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Abstract

Two important recent trends in military and civilian commu-
nications have been the increasing tendency to base operations
around an internal network, and the increasing threats to com-
munications infrastructure. This combination of factors makes
it important to study the robustness of network topologies. We
use graph-theoretic concepts of connectivity to do this, and ar-
gue that node connectivity is the most useful such measure.
We examine the relationship between node connectivity and
network symmetry, and describe two conditions which robust
networks should satisfy. To assist with the process of designing
robust networks, we have developed a powerful network design
and analysis tool called CAVALIER, which we briefly describe.

Keywords: Network Centric Warfare, Network ro-
bustness, Graph connectivity.

1 Introduction

There have been two important recent trends in both
military and civilian communications. The first is
network-centric operation, which bases organizational
activity strongly around an internal network. In the
civilian sphere, this is called e-commerce (and, in
more recent developments, m-commerce). In the mil-
itary sphere, this is called Network Centric Warfare
(NCW). To quote Alberts et al. (1999):

“We define NCW as an information superiority-
enabled concept of operations that generates increased
combat power by networking sensors, decision makers,
and shooters to achieve shared awareness, increased
speed of command, higher tempo of operations, greater
lethality, increased survivability, and a degree of self-
synchronization. In essence, NCW translates infor-
mation superiority into combat power by effectively
linking knowledgeable entities in the battlespace.”

The second trend is the increasing threat to com-
munications infrastructure. In the civilian sphere, the
threat is from terrorist attacks, while in the military
sphere this comes from the increasing tendency to
view communications networks as high-value targets.

The first trend makes networks more important,
while the second makes them more vulnerable. This
dilemma makes it critically important to address net-
work robustness, i.e. the continued ability of the net-
work to perform its function in the face of attack.

Designers of communications networks must there-
fore assume that networks will be attacked, and that
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some of these attacks will result in damage. Robust
networks will continue functioning in spite of such
damage and outages (up to some level of damage).

In this paper we specifically focus on the robust-
ness of the network topology. We use graph theory to
investigate which network topologies are the most ro-
bust. Graph theory provides two different measures
of connectivity which are possible ways of measuring
robustness, and we argue that node connectivity is the
most useful of these. We examine the relationship be-
tween node connectivity and the degree of symmetry
of the network, and we suggest that it is important
for robust networks to satisfy two conditions which
we call node-similarity and optimal connectivity. We
investigate the relationship between these conditions,
and describe a number of ways to design robust net-
works which satisfy them. We explore Cayley graphs,
random graphs, scale-free networks, and several ar-
eas of mathematics that shed light on robust network
design.

To assist with the process of designing robust net-
works, we have developed a powerful network design
and analysis tool called CAVALIER.

2 Graph Connectivity

A natural way to model the topology of a communica-
tions network is as an (undirected) graph consisting of
nodes and links. For the purposes of analysing topol-
ogy, we ignore any variation in the type of links. Ro-
bustness of the topology will come from the presence
of alternate paths, which ensure that communication
remains possible in spite of damage to the network.

If a graph has n nodes, then we say that the graph
has size n. If a node has d outgoing links, we say that
the node has degree d. The minimum degree dmin of
the graph is the smallest of the node degrees, and the
maximum degree dmax of the graph is the largest of
the node degrees.

Definition 2.1 There are two concepts of connectiv-
ity for a graph which can be used to model network
robustness:

(i) the node connectivity κ is the smallest number of
nodes whose removal results in a disconnected or
single-node graph.

(ii) the link connectivity λ is the smallest number
of links whose removal results in a disconnected
graph.

For example, Kn, the completely connected graph
of size n, with each node connected to the n−1 others,
has κ = λ = n − 1.

When modelling network robustness in the face of
equipment failures (particularly for civilian networks)
we would expect link connectivity to be the most use-
ful. Random equipment failures, by affecting cables,



interfaces, circuit boards, etc. would primarily put
links out of action. On the other hand, when mod-
elling network robustness of military networks in the
face of combat (and indeed also of civilian networks
in the face of terrorist activity), the major threat is
the destruction of entire nodes (usually by explosive
means). In this case, we would expect node connec-
tivity to be the most useful in modelling robustness.
In related work (Dekker 2004) we describe a simple
combat simulation experiment which shows that this
is, in fact, the case.

The following well-known theorem, due to Menger,
provides an alternative formulation of node and link
connectivity:

Theorem 2.2 For any graph:

(i) the node connectivity κ is the smallest number of
node-distinct paths between any two nodes.

(ii) the link connectivity λ is the smallest number of
link-distinct paths between any two nodes.

Proof. Corollaries 4.2 and 4.3 of Gibbons (1985) �

These connectivity measures can be calculated us-
ing the maximum-flow algorithm (Gibbons 1985), and
we have developed a network design and analysis tool
called CAVALIER which incorporates these calcula-
tions.

