involve some form of the DPLL algorithm
which combines search and propagation by recur-
sively fixing the value of a proposition to either >
(true) or ⊥ (false) and using unit propagation to
determine the logical consequences of each deci-
sion made so far. The unit propagation algorithm
finds all unit resolutions of an assignment A with
the theory T . It can be defined as follows where
C denotes a clause:

up(A, C) =











{{⊥}} ∀l ∈ C.¬l ∈ A
A t {l} ∃l ∈ C, ,¬l 6∈ A,

∀l′ ∈ (C \ {l}).¬l′ ∈ A
A otherwise

UP(A, T) = lfp.(λa.
⊔

C∈T up(a, C))(A)

Example 5 Given the theory T = { ¬p1 ∨ p2 ∨
p3∨¬p4∨¬p5, p1∨p2, p4∨¬p5} and the assignment
A1 = {¬p2, p5} unit propagation on p1 ∨ p2 adds
p1, and on p4∨¬p5 adds p4, then unit propagation
with the first clause adds p3. Hence UP(A1, T) =
{p1,¬p2, p3, p4, p5}. �

2.4 Lazy Clause Generation

The lazy clause generation hybrid solver defined
in [11] works as follows. We execute a SAT solver

using a Boolean representation of the integer vari-
ables of the problem. When the SAT solver reaches
an assignment A on these Boolean variables we
calculate a corresponding domain D to A, and ex-
ecute the propagators f ∈ F on D. Any propaga-
tion rule r in rep(f) that creates new information
(that is r(D) 6≡ D) is converted to a clause and
added to the SAT solver. Unit propagation on this
new clause will cause the assignment A to change
to agree with r(D).

We represent an integer variable x with domain
Dinit(x) = [l .. u] using the Boolean variables
[[x = l]], . . . , [[x = u]] and [[x 6 l]], . . . , [[x 6 u − 1]].
The variable [[x = d]] is true if x takes the value
d, and false if x takes a value different from d.
Similarly the variable [[x 6 d]] is true if x takes a
value less than or equal to d and false if x takes a
value greater than d.

Not every assignment of Boolean variables is
consistent with the integer variable x, for example
{[[x = 3]], [[x 6 2]]} requires that x is both 3 and
6 2. In order to ensure that assignments repre-
sent a consistent set of possibilities for the integer
variable x we add the clauses DOM (x) to the SAT
solver

¬[[x 6 d]] ∨ [[x 6 d + 1]] l 6 d < u − 1
¬[[x = d]] ∨ [[x 6 d]] l 6 d < u

¬[[x = d]] ∨ ¬[[x 6 d − 1]] l < d 6 u
[[x = l]] ∨ ¬[[x 6 l]]

[[x = d]] ∨ ¬[[x 6 d]] ∨ [[x 6 d − 1]] l < d < u
[[x = u]] ∨ [[x 6 u − 1]]

These clauses encode [[x 6 d]] → [[x 6 d + 1]] and
[[x = d]] ↔ ([[x 6 d]] ∧ ¬[[x 6 d − 1]]). We let
DOM = ∪{DOM (v) | v ∈ V}.

Any unit fixpoint A of DOM(x) can be con-
verted to a domain for variable x:

domain(A)(x) = { d ∈ Dinit(x) | ∀[[c]] ∈ A.
vars(l) = {x} ⇒ x = d |= c}

that is the domain of all values for x that are con-
sistent with all the Boolean variables related to x.

Example 6 For example the assignment A =
{[[x1 6 10]], ¬[[x1 6 5]], ¬[[x1 = 7]], ¬[[x1 = 8]],
[[x2 6 11]], ¬[[x2 6 5]], [[x3 6 10]], ¬[[x3 6 −2]]} is
consistent with x1 = 6, x1 = 9 and x1 = 10.
hence domain(A)(x1) = {6, 9, 10}. For the re-
maining variables domain(A)(x2) = [6 .. 11] and
domain(A)(x3) = [−1 .. 10]. Note that for brevity
A is not a fixpoint of DOM(x1) since we are
missing many implied literals such as ¬[[x1 = 5]],
¬[[x1 = 12]], etc. �

The propagators F are run on the created do-
main, and each propagation rule that creates new
information is converted to a Boolean clause. This
is straightforward since we can map atomic con-
straints to Boolean literals. The mapping lit is

defined as: (where Dinit(x) = [l .. u])

lit(false) = ⊥

lit(x = d) =

{

[[x = d]] l 6 d 6 u
⊥ otherwise

lit(x 6= d) =

{

¬[[x = d]] l 6 d 6 u
> otherwise

lit(x 6 d) =

{

> d > u
⊥ d < l
[[x 6 d]] otherwise

lit(x > d) =

{

> d 6 l
⊥ d > u
¬[[x 6 d − 1]] otherwise

We can transform a propagation rule r to a
clause cl(r) by:

cl(C � c) = (
∨

c′∈C

¬lit(c′)) ∨ lit(c)

Example 7 Given the domain D corresponding
to assignment A from Example 6, imagine a prop-
agator f fires the propagation rule

x1 6 10 ∧ x2 > 6 � x3 6 1

This is transformed into the clause

¬[[x1 6 10]] ∨ [[x2 6 5]] ∨ [[x3 6 1]]

This clause is added to the SAT solver. Unit prop-
agation using the assignment A and the clause
above adds the new information [[x3 6 1]] to get
assignment A′. �

Just as we can convert an assignment A to a
domain D, we can convert a domain D to an as-
signment

assign(D, x) = {lit(c) | x ∈ D(x) |= c,
x ∈ vars(x)}

assign(D) =

{

{{⊥}} ∃v ∈ V .D(v) = ∅
⋃

v∈V assign(D, v) otherwise

Using the lazy clause generation we can show
that the SAT solver maintains an assignment
which is equivalent to the domains. In particular if
we have clauses representing all the propagators F
then unit propagation is guaranteed to be at least
as strong as finite domain propagation.

