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Abstract 

Tabu search is a meta-heuristic approach that is found to be 
useful in solving combinatorial optimization problems. We 
implement the adaptive memory features of tabu search to 
align multiple sequences. Adaptive memory helps the 
search process to avoid local optima and explores the 
solution space economically and effectively without getting 
trapped into cycles. The algorithm is further enhanced by 
introducing extended tabu search features such as 
intensification and diversification. It intensifies by bringing 
the search process to poorly aligned regions of an elite 
solution, and softly diversifies by moving from one poorly 
aligned region to another. The neighborhoods of a solution 
are generated stochastically and a consistency-based 
objective function is employed to measure its quality. The 
algorithm is tested with the datasets from BAliBASE 
benchmarking database. We have observed through 
experiments that for datasets comprising orphan sequences, 
divergent families and long internal insertions, tabu search 
generates better alignment as compared to other methods 
studied in this paper. The source code of our tabu search 
algorithm is available at http://www.bii.a-
star.edu.sg/~tariq/tabu/. 

Keywords:  tabu search, multiple sequence alignment, 
combinatorial optimizations 

1 Introduction 

The multiple sequence alignment is a well known tool in 
the field of molecular biology. It has wide range of 
applications that include finding the characteristic motifs 
among biological sequences, backtracking the evolutionary 
paths through sequence similarity, identifying the 
consensus sequence, and predicting the secondary and 
tertiary structures. 
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The methods capable of producing optimal alignment are 
already available but those are feasible only to small 
number of sequences with short length (Gupta, Kececioglu 
et al. 1995). With greater number of sequences, the problem 
of multiple sequence alignment is extremely hard to solve 
because of large number of conformations and enormous 
amount of computations required.  

Numerous techniques have been used to align multiple 
sequences (Notredame 2002). The most popular approach is 
the progressive alignment whereby the alignment is 
generated by aligning the two closely related sequences first 
and successively adding the remaining sequences one by 
one (Feng and Doolittle 1987). The progressive alignment 
method is based on greedy approach and the error 
introduced once during the alignment cannot be corrected 
subsequently. This, in the end might generate a local 
optimal solution. Nonetheless progressive alignment has the 
advantage of high performance in terms of speed. The other 
class of algorithms falls into the category of iterative 
algorithms. The iterative approach starts off with an initial 
alignment, and based on certain evaluation mechanism 
iteratively improves the alignment. Simulated annealing 
(Ishikawa, Toya et al. 1993, Kim, Pramanik et al. 1994)  
and genetic algorithm (Notredame and Higgins 1996, 
Zhang and Wong 1997) are two iterative optimization  
techniques that have been applied to align the multiple 
sequences. Other iterative approaches include hidden 
Markov model-based technique (Karplus and Hu 2001) and 
dead-end elimination procedure (Lukashin and Rosa 1999). 

Tabu search (TS) (Glover, Taillard et al. 1993, Golver and 
Laguna 1997) is an iterative heuristic technique that is 
found to be capable of solving combinatorial optimization 
problems. It has been vastly applied to solve the problems 
in a variety of fields. Some example problems are protein 
conformation of lattice model (Pardalos and Liu 1997), 
multiprocessor scheduling (Thesen 1998), redundancy 
allocation problem (Kulturel-Konak, Smith et al. 2003), 
network design (Crainic and Gendreau 2002), knapsack 
sharing problem (Hifi 2002), and feature selection (Zhang 
and Sun 2002). The essential idea underlying TS is its 
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deterministic approach that can escape local optima by 
using a list of prohibited solutions known as tabu list. A 
number of tabu criteria are employed to mark the solutions 
as tabu. Two commonly used tabu criteria are recency and 
frequency. The recency based tabu list is usually 
implemented as short-term memory structure, and it keeps 
track of solutions changed during the recent past. The 
frequency based tabu list, on the other hand is manifested as 
long-term memory structure and it tracks the frequency of 
each visited solution. Irrespective of short-term or long-
term memory structure for tabu list, TS normally avoids 
revisiting the solutions in the tabu list. This helps TS to 
escape entrapment into cycles and thus saves computational 
time. The tabu criteria can however be overridden in special 
cases specified by aspiration criteria. The aspiration criteria 
allow backtracking to already visited solutions if they can 
lead to a new path toward better solutions. Besides the basic 
notions of tabu list and aspiration criteria, TS has two other 
relatively sophisticated features, i.e. intensification and 
diversification. Intensification works by recording elite 
solutions along the search process and examining their 
neighborhood more thoroughly. Diversification on the other 
hand encourages exploration of unvisited regions that might 
have not been reached otherwise (Golver and Laguna 
1997). Diversification is performed by redirecting the 
search path to a solution entirely different from the ones 
that are already visited.  