The CAVALIER tool also performs statistical and
graph-theoretical network analyses, 2-dimensional
and 3-dimensional visualisation (Dekker 2001), and
has a simulation capability to assess network perfor-
mance (Dekker 2003b). All the figures in this paper
were produced using the CAVALIER tool.

There are well-known bounds on κ and λ:

Theorem 2.3 For any graph, κ ≤ λ ≤ dmin.

Proof. Due to Whitney: see Theorem 5.1 of Harary
(1969) or Theorem 2.9 of Gibbons (1985). �

If κ = λ = dmin for some graph, we say that the
graph is optimally connected, since the node and link
connectivities are as high as possible, i.e. the network
is as robust as it could be, given the value of dmin. In
Section 3, we consider several strategies for designing
optimally connected graphs.

3 Optimal Connectivity

Having discussed the importance of connectivity in
modelling robustness of a network topology, we now
review some results from the graph-theoretic litera-
ture relating connectivity of a graph to the degree of
symmetry, and we describe several cases of optimally
connected graphs, i.e. graphs with κ = λ = dmin.

Definition 3.1 The following concepts of symmetry
will be used:

(i) We say that a graph is regular if every node has
the same degree; in this case we also speak of the
degree d of the graph.

(ii) An automorphism of a graph is a permutation π
of the nodes which preserves links, i.e. a — b is a
link if and only if πa — πb is a link.

(iii) A graph is node-similar (more usually, vertex-
transitive) if for any two nodes a and b there is
an automorphism π such that πa = b.

(iv) A graph is symmetric if for any two links a — b
and x— y there is an automorphism π such that
πa = x and πb = y.

(b)(a)

Figure 1: Two Regular Graphs

Our CAVALIER tool includes a module to enumer-
ate all the automorphisms of a graph, and to check
the conditions of node-similarity and symmetry (for
small or sparse graphs, where this is feasible).

Essentially the condition of node-similarity says
that all nodes “look the same,” while symmetry says
that all links “look the same.” Clearly a symmetric
graph must be node-similar, and a node-similar graph
must be regular, but the converses of these implica-
tions do not hold. Figure 1(a) shows a graph which is
regular but not node-similar. The “soccer-ball” graph
in Figure 1(b) is node-similar (every node is the in-
tersection of a pentagon and two hexagons) but not
symmetric (some links join a pentagon and a hexagon,
while others join two hexagons). The “soccer-ball”
is one of the 13 semi-regular polyhedra described by
Archimedes and Kepler, all of which are node-similar
(essentially by definition).

Examples of symmetric graphs include the regular
polyhedra: tetrahedron (d = 3), cube (d = 3), octahe-
dron (d = 4), dodecahedron (d = 3), and icosahedron
(d = 5). The q-dimensional hypercube (with n = 2q

and d = q) is also symmetric, and has been used in
a highly parallel computing (van de Goor 1989). The
“Connection Machine” (Hillis 1985) was a supercom-
puter constructed as a 12-dimensional hypercube.

The torus (a rectangular p × q grid with p, q ≥ 3,
where the top edge is connected to the bottom, and
the left to the right) is node-similar, and symmetric if
p = q. The torus has also been used in highly parallel
computing, and has the advantage of requiring fewer
links than the hypercube.

The property of being node-similar is of value in
its own right for parallel computing, since it tends
to facilitate routing and load-balancing (van de Goor
1989). For communications network design, node-
similarity also facilitates routing, and ensures that the
impact of losing a node does not depend on which
node is lost. The property of symmetry is also of
value, because when links “look the same,” traffic on
each link is likely to be approximately equal.

Node-similar networks are particularly appro-
priate for decentralised Network Centric Warfare
(Dekker 2003a), since all nodes are of equal im-
portance. As military forces move from “platform-
centric” to “network-centric” organisational struc-
tures, decentralised architectures become more im-
portant, since they provide no high-value targets
to the enemy. On the other hand, decentralised
forces can still focus their attention on a given point,
through “swarming” (Arquilla & Ronfeldt 2000) or
self-synchronisation (Alberts et al. 1999) behaviour.

Within the civilian telecommunications infrastruc-
ture, making the major communications backbone
node-similar would also have the advantage of pro-
viding no high-value targets to terrorist attackers.

If a network is both node-similar and optimally
connected, then it provides maximum resistance to



node destruction. The literature of graph theory
contains some interesting results relating symmetry
to connectivity, proved by Mader and Watkins in
1970/71:

Theorem 3.2 For any connected node-similar graph
of degree d:

(i) λ = d.

(ii) κ ≥ 2
3 (d + 1).

(iii) if d ≤ 4, then κ = d.

(iv) if the graph is symmetric, then κ = d.