Theorem 1 ([11]) Let rep(f) be a set of prop-
agation rules implementing propagator f . Let
A = UP(assign(D),DOM ∪

⋃

{cl(r) | f ∈
F, r ∈ rep(f)}). Then A = {{⊥}} or A ⊇
assign(solv (F, D)). �

3 Modelling Choices

Lazy clause generation proved to be a powerful
approach to tackling finite domain problems with
large amounts of search. In [11] we show that
it can solve hard open shop scheduling problems
more efficiently than pure SAT approaches and
other finite domain solvers using the same model

(Laborie [6] shows how to tackle hard schedul-
ing problems using finite domains solvers by us-
ing complex resource constraints and specialized
searching methods).

In this paper we explore some of the modelling
possibilities that the novel solving technology of
lazy clause generation allows.

3.1 Laziness and Eagerness

An important choice in the lazy clause generation
approach is whether to implement a propagator
lazily (which is the default) or eagerly. The eager
representation of a propagator f simply adds the
clauses cl(r) for all r ∈ rep(f) into the SAT solver
before beginning the search. This clearly can im-
prove search, since more information is known
apriori, but the size of the clausal representation
may make it inefficient.

Example 8 The representation of the domain
propagator for disequality x 6= y where Dinit(x) =
Dinit(y) = [l .. u] requires 2(u − l + 1) binary
clauses. Hence it is possible to model eagerly.

The representation of the bounds propagator
for x1 + · · · + xn 6 k where Dinit(x1) = · · · =
Dinit(xn) = [0 .. 1] has nCk = n!/((n − k)!k!)
propagation rules. Clearly it is impossible to rep-
resent this eagerly for large n and k. �

In practice eager representation is useful for
constraints that have very small representations.

3.2 Variable representation

The lazy clause generation approach represents
variables domains of possible values in dual man-
ner: a Boolean assignment and a domain D on in-
teger variables. There are a number of choices of
how we can represent integer variables in terms of
Boolean variables. The default choice (full integer
representation) is described in the previous sec-
tion and was used in [11]. We present new choices
below.

3.2.1 Non-continuous variables

We can represent an integer variable where
Dinit(x) = {d1, . . . , dn} where di < di+1, 1 6
i 6 n, and the values are noncontinuous. This
requires fewer Boolean variables, and fewer do-
main constraints then representing the domain
[d1 .. dn]. The Boolean representation uses vari-
ables [[x = di]], 1 6 i 6 n and [[x 6 di]], 1 6 i < n.

The clauses DOM(x) required to maintain con-
sistency of the Boolean assignment are:

¬[[x 6 di]] ∨ [[x 6 di+1]] 1 6 i < n − 1
¬[[x = di]] ∨ [[x 6 di]] 1 6 i < n

¬[[x = di]] ∨ ¬[[x 6 di−1]] 1 < i 6 n
[[x = d1]] ∨ ¬[[x 6 d1]]

[[x = di]] ∨ ¬[[x 6 di]] ∨ [[x 6 di−1]] 1 < i < n
[[x = dn]] ∨ [[x 6 dn−1]]

3.2.2 Bounds variables

We can represent an integer variable only using
the bounds variables [[x 6 d]], l 6 d < u where
Dinit(x) = [l .. u]. While this means we cannot
represent all possible subsets of [l .. u], it has the
advantage of requiring fewer Boolean variables,
and the domain representation requires only the
clauses:

¬[[x 6 d]] ∨ [[x 6 d + 1]] l 6 d < u − 1

3.2.3 Non-continuous bounds variables

We can clearly restrict the representation of non-
continuous variables to bounds only analogously,
just using the Boolean variables [[x 6 di]]

3.3 Propagator and variable representa-
tion independence

In a usual finite domain solver we are restricted
so that if we use bounds variables, they must be
restricted to only occur in bounds propagators. In-
deed in [11] we use this observation to avoid using
full integer variables for variables that only occur
in bounds propagators. In the lazy clause genera-
tion solver we can separate the variable representa-
tion from the propagator type. To do so we make
use of the more flexible clausal representation of
propagators of the lazy clause generation solver.

With this separation the propagation engine
can work without knowing whether integer vari-
able x is a full integer, non-continuous, or bounds
variable, since the translation of assignments to
domains, and from propagation rules to clauses,
completely captures the relationship between the
Boolean representation and the integer variable.

Because of this separation we can indepen-
dently choose which propagator we will use to rep-
resent a problem, without considering the variable
representation. Hence for an individual constraint
we can choose any of the propagators for that con-
straint.