We have designed and implemented an algorithm based on 
the tabu search to find the global alignment of multiple 
sequences. In this paper, we present the methods, the 
algorithm and the test results. The algorithm is used in 
conjunction with COFFEE objective function (Consistency 
based Objective Function For alignmEnt Evaluation) 
(Notredame, Holm et al. 1998), which measures the quality 
of the alignments produced during the search process. The 
design of our software system is flexible and can work with 
any other objective function. We performed the tests on the 
sequence datasets taken from BAliBASE (Benchmark 
Alignment dataBASE) (Thompson, Plewniak et al. 1999). 
In order to show the robustness of tabu search we executed 
the tests in a variety of arrangements such as tabu search vs. 
simple iterative search and aligned vs. unaligned initial 
solution. Tabu search vs. simple iterative search set of tests 
is meant to observe the impact of the tabu characteristics on 
the alignment quality whereas aligned vs. unaligned initial 
solution tests are aimed at studying the effect of initial 
solution on quality of the final solution. Our premise is that 
the algorithm should be robust enough to reach a near 
optimal alignment quite irrespective of the kind of initial 
solution. In later sections we will present to what extent the 
results agree with our premise. 

2 Methods 

Tabu search works by starting from an initial (current) 
solution, and iteratively explores the neighborhood of 
current solution by generating the moves. We implement 

the recency based tabu criteria that require the short-term 
memory structure. In each iteration, the moves are 
evaluated through the Objective Function (OF) and the best 
move, provided it is not a tabu move is selected and applied 
to the current solution. This produces a new current solution 
for the next iteration. The applied move is added to the tabu 
list and same move is not allowed for a specified number of 
iteration called tabu tenure. The tenure is decremented for 
all the moves in tabu list in every iteration, and a move is 
removed from the tabu list once its tabu tenure hits zero. 
We have enforced an aspiration criterion that permits a tabu 
move to be taken if OF value of the move is the greatest of 
all those moves observed previously in the search process. 
We believe that overriding tabu criteria in this way might 
lead to a new path toward better solutions. Our algorithm 
runs in two phases. First phase guides the search process 
iteratively to the point where the solution stabilizes i.e. no 
improvement in the quality of solution is seen for a 
specified number of iterations. At this point the search 
enters into second phase, which carries out intensification 
and diversification. 

Intensification and diversification strategies are 
incorporated by recording the elite solutions, which are 
actually the best solutions found in each iteration. While in 
intensification and diversification mode, the algorithm 
intelligently explores the neighborhood of elite solutions. It 
work by identifying the attractive regions of elite solution 
and searches them thoroughly. The termination condition of 
the algorithm is based on a set of heuristics. Essentially the 
algorithm stops when the intensification and diversification 
strategies fail to identify new attractive regions and the 
solution stabilizes too. Figure 1 summarizes our tabu search 
algorithm for multiple sequence alignment.  

2.1 Initial solution 

The generation of an initial solution is an important step 
towards getting a final improved alignment. A good initial 
solution can effectively converge faster and hence cut the 
computational cost. We tested the algorithm with two types 
of initial solutions. 

2.1.1 Unaligned initial solution 

Since the algorithm has no mechanism of introducing new 
gaps during the iterative search, the initial solution is 
formed by inserting fixed number of gaps into the 
sequences at regular intervals. The insertion of gaps this 
way adds no alignment value to the sequences. Simple 
heuristic is used to identify the best length of gaps and the 
intervals. One of the heuristics is to keep the length of gaps 
proportional to the length of the sequences. The sequences 
that are shorter in length are padded with extra gaps to 
make them equal in length. 

Figure 2(a) shows an example of the unaligned initial 
solution where a patch of gaps of length 3 is inserted at the 
regular intervals of size 10.
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Figure 1. The tabu search algorithm for multiple sequence alignment. 

 

2.1.2 Aligned initial solution 

Aligned initial solution is generated by computing the 
progressive alignment using an algorithm similar to the one 
proposed by Feng and Doolittle (Feng and Doolittle 1987). 
Figure 2(b) shows an example of the aligned initial 
solution. The steps to construct the aligned initial solution 
are as follows: 

1. Calculate a distance matrix of all N (N-1)/2 
pairwise distances for the N input sequences by a 
global alignment algorithm, for example, the 
Needleman-Wunsch algorithm (Needleman and 
Wunsch 1970).  