Proof.

(i) Lemma 3.3.3 of Godsil & Royle (2001) or Theo-
rem 3.7 of Babai (1996).

(ii) Theorem 3.4.2 of Godsil & Royle (2001) or The-
orem 3.7 of Babai (1996).

(iii) From Theorem 2.3 and (ii).

(iv) Theorem 3.7 of Babai (1996). �

Note that nothing in general can be said about the
connectivity of merely regular graphs. For example,
the graph in Figure 1(a) has degree 3, but κ = λ = 1.
Note also that the bound in (ii) is tight. For example,
we can find graphs with d = 5 and κ = 4 (see Figure
3.4 of Godsil & Royle (2001)).

As a consequence of (iii), the “soccer-ball” graph
in Figure 1(b) is optimally connected with κ = λ =
d = 3 (in fact, all 13 of the Archimedean polyhedra
are optimally connected, even the two with d = 5).
Also by (iii), the torus is optimally connected with
κ = λ = d = 4.

We can generalise the torus to the q-dimensional
case, i.e. an m1×m2×· · ·×mq rectangular grid with
each mi ≥ 3 and opposite ends connected:

Theorem 3.3 The q-dimensional hypertorus is opti-
mally connected with κ = λ = d = 2q.

Proof. Any q-dimensional hypertorus can be made
symmetric by merging hyperlayers of adjacent nodes,
and κ = λ = d = 2q for the reduced hypertorus,
by Theorem 3.2. For each node-distinct path in the
reduced hypertorus, there is a corresponding path in
the original, so the result follows by Theorem 2.2. �

An alternative way of designing optimally con-
nected graphs involves group theory, an area of ab-
stract algebra with a long tradition:

Definition 3.4 A group is a set containing a con-
stant e, and equipped with a binary operator ⊕ and
a unary operator � such that:

(i) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).

(ii) x ⊕ e = x.

(iii) e ⊕ x = x.

(iv) x ⊕ (�x) = e.

(v) (�x) ⊕ x = e.

Definition 3.5 The important group-theoretic con-
cepts for our purpose are generation and Cayley
graphs :

(i) A group G is generated by a set S if the elements
of G can all be built up using ⊕, �, e, and the
elements of S.

3x4 Torus Truncated Tetrahedron Cuboctahedron

Hexagonal Prism Hexagonal Prism + Diagonals Twisted Hexagonal Prism

Figure 2: Some Minimal Cayley Graphs with 12
Nodes

(ii) G is minimally generated by S if G is generated
by S but not by any proper subset of S (in par-
ticular, this means that e /∈ S).

(iii) If G is generated by S, the Cayley graph Γ(G, S)
is the graph whose nodes are the elements of G,
and whose links are x— s ⊕ x for every x ∈ G
and s ∈ S.

(iv) If G is minimally generated by S, for some G and
S, then Γ(G, S) is called a minimal Cayley graph.

A simple example of a group is the set {0, 1, 2, 3, 4}
where:

(i) e = 0.

(ii) x ⊕ y = x + y (mod 5).

(iii) �x = 5 − x (mod 5).

It is easy to verify that the rules of Definition 3.4 are
satisfied, and that the group is minimally generated
by the set {1}. The corresponding minimal Cayley
graph is a pentagon with links 0 —1 —2 —3 — 4 —0.

There are usually several Cayley graphs (even sev-
eral minimal Cayley graphs) for a group G, depending
on the choice of S. Conversely, different groups may
have the same (minimal) Cayley graphs. For example,
there are 5 groups containing 12 elements (generally
written Z12, Z2 × Z6, D6, A4, and Q12), but at least
7 minimal Cayley graphs with 12 nodes. Six of these
are illustrated in Figure 2. For a list of all Cayley
graphs with 12 nodes, see Giudici & Abreu (2000).

The importance of minimal Cayley graphs for net-
work design lies in the fact that they are optimally
connected (in the sense defined above):

Theorem 3.6 Let G be a group minimally generated
by S, and Γ(G, S) the corresponding minimal Cayley
graph. Then:

(i) Γ(G, S) is regular and node-similar.

(ii) Γ(G, S) has degree d equal to the size of the
set {x1, . . . , xm,�x1, . . . ,�xm}, where S =
{x1, . . . , xm}.

(iii) Γ(G, S) has κ = λ = d.

Proof.

(i) Proposition 16.2 of Biggs (1993).

(ii) Considering possible links y — xi ⊕ y and
(�xj ⊕ y)— y.