3.3.1 Non-continuous variables

We extend the translation of atomic con-
straints lit to map atomic constraints involv-
ing non-continuous variable x where Dinit(x) =
{d1, . . . , dn} as follows:

lit(x = d) =

{

⊥ d 6∈ {d1, . . . , dn}
[[x = di]] d = di

lit(x 6= d) =

{

> d 6∈ {d1, . . . , dn}
¬[[x = di]] d = di

lit(x 6 d) =

{

> d >= dn

⊥ d < d1

[[x 6 di]] di < d 6 di+1

lit(x > d) =

{

> d 6 d1
⊥ d > dn

¬[[x 6 di]] di < d 6 di+1

Note that each atomic constraint is translated as
a single literal.

Example 9 Consider the translation of the prop-
agation rules x = 3 � y 6= 3 and x 6= 3 � y = 3,
where Dinit(x) = {0, 3, 5} and Dinit(y) = {1, 2, 4}.
The resulting clauses are ¬[[x = 3]] ∨ > or > (the
always true clause) and [[x = 3]]∨⊥ or equivalently
[[x = 3]]. �

3.3.2 Bounds variables

We extend the translation of atomic constraints lit
to map atomic constraints involving bounds vari-
able x where Dinit(x) = [l .. u] as follows:

lit(x = d)=















[[x 6 d]] d = l
[[x 6 d]] ∧ ¬[[x 6 d − 1]], l < d < u
¬[[x 6 u − 1]] d = u
⊥ otherwise

lit(x 6= d)=















¬[[x 6 d]] d = l
¬[[x 6 d]] ∨ [[x 6 d − 1]], l < d < u
[[x 6 u − 1]] d = u
> otherwise

The translations of x 6 d and x > d are as for
full integer variables. Note that these translations
now no longer guarantee to return a single literal.

Clearly “Boolean integer” variables x where
Dinit(x) = [0 .. 1] can be represented as bounds
only variables without loss of expressiveness since
x 6 0 ↔ x = 0 ↔ ¬(x = 1).

We can translate any propagation rule to a con-
junction of clauses by simply applying lit as before.
This creates (a possibly non-clausal) Boolean for-
mulae which can be transformed to conjunctive
normal form.

Example 10 Consider the translation of the
propagation rule x = 3 � y 6= 3, where x and y
are bounds only variables. The resulting formula
is ¬[[x 6 3]] ∨ [[x 6 2]] ∨ [[y 6 2]] ∨ ¬[[y 6 3]], which
is a clause already.

Consider the translation of the propagation rule
x 6= 3 � y = 3. The resulting formula is
¬([[x 6 2]]∨¬[[x 6 3]])∨ ([[y 6 3]]∧¬[[y 6 2]]). The
conjunctive normal form is

¬[[x 6 2]] ∨ [[y 6 3]]
[[x 6 3]] ∨ [[y 6 3]]
¬[[x 6 2]] ∨ ¬[[y 6 2]]
[[x 6 3]] ∨ ¬[[y 6 2]]

It would appear that the conversion of propaga-
tion rules including bounds variables could lead to
an exponential explosion in the number of clauses
required to represent them. By restricting the con-
version of the rules to clauses which may actually
be able to cause unit propagation, in fact we can
represent them with at most 2 clauses.

Lemma 1 If domain D = domain(A) is such that
D(x) |= x 6= d where x is a bounds only variable,
then D(x) |= x > d + 1 or D(x) |= x 6 d − 1.

Proof: Now A can only include literals [[x 6 d′]]
or ¬[[x 6 d′]] for some d′. Hence domain(A)(x) is
a range domain. If D(x) |= x 6= d then either
D(x) |= x > d + 1 or D(x) |= x 6 d − 1. �

Define the bounds simplification bs(r) of a
propagation rule r ≡ C � c, for domain D =
domain(A) for some assignment A which fires the
rule, as follows. Replace each atomic constraint
x 6= d appearing in C where x is a bounds only
variable by either x 6 d−1 or x > d+1, whichever
holds in D. The resulting propagation rule can
create at most 2 clauses.

Theorem 2 The conjunctive normal form of the
clausal representation of bs(r) involves at most 2
clauses.

Proof: Each atomic constraint appearing in the
left hand side of bs(r) is translated as a single
Boolean literal. The only conjunction that can
occur in the translation is if the right hand side
is an atomic constraint x = d and x is a bounds
variable. The resulting CNF has two clauses. �

Example 11 Consider the translation of the
propagation rule r ≡ x 6= 3 � y = 3 where x
and y are bounds variables ranging over [0 .. 10].
Suppose the domain that causes it to fire is D =
domain(A) where A = {[[x 6 1]]}. Then D(x) =
[0 .. 1] and D(x) |= x 6 2 and bs(r) ≡ x 6 2 �
y = 3. The translation to Booleans is the formula
¬[[x 6 2]] ∨ ([[y 6 3]] ∧ ¬[[y 6 2]]), which in CNF is
(¬[[x 6 2]]∨ [[y 6 3]])∧ (¬[[x 6 2]]∨¬[[y 6 2]]). Note
that the two clauses from Example 10 that are
missing could not fire in A. �

There is an important new behaviour that
arises when we consider using domain propagators
on bounds variables. The result of propagation is
always a clause of a form

cl(C � c) = ∨c′∈C(¬ lit(c′)) ∨ lit(c),

where ¬ lit(c′) are all false in the current assign-
ment and lit(c) is either undefined or false in the
current assignment. Previously lit(c) was always a
single literal, hence we could guarantee unit prop-
agation would apply, and set lit(c) to true. Now
there is a possibility that lit(c) is itself a disjunc-
tion and unit propagation will not apply.