2. Construct a guide tree according to the distance 
matrix by linking the least distant pairs of 
sequences followed by successively more distant 
pairs. 

3. Align each node of the guide tree in the order that 
it is added to the tree until all sequences have been 
aligned. 

 

 

 

Initialization:  Generate initial solution Si. 

  Set the current solution Sc, and the elite solution Se to Si. 

  Initialize tabu list TL to 0. 

  Initialize candidate move list ML to 0. 

  Set the tabu tenure to an arbitrary number. 

  Define aspiration criteria. 

 

Generation: Generate single sequence and block moves on solution Sc and add to candidate move list ML 

Evaluation:  Evaluate COFFEE objective function for each move in ML. 

Selection: Select the best move from ML. 

  if the selected move is not in TL, apply the move; 

  else if the selected move is in TL and aspiration criteria is met, apply the move; 

  else remove the selected move from ML and go to Selection. 

   

  Update the tabu list. 

Establish and update the tabu tenure. 

  Update the long-term memory for elite solution Se with the best solution found so far. 

  Repeat the steps Generation, Evaluation and Selection until solution Sc stabilizes. 

 

Intensification and 

Diversification:  Operate on solution Se to identify all the poorly aligned regions. 

Diversify from one poorly aligned region to another and repeat the steps Generation,
Evaluation and Selection on each poorly aligned region until the region stabilizes. 

  Repeat Intensification and Diversification until the solution Se stabilizes. 

   

End:  Se holds the final solution. 
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Figure 2.  (a). Unaligned initial solution. (b) aligned 
initial solution. 

 

2.2 Objective function 

A global objective function is used to measure the overall 
alignment quality and to evaluate candidate moves that are 
to be committed.  The objective function used in this paper 
is COFFEE (Notredame, Holm et al. 1998).  COFFEE 
works by first generating the pairwise library of the 
sequences in the alignment and then it calculates the level 
of identity between the current multiple alignment and the 
pairwise library. The global score measuring the quality of 
the alignment is computed by the following formula. 

 Global Objective Score = 

1

1 1

1

1 1

* ( )

*

N N

ij ij
i j i

N N

ij
i j i

W Score A

W Len

−

= = +
−

= = +

∑∑

∑∑
 

Where N is the number of sequences; Len is the length of 
the multiple alignment; Wij is the percent identity between 
the two aligned sequences Si and Sj; Aij is the pairwise 
projection of sequences Si and Sj obtained from the multiple 
alignment; and Score(Aij) is the overall level of identity 
between Aij and the corresponding pairwise alignment.   

2.3 Move strategies 

The essential part of our alignment algorithm is the 
movement of gaps in sequences in such a way that it does 
not alter the original order of amino acids in the protein 
sequences. The algorithm performs two kinds of moves: 
single sequence moves, and block moves.  

2.3.1 Single sequence moves 

These kinds of moves involve moving a patch of gap(s) of 
arbitrary length only in one sequence while keeping the 
remaining sequences in the alignment isolated. The patch of 
gap(s) as well its new location in the sequence is chosen 

randomly. Figure 3(a) shows a single sequence move where 
a patch two gaps in the first sequence is moved to its new 
random position on the right and the remaining sequences 
in the alignment stay unaffected.  

2.3.2 Block moves 

The block moves relocate a rectangle of gaps involving 
more than one sequence from one position to another in the 
alignment. The width of the block of gaps can be as low as 
1 while the height of the block should be at least 2. A gap 
block with height 1 is actually a single sequence move. The 
rationale to maintain single sequence moves separate from 
block moves is that in most of the cases block moves stand 
greater chances to be selected as the best move. This is due 
to the fact that block moves affect larger number of 
sequences and can improve the alignment greatly. 
Generation of excessive single sequence moves can 
unnecessarily waste the CPU time, as each candidate move 
must be evaluated through the objective function. By 
distinguishing the single sequence moves from block 
moves, we can control the generation of each type of 
moves. The Figure 3(b) shows an example of block move 
where a block of gaps of width 2 and height 3 is moved to 
the left to generate a new alignment. 

Our implementation of tabu search offers different levels of 
move generation. Theoretically in each iteration, we can 
take as many moves as the number of gaps combinations 
multiplied by the combined length of all sequences. 
However, the computational resources required for this 
monumental task are huge and this is almost impractical for 
large number of sequences in the alignment. We have to 
resort to such a level of move generation that helps to 
complete the alignment process in reasonable time. In a 
typical arrangement, in each iteration the algorithm 
generates one single sequence move for each sequence and 
the block moves comprising every possible block of gaps in 
the alignment.  

The moves are generated is a stochastic fashion. In case of 
single sequence moves, the patch of gap(s) as well as the its 
new location in the sequence are determined randomly. For 
block moves, every rectangular block of gaps is moved to 
some random location, either left or right to its current 
position 

2.4 Intensification and diversification 

We propose an improvement in the basic tabu search 
algorithm by introducing intensification and diversification 
strategies. Intensification strategies are based on modifying 
the choice rules that encourage the move combinations and 
solution features that have been historically found good 
(Golver and Laguna 1997). Diversification strategies on the 
other hand encourage the search process to examine 
unvisited regions and generate solutions that are 
significantly different from those already visited. 

 

b) 

--LKPKILTASRKIKIKAGFTHNLEVD- 

H-VKPYFTKTILDMDVVEGSAARFDCKV 

RVLQVDIVPSQGEISVGESKFFLCQV-- 

--AVSKEITNA--LETWGALGQDINLD- 

---FKIETTPE--SRYLAQIGDSVSL—- 

a) 

---LKPKILTASR---KIKIKAGFTH---NLEVD--

---HVKPYFTKTI---LDMDVVEGSA---ARFDCKV

---RVLQVDIVPS---QGEISVGESK---FFLCQV-

---AVSKEITNAL---ETWGALGQDI---NLD----

---FKIETTPESR---YLAQIGDSVS---L------



 5

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Single sequence move. (b) block move. 

 

In this study, we devise a scheme that combines the 
intensification and diversification strategies. The scheme 
works by recording elite solutions along the search process. 
The elite solutions are the best solutions found in each 
iteration. Intensification strategy starts off once the basic 
tabu search strategies are unable to improve the quality of 
alignment any further. The neighborhoods of elite solutions 
are assumed to be containing attractive regions. Working on 
those attractive regions could lead to better solutions that 
are not previously observed. The tabu search algorithm 
processes elite solutions and seperates the poorly aligned 
regions from well aligned regions. The concepts of 
separation is similar to the one used by RASCAL 
(Thompson, Thierry et al. 2003). We implement a local 
objective function that measures the quality of any local 
region within the entire multiple alignment. Figure 4 shows 
an isolation of well aligned regions from poorly aligned 
regions. The poorly aligned regions are perceived as the 
attractive regions in the search space that need to be 
intensified upon. The approach has the dual advantages. It 
not only saves the computational time by narrowing down 
the search space to poorly aligned regions but it also helps 
to keep the well aligned regions intact.  

The algorithm implements diversification strategies by 
softly diversifying from one poorly aligned region to 

another one. The whole process of intensification and 
diversification is repeated a number of times until no new 
poorly aligned regions are identified, and quality of the 
solution could not be improved any further. 

3 Results and discussion 

The tabu search algorithm is implemented in SUN Java 
language and tested on a 1.4GHz Pentium III computer. The 
source code is available at http://www.bii.a-
star.edu.sg/~tariq/tabu/. The platform independent nature of 
Java language enables the tabu search software to run on 
any operating system for which the Java virtual machine is 
available. We analyzed the results of tabu search by 
comparing the alignments produced by our algorithm with 
those obtained through other alignment techniques. The 
sequences samples are taken from BAliBASE (Benchmark 
Alignment dataBASE) (Bahr, Thompson et al. 2001, 
Thompson, Plewniak et al. 1999), which is a database of 
manually refined multiple sequence alignments categorized 
by sequence length, similarity and the presence of insertion 
and N/C-terminal extensions. The database provides the 
annotation files that mark the core blocks where sequences 
should be aligned together. The database is divided into five 
reference sets with a total of 139 datasets. Each dataset 
consists of protein sequences as few as 4 and as many as 27.