Example 12 Consider the execution of the do-
main propagation for x 6= y (Example 1) where
x and y are bounds variables on the assignment
A = {[[x 6 3]],¬[[x 6 2]]}. Then in the correspond-
ing domain(A)(x) = {3} and the propagation rule
x = 3 � y 6= 3 fires. The resulting clause
is ¬[[x 6 3]] ∨ [[x 6 2]] ∨ ¬[[y 6 3]] ∨ [[y 6 2]]. No
unit propagation is possible using A and this new
clause.

In fact the domain propagator for x 6= y applied
to bounds variables x and y generates exactly the
same clauses as the bounds propagator, but it gen-
erates them earlier! �

3.3.3 Disjunctive propagators

The discussion at the end of the last subsection
motivates examining a new possibility. Propaga-
tion rules are designed so that the result of the
propagation is a single atomic constraint, which

can then be represented immediately as a change
in domain. Given that we will convert the prop-
agation rules to clauses in any case we can ex-
tend them to allow disjunction on the right hand
side. A disjunctive propagation rule has the form
c1 ∧ · · · ∧ cn � cn+1 ∨ · · · ∨ cm. The translation to
clauses is clear cl(c1∧· · ·∧cn � cn+1∨· · ·∨cm) =
¬ lit(c1)∨· · ·∨¬ lit(cn)∨ lit(cn+1)∨· · ·∨ lit(cn+m).
Presently we restrict our implementation to only
support disjunctive propagation rules with at most
two literals on the right hand side.

Example 13 Consider the constraint |x − y| >
k for constant k > 0. The bounds propagator
for this constraint has representation given by the
propagation rules: (where l + k > u − k)

x > l ∧ x 6 u ∧ y 6 l + k − 1 � y 6 u − k
x > l ∧ x 6 u ∧ y > u − k + 1 � y > l + k
y > l ∧ y 6 u ∧ x 6 l + k − 1 � x 6 u − k
y > l ∧ y 6 u ∧ x > u − k + 1 � x > l + k

A more eager version of this propagator fires when
the range on one variable is small enough to guar-
antee some (disjunctive) constraints on the other
variable. It is defined by the disjunctive propaga-
tion rules: (where l + k > u − k)

x > l ∧ x 6 u � y > l + k ∨ y 6 u − k
y > l ∧ y 6 u � x > l + k ∨ x 6 u − k

Disjunctive propagators can be seen as a more
eager form of lazy clause generation.

4 Implementation

The creation of a practical lazy clause genera-
tion solver involves many more considerations than
were addressed in Section 2.4. To build the sys-
tem we add a cut down propagation engine into a
SAT solver and modify it as a lazy clause gener-
ator. We first describe this process as defined in
[11] and then describe the extensions required.

The SAT solver applies unit propagation, and
when it reaches a fixpoint it calls the propagation
engine. The new literals set by the SAT solver are
converted into domain changes in the propagation
solver, and these “events” queue up propagators
for execution.

The first propagator in the queue is then exe-
cuted. If it causes propagation, then the clausal
representation of the first propagation rule that
fires is added to the SAT solver and unit propa-
gation is applied. When the SAT solver finishes
we re-execute the same propagator (which is still
at the head of the queue) to search for another
firing propagation rule. When there are no more
firing rules the propagator is removed from the
queue and the next propagator considered. The
reason we add clauses as soon as possible is to
detect failure as soon as possible. Unit propaga-
tions may schedule (or re-schedule) propagators.
The process continues until the propagation queue
is empty and unit propagation is at fixpoint. At
this point the SAT solver makes a decision about
a literal to set true and search continues.

On failure the propagation queue is cleared,
and the SAT solver backtracks up the trail of de-
cided and inferred literals. For each canceled lit-
eral we undo the domain change on the corre-
sponding integer variable in the propagation en-
gine.

A subtle point we have not addressed is why we
do not worry about a propagator creating dupli-
cates of clauses corresponding to its propagation
rules, particularly since we can execute the prop-
agator repeatedly simply to create all the propa-
gation rules that fire for one domain. The reason
is that since a propagator f is only run at domain
D = domain(A) for an assignment A which is a
unit propagation fixpoint, then if cl(r) is already
in the SAT solver then r cannot fire on domain D
(it has no new information).

Example 14 Consider the propagation of the
constraint x = y with Dinit(x) = Dinit(y) =
[0 .. 4]. After the SAT solver sets ¬[[x = 2]] and
¬[[y = 3]] the first propagation rule that fires is
x 6= 2 � y 6= 2. This is added as the clause
[[x = 2]]∨¬[[y = 2]] and propagated to set ¬[[y = 2]].
Returning to the propagation engine the, the prop-
agator for x = y is still head of the queue. The
original propagation rule no longer fires since y 6= 2
is not new information. Hence the next propaga-
tion rule y 6= 3 � x 6= 3 is considered. �

The extensions of lazy clause generation we
consider in this paper require modifications to the
implementation. The reason is that using domain
propagators on bounds variables, or more gener-
ally disjunctive propagators means that we can not
be sure that a newly added clause does not already
exist (has not previously been added) since it may
not cause unit propagation with the current as-
signment.

This requires two modifications to the ap-
proach. First disjunctive propagators at the head
of the queue must store an index of propagation
rule processed last, and clear this index every time
the propagator queue is cleared. This is to avoid
them regenerating the same propagation rule when
they are still the head of the queue. Secondly, be-
fore adding a clause corresponding to a disjunctive
propagation rule we need to check that it is not al-
ready in the SAT solver.