 

 

 

 

 

 

VR DGYIADDKDCAYFC ----GR NAYCDEECK K----GAESGKCWYA-GQYGN ACWCYKLPDW VP-IKQKVSGKC---N 

-K DGYPVEYDNCAYIC W-N-YD NAYCDKLCK DK---KADSGYCYWV----HI LCYCYGLPDS EP-TKTNGKCKSGK-K 

R- EGYPADSKGCKITC F--LTA AGYCNTECT LK---KGSSGYCA------WP ACYCYGLPES VK-IWTSETNKC---- 

K- DGYLVDAKGCKKNC Y-KLGK NDYCNRECR MKHR-GGSYGYCY------GF GCYCEGLSDS TP-TWPLPNKTCSG-K 

-- DGYIRKRDGCKLSC ---LFG NEGCNKECK SY---GGSYGYCWT----WGL ACWCEGLPDE K--TWKSETNTC---G 

Figure 4: An elite solution isolating well aligned regions from poorly aligned regions. The parts of the sequences inside brackets
indicate the attractive regions that are poorly aligned. 

a) 

VRDGYIADDKDCAY---KGAESGKCW 

-KDGYPVEYDNCAYDKKAD--SGYCY 

-REGYPADSKGCKILKKGS--SGYC- 

-KDGYLVDAKGCKKRMKHR--GGSYG 

--DGYIRKRDGCKLSYGGSY-GYCWG 

 

 

VRDGYIADDKDCAY-KGA--ESGKCW 

-KDGYPVEYDNCAYDKKAD--SGYCY 

-REGYPADSKGCKILKKGS--SGYC- 

-KDGYLVDAKGCKKRMKHR--GGSYG 

--DGYIRKRDGCKLSYGGSY-GYCWG 

b) 

VRDGYIADDKDCAY---KGAESGKCW 

-KDGYPVEYDNCAYDKKAD--SGYCY 

-REGYPADSKGCKILKKGS--SGYC- 

-KDGYLVDAKGCKKRMKHR--GGSYG 

--DGYIRKRDGCKLSYGGSYYGYCWG 

 

 

VRDGYIADDKDCAY---KGAESGKCW 

---KDGYPVEYDNCAYDKKADSGYCY 

---REGYPADSKGCKILKKGSSGYC- 

---KDGYLVDAKGCKKRMKHRGGSYG 

--DGYIRKRDGCKLSYGGSYYGYCWG 
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The description of each reference set is as follows, 

Reference 1: equidistant sequences of similar length 

• V1: <25% identity 

• V2: 20-40% identity 

• V3: >35% identity 

Reference 2: family vs. orphans 

Reference 3: equidistant divergent families 

Reference 4: N/C-terminal extensions 

Reference 5: internal insertions 

A separate program is used to compute BAliBASE score, 
which is the percentage of pairs of amino acids that occurs 
in reference alignments (Thompson, Plewniak et al. 1999). 
The BAliBASE scores computed on alignments generated 
by tabu search are compared with similar scores obtained 
from other popular multiple sequence alignment programs 
including PRRP (Gotoh 1996), ClsustalW (Thompson, 
Higgins et al. 1994), SAGA (Notredame and Higgins 
1996), DiAlign (Morgenstern, Dress et al. 1996), 
ML_PIMA (Smith and Smith 1992), MultiAlign (Corpet 
1988) and PILEUP8 (GCG Wisconsin Package 10.3 
Accelrys Inc. San Diego, CA USA). Except for SAGA and 
ClustalW, the BAliBASE scores for above mentioned 
alignment techniques are taken from BAliBASE. The 
scores for SAGA and ClustalW are calculated by executing 
their respective software on our systems. 

We analyzed the tabu search results from three aspects. The 
very first set of tests was aimed at to verify the robustness 
of our algorithm. We ran an extensive set of tests on all the 
139 datasets provided by BAliBASE, and computed the 

scores. The scores using tabu search and other alignment 
techniques are shown in Table 1. The results are obtained 
using aligned initial solutions as mentioned previously. 
Except for those of tabu search, all other scores are taken 
from BAliBASE. 

The average tabu search score for the reference set 1 is 
slightly below the scores produced by other techniques. 
Reference set 1 consists of equidistant sequences of similar 
length. For the rest of the reference sets, tabu search 
performs relatively better as compared to other methods. In 
reference set 2 comprising few orphan sequences within a 
large number of sequences belonging to the same family, 
and reference set 3 consisting of families of equidistant 
divergent sequences, tabu search performs better than most 
of the other techniques.  In reference set 4 that contains 
sequences having N/C-terminal extensions, the performance 
of tabu search is comparable to the other methods. The 
reference set 5 having sequences with internal insertions, 
tabu search outperforms all other methods. 

The standard deviation value is one of the lowest for tabu 
search, which shows its consistent performance across 
different reference sets. The reference sets ranging from 2 
to 5 contain test cases with large number of sequences. 
Tabu search is able to produce better results than most of 
the other techniques in these categories, which shows that 
tabu search can work well with large problem size.  

In order to prove objectively that tabu characteristics in the 
tabu search algorithm is of significance, we performed 
another set of tests where the results of tabu search are 
compared with a simple iterative search algorithm. The 
simple iterative search algorithm works in a similar fashion 
as tabu search does, except that it does not implement the 
features like tabu list, tabu tenure, aspiration and 
intensification/diversification. It searches for the solution

 

Table 1. BAliBASE score compares tabu search with other methods on BAliBASE benchmark database. 

Reference set Ntcase PRRP ClustalW SAGA DIALIGN SB_PIMA ML_PIMA MULTALIGN PILEUP8 Tabu search 

         V1)  23 0.692 0.615 0.546 0.487 0.536 0.504 0.559 0.571 0.472 

         V2)  30 0.935 0.933 0.952 0.893 0.910 0.909 0.927 0.911 0.875 

         V3) 28 0.968 0.974 0.977 0.922 0.961 0.955 0.960 0.962 0.932 

Ref1 Average 81 0.865 0.841 0.825 0.767 0.802 0.789 0.815 0.815 0.760 

Ref2 Average 23 0.541 0.945 0.954 0.384 0.379 0.371 0.517 0.429 0.889 

Ref3 Average 11 0.532 0.723 0.777 0.314 0.267 0.372 0.303 0.323 0.715 

Ref4 Average 12 0.323 0.821 0.780 0.853 0.794 0.705 0.292 0.710 0.773 

Ref5 Average 12 0.700 0.858 0.868 0.836 0.508 0.572 0.627 0.639 0.905 

StDev   0.203 0.080 0.073 0.260 0.242 0.191 0.222 0.203 0.084 

W/Average   0.731 0.727 0.708 0.693 0.675 0.673 0.675 0.698 0.803 

Average   0.592 0.838 0.841 0.631 0.550 0.562 0.511 0.583 0.808 
Ntcase is number of test cases; (V1, V2, V3) are sub-categories inside Ref1. The cells contain the average BAliBASE SP (Sum of pairs) score for each 
reference set. StDev is standard deviation of the scores; W/Average is the weighted average of the scores. The data for PRRP, DIALIGN, SB_PIMA, 
ML_PIMA, MULTALIGN and PILEUP8 are taken from the web site of BAliBASE (http://wwwigbmc.u-trasbg.fr/BioInfo/BAliBASE/prog_scores.html). 
The scores for ClustalW, SAGA and Tabu search are collected by the authors using respective software. 
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Table 2(a). Tabu search vs. Iterative search for easy to align sequences. 

Test case Tabu search  Simple iterative search  Tabu vs. simple 
(%) 

  Score CPU time Score CPU time Score 
1csy_ref1 0.805 20 0.767 37 5 

1ycc_ref1 0.927 12 0.879 10 5 

1pgtA_ref1 0.948 13 0.590 148 38 

1ldg_ref1 0.908 16 0.754 258 17 

1mrj_ref1 0.994 51 0.939 90 6 

1pii_ref1 0.875 36 0.718 189 18 

2cba_ref1 0.843 224 0.715 653 15 

3grs_ref2 0.842 8367 0.842 79184 0 

1idy_ref3 0.946 1798 0.882 1978 7 

1pysA_ref4 0.500 105 0.500 370 0 

kinase2_ref5 0.793 14490 0.787 39490 1 

1pysA_ref5 0.560 3154 0.522 7420 7 

Average 0.828 2357 0.741 10819 11 

Score is the BAliBASE sum of pair score. CPU time is in seconds. Tabu vs. Simple (%) is percentage the tabu search score is better 
than simple search. 

Table 2(b). Tabu search vs. Iterative search for hard to align sequences. 

Test case Tabu search Simple iterative search Tabu vs. simple 
(%) 

 Score CPU time Score CPU time Score 
1idy_ref1 0.419 5 0.208 4 50 

1tgxA_ref1 0.712 10 0.700 18 2 

451c_ref1 0.62 11 0.543 14 12 

1ton_ref1 0.719 50 0.633 476 12 

2pia_ref1 0.648 46 0.333 376 49 

1havA_ref1 0.359 79 0.118 373 67 

2hsdA_ref1 0.654 30 0.273 182 58 

kinase_ref1 0.749 154 0.403 885 46 

1gdoA_ref1 0.823 12 0.609 180 26 

Average 0.634 44 0.424 279 33 

Score is the BAliBASE sum of pair score. CPU time is in seconds. Tabu vs. Simple (%) is percentage the tabu search score is better 
than simple search. 

iteratively using COFFEE as objective function and 
terminates when there is no improvement in quality of the 
alignment for a specified number of iterations. 