We could build a separate data structure to
record which clauses have been sent to the solver.
To avoid the complexity and space required to do
this we re-use existing data structures in the SAT
solver. Suppose a propagation rule C � c1 ∨ c2
already has its corresponding clause Cl in the SAT
solver. All literals in the clause except lit(c1)
and lit(c2) must be false in the current assign-
ment, otherwise the propagation rule would not
fire. The SAT solver keeps track of at least two
literals in each clause which are not false, the so-
called watched literals, in order to detect unit prop-
agations. Hence lit(c1) and lit(c2) must be the
watched literals for Cl. To check if Cl appears in
the SAT solver already, we check all clauses where
lit(c1) is a watched literal (the SAT solver provides
this data structure), and see if one is identical to
Cl.

This check is reasonably expensive, but much
cheaper than looking at all clauses involving lit(c1)
since it will be the watched literal in few of them.

5 Experimental results

All experiments are performed on a 3.4GHZ In-
tel Pentium D with 4Gb RAM running on Debian
Linux 4. The lazy clause generation system is built
using MiniSat [9] version 2.0 beta. We compare
our results against a highly optimized propagation
solver Gecode 1.3.1 [3]. Eager models are run on
MiniSat version 2.0 beta.

5.1 alldifferent propagators

The disequality alldifferent([x1, . . . , xn]) con-
straint requires that ∀1 6 i < j 6 n, xi 6= xj .

In the lazy clause generation solver we can rep-
resent the disequality constraint x 6= y in a num-
ber of ways: (a) using the domain propagator fd

from Example 1, (b) using the bounds propagator
fb from Example 4, and (c) using (bounds) prop-
agators Fr for the reified set of constraints b1 ∨ b2,
b1 ⇔ x+1 6 y, b2 ⇔ y+1 6 x. In fact the last two
representation have exactly the same propagation
behaviour

Lemma 2 Let D(b1) = D(b2) = [0 .. 1], then
solv (Fr, D) ={x,y} solv ({fb}, D).

Proof: Suppose a propagation rule for fb fires in
D. Assume it has the form x > d ∧ x 6 d ∧ y >
d � y > d + 1, reasoning for the other rules is
analogous. Then the propagation rule y > d∧x 6
d � b2 6 0 from b2 ⇔ y + 1 6 x fires. Hence
the propagation rule b2 6 0 � b1 > 1 from b1 ∨ b2
fires, and hence the rule b1 > 1∧x > d � y > d+1
from b1 ⇔ x + 1 6 y fires.

In the reverse direction suppose a propagation
rule for Fr fires in D modifying x or y. Assume
it is of the form b1 > 1 ∧ x > d � y > d + 1,
reasoning for other rules is analogous. Then since
b1 > 1 is true, and is not true in D, either a rule
x 6 d′ ∧ y > d′ + 1 � b1 > 1 fires or b2 6 0 �
b1 > 1 fires.

Suppose a rule of the first kind fired. Now d′ >
d since x > d and x 6 d′ both hold and d + 1 >
d′ + 1 otherwise y > d + 1 is not new information.
This is a contradiction

Hence the second rule must fire. Since b2 6 0
is now true, a rule of the form y > d′′ ∧ x 6 d′′ �
b2 6 0 must have fired for some d′′. Since the
first rule creates new information y > d + 1 is
stronger that y > d′′ hence d > d′′. But since
D ensures both x > d and x 6 d′′ we have that
d > d′′ > x > d, so d = d′′. Hence D ensure that
x > d, x 6 d and y > d and hence fb fires the
rule x > d ∧ x 6 d ∧ y > d � y > d + 1, causing
y > d + 1. �

There are more complex propagators for
alldifferent([x1, . . . , xn]) (see the survey [15])
that implement more complex rules based on Hall
sets [4]. A hall set H is a subset of {x1, . . . xn}

such that |H | > |S| where S = ∪v∈HD(v)|. If
|H | > |S| the propagation rule is

∧v∈H ∧d∈Dinit(v)−S v 6= d � false

If |H | = |S| the propagation rules are for each
v′ ∈ {x1, . . . , xn} − H and d′ ∈ S

∧v∈H ∧d∈Dinit(v)−S v 6= d � v′ 6= d′

The domain propagation of Regin [12] implements
all propagation rules for all possible Hall sets.
Given there are exponentially many Hall sets,
these stronger propagators do not necessarily lead
to advantage in lazy clause generation.

5.2 Quasigroup Completion Problems

A n × n latin square is a square of values xij , 1 6

i, j 6 n where each number [1 .. n] appears exactly
once in each row and column. It is represented by
constraints

alldifferent([xi1, . . . , xin], 1 6 i 6 n
alldifferent([x1j , . . . , xnj], 1 6 j 6 n

The quasigroup completion problem (QCP) is a
latin square problem where some of the xij are
given. These are challenging problems which ex-
hibit phase transition behaviour. We use examples
from the 2006 Constraint Satisfaction Solver Com-
petition [2].