The results of the comparison between tabu search and 
simple iterative search are shown in Table 2(a) and 2(b). 
We divided the datasets into two categories. One category 
comprises the test cases that are easy to align while the 
other contains the test cases that are hard to align. The 
perception of a test case to be easy or hard to align is based 
on BAliBASE score of the alignment produced by tabu 
search in the first set of tests. The low BAliBASE score 

indicates the test case to be hard to align while high 
BAliBASE score suggests the test case to be easy to align. 

It is obvious to notice from Table 2 (a) and 2(b) that tabu 
search produces alignments of much better quality than that 
of simple iterative search in both the specified categories. In 
case of easy to align test cases, tabu search performs on 
average 11% better than simple iterative search. For hard to 
align test cases tabu search performs even better i.e. 
alignments score on average is 33% greater than that of 
generated by simple iterative search.
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Table 3(a). Alignment scores for small datasets using aligned vs. unaligned initial solutions. 

Test case Nseq Len Aligned initial solution Unaligned initial solution 

     Initial 
score 

Final 
score 

Initial vs. 
final (%) 

CPU 
time  

Initial 
score 

Final 
score 

Initial vs. 
final (%) 

CPU 
time  

1aboA_ref1 5 63 0.442 0.482 9 3 0.142 0.458 223 15 

1csp_ref1 5 67 0.885 0.935 6 227 0.136 0.913 571 299 

1wit_ref1 5 96 0.381 0.827 117 7 0.083 0.335 304 52 

1tgxA_ref1 4 59 0.692 0.712 3 10 0.306 0.724 137 12 

1ad2_ref1 4 207 0.872 0.981 13 13 0.023 0.930 3943 167 

1aym3_ref1 4 233 0.875 0.923 5 249 0.119 0.880 639 166 

1gdoA_ref1 4 247 0.609 0.823 35 11 0.187 0.614 228 295 

1ldg_ref1 4 310 0.707 0.908 28 16 0.062 0.863 1292 258 

1amk_ref1 5 248 0.958 0.993 4 498 0.172 0.928 440 513 

1led_ref1 4 236 0.846 0.851 1 329 0.110 0.922 738 261 

1cpt_ref1 4 401 0.453 0.755 67 49 0.027 0.296 996 442 

1dlc_ref1 5 583 0.797 0.928 16 196 0.079 0.817 934 1221 

1fieA_ref1 5 670 0.754 0.972 29 1004 0.074 0.676 814 1130 

1ad3_ref1 4 436 0.947 0.981 4 446 0.226 0.983 335 345 

Average 4 275 0.730 0.862 24 218 0.125 0.739 828 370 

Nseq is number of sequences in each test case. Len is the average length of the sequences in the test case. Initial and Final Score are 
the BAliBASE sum of pair scores. Initial vs. Final (%) is the percentage improvement from initial to final alignment. CPU time is in 
seconds. 

Table 3(b). Alignment scores for large datasets using aligned vs. unaligned initial solutions. 

Test case NSeq Len Aligned initial solution  Unaligned initial solution  

   Initial 
score 

Final 
score 

Initial vs. 
final (%) 

CPU 
time 

Initial 
score 

Final 
score 

Initial vs. 
final (%) 

CPU 
time 

1cpt_ref2 15 383 0.628 0.845 35 20002 0.043 0.071 65 50882 

1csy_ref2 19 83 0.752 0.767 2 8732 0.062 0.111 79 5538 

1havA_ref2 16 218 0.769 0.898 17 34084 0.069 0.189 174 22857 

1idy_ref2 19 57 0.928 0.981 6 3530 0.584 0.694 19 2932 

1idy_ref3 27 54 0.534 0.946 77 1798 0.124 0.237 91 4210 

1ubi_ref3 22 82 0.234 0.599 156 3636 0.201 0.226 12 11265 

1wit_ref3 19 92 0.606 0.803 33 15396 0.113 0.224 98 3923 

1lkl_ref4 8 250 0.743 0.750 1 1304 0.002 0.004 100 10859 

2cba_ref5 8 258 0.791 0.887 12 2236 0.054 0.104 93 16360 

1thm_ref5 11 194 0.794 0.811 2 6447 0.044 0.113 157 15090 

Average 16 167 0.678 0.829 34 9717 0.130 0.197 89 14392 

Nseq is number of sequences in each test case. Len is the average length of the sequences in the test case. Initial and Final Score are 
the BAliBASE sum of pair scores. Initial vs. Final (%) is the percentage improvement from initial to final alignment. CPU time is in 
seconds. 
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Table 2 also shows that tabu search converges to a solution 
faster as compared to simple iterative search. In both the 
given categories, time taken by simple iterative search is 
about five times of the time consumed by tabu search to 
converge. 