Table 1 compares the user time for finding the
first solution of quasigroup completion problems of
size 15×15 for various modelling possibilities. The
choices are 3 letter codes: eager or lazy modelling,
bounds or full integer representation, and bounds
(fb), domain (fd) or reified (Fr) propagators for
representing disequality. Note that for the eager
approach with bound variable representation the
clauses for the bound and domain propagator are
exactly the same, and thus we write eb(bd) to
denote ebb and ebd. We also compare against
Gecode [3]. For eager modelling the time for con-
structing the clausal representation is included, it
is either 0.01 or 0.02 seconds. The benchmarks
0–9 are satisfiable while 10–14 are unsatisfiable.
We omit lbr from the tables, since they are not
competitive for these benchmarks.

The eager approaches are best for these exam-
ples, while the lfd combination is the best lazy
approach. This is interesting as the bounds rep-
resentation is quite poor for the lazy approach,
but better than the domain representation for the
eager approach. The larger the search required
the poorer Gecode performs in comparison to the
SAT/hybrid approaches.

Table 2 shows the results on 25×25 QCP prob-
lems in order to see the trend for modelling choices
as size increases. These problems are hard for
Gecode, taking hours to complete. In 6 out of 15
instances lfd improves upon the eager approach
efd, and overall it solves the whole suite faster.
Even though QCP problems are small (the cost of
eager clause generation is less than 0.10 seconds)

the lazy approach avoids the overhead of exam-
ining many useless clauses, and hence starts out-
performing the eager approach as the problem size
grows. Interestingly eb(bd) is still better than the
lazy approach lfd for these problems, even though
the lazy bounds representations are poor. Exam-
ining the novel combination lbd we see that for
2 instances it gives the best results, and it suf-
fers significantly greater overhead because it has
to check for duplicate clauses. With a dedicated
systems for duplicate clause checking it could be
improved further.

Table 3 shows the search space for each ap-
proach. While lfd has the overhead of propagator
execution compared to efd and eb(bd) it usually
requires less search, since only the used clauses
are counted for the search heuristic. Clearly there
is an overhead for the full integer representation.
When lbd leads to around the same search space
as lfd it is twice as fast.

5.3 Magic Squares Problems

A n×n magic square is a square of values xij , 1 6

i, j 6 n where each number in
[

1 .. n2
]

occurs ex-
actly once and each row, column and major diag-
onal adds to the same number (s = n(n2 + 1)/2).
It is represented by one alldifferent constraint,
and 2n + 2 linear equations.

In Table 4 we compare various modelling
choices for magic square problems, for finding the
first solution (F) and all solutions (A)(for small
problems). The ∗ entries arise since the eager ap-
proach eb(bd) could not search for all solutions
(A) since this required modifying the SAT solver.

For these problems, the first fail search strategy
of Gecode is clearly much better than the VSIDS
search used by our hybrid. The eager modelling
approach quickly fails since just the generation of
the clauses for

∑n

i=1 xij = s requires more than
400 seconds. The additional variables [[x = d]] in
the full integer variable representation cause too
much overhead for these example, the bounds rep-
resentations are clearly superior. Of these the
hybrid disjunctive propagator performs well. In-
terestingly lbr which has the same propagation
strength as lbb is superior on the harder prob-
lems. This may be because nogoods can make use
of the Boolean reification variables to record more
pertinent information about failures.

5.4 CELAR Radio Link Frequency Assign-
ment Problems

The CELAR Radio Link Frequency Assignment
Problems [1] consist of a set of radio frequencies
and a set of radio links to assign a frequency to
each radio link. Some pairs of radio links must be
an exact distance apart in frequency, while other
should be at least some distance apart. We use
the first 5 problems (where all constraints are mu-
tually satisfiable) while minimizing the maximum
frequency used. The set of possible frequencies F
is non-continuous:

{2 + 14i|1 6 i 6 11} ∪ {2 + 14i|18 6 i 6 28}
∪{8 + 14i|29 6 i 6 30} ∪ {8 + 14i|46 6 i 6 56},

Table 1: QCP 15 × 15 instances: user time

Benchmark
Time(sec)

efd eb(bd) lfd lbd lbb gecode
qcp-15-120-0 ext 0.05 0.02 0.03 0.14 0.64 0.02
qcp-15-120-1 ext 0.04 0.04 0.06 0.22 0.74 0.08
qcp-15-120-2 ext 0.08 0.02 0.05 0.16 0.74 454.53
qcp-15-120-3 ext 0.05 0.04 0.14 0.26 0.84 0.19
qcp-15-120-4 ext 0.20 0.02 0.02 0.33 0.65 5.50
qcp-15-120-5 ext 0.15 0.09 0.21 0.62 2.52 117.08
qcp-15-120-6 ext 0.04 0.02 0.01 0.17 1.01 38.01
qcp-15-120-7 ext 0.11 0.13 0.29 0.24 0.97 1.28
qcp-15-120-8 ext 0.05 0.10 0.04 0.18 0.76 6.70
qcp-15-120-9 ext 0.08 0.14 0.24 0.27 0.78 1685.44
qcp-15-120-10 ext 0.06 0.04 0.04 0.20 0.55 1044.80
qcp-15-120-11 ext 0.03 0.05 0.01 0.32 0.41 47.64
qcp-15-120-12 ext 0.03 0.01 0.02 0.04 0.41 862.29
qcp-15-120-13 ext 0.16 0.30 0.17 0.21 1.57 179.18
qcp-15-120-14 ext 0.02 0.01 0.01 0.01 0.62 2034.72
Arith mean 0.08 0.07 0.09 0.22 0.88 431.83
Geom mean 0.06 0.04 0.05 0.17 0.78 24.67

Table 2: QCP 25 × 25: user time

Benchmark Time(sec)
efd eb(bd) lfd lbd lbb

qcp-25-264-0 ext 114.07 65.56 149.88 85.89 242.73
qcp-25-264-1 ext 832.31 108.37 99.84 374.77 1346.06
qcp-25-264-2 ext 15.40 44.40 12.25 47.34 144.92
qcp-25-264-3 ext 542.61 273.36 442.57 532.47 1655.22
qcp-25-264-4 ext 265.00 268.84 24.87 418.33 1136.17
qcp-25-264-5 ext 108.60 146.36 341.25 158.62 4810.77
qcp-25-264-6 ext 255.60 185.53 130.06 127.91 871.80
qcp-25-264-7 ext 35.36 1.52 34.07 78.26 269.61
qcp-25-264-8 ext 9.52 48.36 81.10 171.35 998.53
qcp-25-264-9 ext 27.80 153.52 286.20 710.96 1043.52
qcp-25-264-10 ext 30.92 125.67 165.77 346.78 631.13
qcp-25-264-11 ext 0.14 0.06 0.10 0.17 7.16
qcp-25-264-12 ext 0.23 0.21 0.24 0.32 11.90
qcp-25-264-13 ext 0.36 0.29 0.34 0.34 9.83
qcp-25-264-14 ext 107.82 131.88 175.01 176.97 901.36
Arith mean 156.38 103.60 129.57 215.37 938.71
Geom mean 26.40 23.75 30.31 53.07 326.03

using only 44 values in the range [16 .. 792] of
777 possible values. We model the problem using
bounds propagators for |x − y| > k (see Exam-
ple 13), and model |x − y| = k using the bounds
propagators for |x−y| > k∧x−y 6 k∧y−x 6 k.

We compare the full integer representation,
non-continuous representation, bounds represen-
tation, and non-continuous bounds representation.
For the full integer representation we statically
add constraints ¬[[x = d]], d ∈ [16 .. 792] − F to
the SAT solver, while for the bounds representa-
tion we statically add the constraints ¬[[x 6 di]] ∨
[[x 6 di+1]] where di and di+1 are consecutive val-
ues in F . We also compare with Gecode using
reified constraints to represent |x − y| > k as
x − y > k ∨ y − x > k.

The results for the various modelling choices
are shown for: user time in Table 6, failures in
Table 7, and unit propagation executed in Ta-
ble 8. Clearly the non-continuous representations
are significantly better than the continuous rep-

Table 6: CELAR problems: user time

Prob
User Time(sec)

lfb lnb lbb lob gecode
scen01 285.22 13.67 104.65 9.37 > 400
scen02 2.03 0.16 0.86 0.11 > 400
scen03 39.90 3.16 20.06 2.19 > 400
scen04 2.17 0.16 0.88 0.10 0.46
scen05 2.25 0.17 0.96 0.10 0.34

resentations, they involve around 20× fewer vari-
ables. The failure results show that it is not the
results of a better search because there are fewer
Boolean variables to branch on, instead it is sim-
ply the overhead of more unit propagations to deal
with the larger number of variables.

This clearly shows the benefit of separation of
propagator implementation from variable repre-
sentation. The propagator is highly effective on

Table 3: QCP 25 × 25: conflicts (000s)

Benchmark Conflicts/Failures
efd eb(bd) lfd lbd lbb

qcp-25-264-0 ext 212 117 159 174 588
qcp-25-264-1 ext 1037 178 119 626 2498
qcp-25-264-2 ext 44 99 29 125 463
qcp-25-264-3 ext 814 393 399 892 3284
qcp-25-264-4 ext 417 405 42 760 2424
qcp-25-264-5 ext 210 256 325 345 7890
qcp-25-264-6 ext 397 282 161 273 1701
qcp-25-264-7 ext 84 9.6 60 178 631
qcp-25-264-8 ext 30 96 102 352 2142
qcp-25-264-9 ext 70 261 291 1301 2307
qcp-25-264-10 ext 76 226 182 709 1503
qcp-25-264-11 ext 0.2 0.2 0.3 0.7 11
qcp-25-264-12 ext 1.6 3.1 2.1 2.8 48
qcp-25-264-13 ext 4.1 4.1 3.9 3.1 31
qcp-25-264-14 ext 192 208 170 352 1832
Arith mean 239 169 136 406 1824
Geom mean 64 61 53 137 736

Table 4: Magic squares: user time

nT User Time(sec)
eb(bd) lfd lbd lbb lbr gecode

3F 0.16 0.00 0.00 0.00 0.00 0.00
3A * 0.00 0.00 0.00 0.00 0.00
4F 8.92 0.04 0.04 0.01 0.16 0.01
4A * 866.38 745.87 810.84 803.09 2.26
5F > 400 307.15 1.04 1.19 0.79 0.81
6F > 400 31.87 0.39 99.92 17.50 0.00
7F > 400 > 400 > 400 > 400 > 400 5.25

Table 7: CELAR problems: Conflicts/Failures

Prob
Conflicts/Failures

lfb lnb lbb lob gecode
scen01 5036 4542 4160 4247 —
scen02 202 127 180 261 —
scen03 3039 2380 2667 2553 —
scen04 7 6 2 1 31
scen05 17 22 36 24 74

Table 8: CELAR problems: unit propagations

Prob
Unit Propagations

lfb lnb lbb lob
scen01 177561515 13081789 133403108 7133763
scen02 1969516 183084 1732660 112612
scen03 43087573 3608960 38598246 1918102
scen04 628192 36289 304949 17368
scen05 901257 65516 1375927 47145

the non-continuous Boolean representations with-
out being modified.