The third set of tests is meant to observe the impact of 
initial solution on quality of the final alignment produced 
by tabu search. Two types of initial solutions, aligned and 
unaligned were considered for these tests. As mentioned in 
the previous sections, unaligned initial solution is formed 
by simply inserting fixed number of gaps at regular 
intervals in the initial sequences while aligned initial 
solution is obtained by a method similar to progressive 
alignment. The test cases are divided into two categories 
based on their size. The size is determined by the number 
and the length of sequences in test cases. The results are 
shown in Tables 3(a) and 3(b). 

For small datasets having on average 4 sequences and the 
length 275, tabu search is able to achieve alignment of good 
quality even when the sequences are not pre-aligned. It 
works as a huge quality improver for small datasets i.e. the 
improvement on average is more than 800%. 

For large datasets that contain on average 16 sequences, 
tabu search falls short of producing a good alignment when 
the initial solutions are totally unaligned. The improvement 
is only around 90%, which is much less than what is 
required to produce a close to good alignment.  

Table 3 also lists the CPU time for various datasets. The 
CPU time depends not only on the size of the data but also 
on its complexity, i.e. the number of gaps and the similarity 
of the sequences. On average the CPU time for test cases 
with 4 sequences is about 3 minutes whereas for tests with 
16 sequences is about 160 minutes. In both categories of 
small and large datasets, CPU time is larger when working 
with unaligned initial solution. However the difference is 
only of the order of around 1.5. 

4 Conclusion 

The objective of this study is to validate the effectiveness of 
tabu search and evaluate it as compared to other commonly 
used techniques for multiple sequence alignment. We have 
observed through experiments that for test cases comprising 
orphan sequences, divergent families and N/C-terminal 
extensions, tabu search performs better that most of the 
other methods studied in this paper. However, for long 
internal insertions, the alignments generated by tabu search 
are the best of all.  

We have demonstrated that tabu characteristics of the tabu 
search help it to find such good solutions that are otherwise 
hard to be reached. Experiments show that tabu search is 
not only good at finding solutions for test cases that are 
easy to align, but it also performs well for the test cases that 
are relatively hard to align. Its performance with latter is 
found even more convincing.  

The initial solution has proven to be of critical importance 
when the sequences are aligned with tabu search. For 
smaller test cases with 4 to 5 sequences of average length 
275, tabu search is able to improve the quality of an 
unaligned initial solution up to the level, which is 
comparable with the quality of alignment generated from 
pre-aligned initial solution. However, this phenomenon is 
not observed for larger test cases of size averaging at 
around 16. For larger test cases, tabu search is not able to 
find a good solution when started from a totally unaligned 
initial solution.  

The major cause of lower alignment quality for larger test 
cases is the huge neighborhood size, and it takes 
enormously long time to evaluate all the combinations and 
conformations.  In order to complete the search in a 
reasonable time the algorithm works only on a subset of 
each neighborhood. Because tabu search works well for 
smaller test cases with limited neighborhood size, this leads 
to the conclusion that given the computational time and 
resources tabu search can find near optimal solutions for 
larger test cases too. 

There is still vast room for improvement in the tabu search 
software. Objective function (OF) is one of the areas that 
can be improved upon. It’s the OF that leads the search 
process to a good or bad alignment. If the OF is not a good 
measure of multiple alignment quality, the alignment might 
not be the optimal. We use consistency based OF that 
checks the level of identity of a multiple alignment with 
corresponding pairwise sequence library. Nonetheless our 
software is compatible with any user-defined OF, such as 
sum-of-pairs (Carrillo and Lipman 1988) and NorMD 
(Thompson, Plewniak et al. 2001).  

Tabu search comes with a number of parameters that can be 
experimented with to observe the respective effect on the 
search process. The parameters like tabu list size, tabu 
tenure, termination criteria, and neighborhood size can have 
a direct influence on the quality of the final alignment. 

With larger number of sequences in test cases, the problem 
of multiple alignment turns into a large-scale combinatorial 
problem. A huge number of solution combinations need to 
be evaluated that causes the software to take long time to 
generate the alignment. This problem can be overcome by 
introducing parallel computing in the algorithm. 
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