Interestingly for these problems the disjunctive
propagator explained in Example 13 does not im-
prove upon the bounds propagator.

6 Related Work and Conclusion

The motivating earlier work for the lazy clause
generation approach was twofold.

The paper [5] described a hybrid binary deci-
sion diagram (BDD) and SAT solver for solving
problems involving set variables, which used the
SAT solver as nogood engine for a BDD propaga-
tion solver. The hybrid leaves control of search to
the BDD solver, and does not include integer vari-
ables. Lazy clause generation imbeds the propa-
gation engine in the SAT solver and puts the SAT
solver in charge of search. Set variables have only a
single possible Boolean representation so the mod-
elling choices we explore here do not arise.

The paper [14] explained how to statically en-
code linear arithmetic constraints into CNF (hence
eager modelling) using the propositions [[x 6 d]].
The approach is manifestly impractical when the
linear constraint involves a significant number of
variables (as illustrated by e.g. magic squares 5).
The lazy clause generation approach makes the en-
coding of linear arithmetic possible for large linear
constraints, and allows encoding of arbitrary prop-
agators.

There are propagation solvers which allow dif-
ferent representation of integers, in particular Min-
ion [8] and Gecode [3]. All representations either
support all atomic constraints or are restricted in
the propagators they can be used. The views ap-

Table 5: Magic squares: conflicts

nT
Conflicts/Failure

eb(bd) lfd lbd lbb lbr gecode
3F 15 3 9 14 12 6
3A * 31 34 43 34 36
4F 51 569 560 160 1326 892
4A * 1000776 898347 1050572 869813 235545
5F — 201531 7578 8149 3212 72227
6F — 53332 2991 137545 21644 27
7F — — — — — 481301

proach of Gecode [13] allows variables defined by
simple constraints to be seen as mappings from
atomic constraint to atomic constraints, and hence
has some similarity with the mapping idea of this
paper. For example a variable y = x+3 effectively
rewrites atomic constraint like x > 4 to y > 6 and
vice versa. It would be useful to include views in
the lazy clause generation solver, since it reduces
the number of Boolean variables required.

In this paper we examine the modelling choices
that arise when using the lazy clause generation
hybrid solving approach devised in [11]. We find
that the separation of choice of propagator from
Boolean variable representation leads to an in-
creased number of modelling choices. The di-
rect representation of non-continuous variables is
clearly advantageous, and there is some evidence
that the use of disjunctive propagators (domain
propagators for bounds variables) can improve
upon other modelling approaches.

References

[1] B. Cabon, S. de Givrey, L. Lobjois, T. Schiex,
and L.P. Warners. Radio link frequency as-
signment. Constraints, 4(1):78–89, 1999.

[2] CSP competition 2006.
http://cpai.ucc.ie/06/Competition.html.
[Jun07].

[3] GECODE. www.gecode.org. [Feb07].

[4] P. Hall. On representatives of subsets.
Journal of the London Mathematical Society,
10:26–30, 1935.

[5] P. Hawkins and P.J. Stuckey. A hybrid BDD
and SAT finite domain constraint solver. In
P. Van Hentenryck, editor, Proceedings of
the Practical Applications of Declarative Pro-
gramming, number 3819 in LNCS, pages 103–
117. Springer-Verlag, 2006.

[6] P. Laborie. Complete MCS-based search:
Application to resource constrained project
scheduling. In Proceedings IJCAI 2005, pages
181–186, 2005.

[7] Alan K. Mackworth. Consistency in networks
of relations. Artificial Intelligence, 8(1):99–
118, 1977.

[8] Minion. minion.sourceforge.net. [Feb07].

[9] MiniSat. www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/. [Dec06].

[10] R. Niewenhuis, A. Oliveras, and C. Tinelli.
Abstract DPLL and abstract DPLL modulo
theories. In LPAR’04, volume 3452 of LNAI,
pages 36–50, 2004.

[11] O. Ohrimenko, P.J. Stuckey, and M. Codish.
Propagation = lazy clause generation. In
C. Bessiere, editor, Proceedings of the 13th
International Conference on Principles and
Practice of Constraint Programming, LNCS,
page to appear. Springer-Verlag, 2007.

[12] J-C. Regin. A filtering algorithm for con-
straints of difference in CSPs. In Proceedings
of the Twelfth National Conference on Arti-
ficial Intelligence, volume 1, pages 362–367,
Seattle, WA, USA, 1994. AAAI Press.

[13] Guido Tack, Christian Schulte, and Gert
Smolka. Generating propagators for finite set
constraints. In Fréderic Benhamou, editor,
12th International Conference on Principles
and Practice of Constraint Programming, vol-
ume 4204 of Lecture Notes in Computer Sci-
ence, pages 575–589. Springer, 2006.

[14] N. Tamura, A. Taga, S. Kitagawa, and
M. Banbara. Compiling finite linear CSP to
SAT. In Proceedings of CP-2006, volume 4204
of LNCS, pages 590–603, 2006.

[15] W.J. van Hoeve. The alld-
ifferent constraint: a survey.
http://arxiv.org/abs/cs/0105015, 2001.