Graph Groups
Z12 Z2 × Z6 D6 A4 Q12

3 × 4 Torus {3, 4} {a, b, c} {a2, a3, b} {a, b}
34=43=e a3=b2=c2=e a6=b2=e a3=b4=e
3⊕4=4⊕3 x⊕y=y⊕x b⊕a=a5⊕b b⊕a=a2⊕b

Truncated {a, b}
Tetrahedron a3=b2=(a⊕b)3=e

Cuboctahedron {a, a⊕b}
a3=b2=(a⊕b)3=e

Hexagonal {a, b} {a, b}
Prism a6=b2=e a6=b2=e

a⊕b=b⊕a b⊕a=a5⊕b

Hex Prism {2, 3} {b, a2⊕b2}
+ Diagonals 34=e, 23=32 a3=b4=e

2⊕3=3⊕2 b⊕a=a2⊕b

Twisted {b, b⊕a}
Hex Prism a3=b4=e

b⊕a=a2⊕b

Table 1: Generators for Some Minimal Cayley Graphs with 12 Nodes

(iii) Theorem 3.7 of Babai (1996) and note follow-
ing. �

Groups can therefore provide a source of optimally
connected networks, by means of minimal generator
sets S for particular groups G, producing minimal
Cayley graphs Γ(G, S). Candidate groups of the re-
quired size may be found in textbooks on group the-
ory (Fraleigh 1976, Humphreys 1996), or in Internet
resources on group theory (Wilson et al. 2003).

The “soccer-ball” graph in Figure 1(b) is, in fact,
a minimal Cayley graph for the so-called alternating
group on five letters (A5), generated by the set {a, b},
where:

(i) a ⊕ a ⊕ a ⊕ a ⊕ a = e.

(ii) b ⊕ b = e.

(iii) a ⊕ b ⊕ a ⊕ b ⊕ a ⊕ b = e.

This has degree 3, since b = �b. If the generating
set {b, a ⊕ b} is used instead, the resulting minimal
Cayley graph corresponds to a different Archimed-
ean polyhedron: the truncated dodecahedron, i.e. a
dodecahedron with vertices cut off to form triangular
and decagonal (ten-sided) faces.

Our CAVALIER tool includes a module that gen-
erates minimal Cayley graphs from group descriptions
like these, using Knuth-Bendix completion (Baader &
Nipkow 1998). Table 1 shows the group descriptions
used to generate the graphs in Figure 2. In this table,
a2 refers to a⊕ a, a3 to a⊕ a⊕ a, etc. An alternative
approach to generating Cayley graphs, using semi-
direct products, is given in Dineen (1991).

It is also possible to generate optimally connected
graphs from other graphs, replacing nodes by com-
pletely connected subgraphs. This allows a large op-
timally connected graph to be constructed from a sim-
pler one:

Theorem 3.7 Consider an optimally connected reg-
ular graph of degree d ≥ 2, with some or all nodes re-
placed by completely connected subgraphs of d nodes.
Then this graph is also optimally connected and reg-
ular with κ = λ = d.

Proof. It suffices to consider the replacement of a
single node by a subgraph. There are d node-distinct
paths between nodes in the subgraph (including one

Figure 3: Truncated Tetrahedron Network for CEC

path via the rest of the graph), and also d node-
distinct paths between nodes in the subgraph and
the other nodes (based on the paths in the original
graph). �

For polyhedral graphs with d = 3, this is a process
of truncating vertices to form triangular faces (e.g.
the truncated dodecahedron or truncated cube). For
d ≥ 4 we refer to the process as mutilation.

Networks of this kind are particularly useful
for implementing Cooperative Engagement Capabil-
ity (CEC) in the Naval environment (Perry et al.
2002). CEC requires a highly robust communica-
tions network which can link together sensors and
anti-missile systems on different ships. This per-
mits serious threats to be engaged, even when several
ships have been seriously damaged. CEC can be im-
plemented using truncated/mutilated networks, with
small completely connected fibre-optic subnetworks
on each ship, and fast low-latency encrypted point-
to-point links between ships. Figure 3 shows such a
network based on a truncated tetrahedron. In this
case, κ = λ = 3, i.e. the network can survive the loss
of any two nodes, while remaining completely con-
nected. Similarly, for eight ships, a truncated cube
could be used.

The truncation/mutilation process can be per-
formed repeatedly and/or only on some nodes. The
resulting asymmetric networks are also optimally con-
nected, and may be more useful in real-world environ-



ments.
To summarise our discussion of optimal connec-

tivity, the graphs in Table 2 are all node-similar and
optimally connected with κ = λ = d.

Optimally-connected networks can therefore be
designed by finding graphs which are symmetric (The-
orem 3.2), or node-similar with degree d ≤ 4 (Theo-
rem 3.2), or minimal Cayley graphs (Theorem 3.6), or
which can be reduced to these cases while preserving
connectivity (e.g. Theorems 3.3 and 3.7). Theorem
3.7 also allows us to make local adjustments to net-
works derived from the other cases.

4 Random Graphs

There is a final way to design (if that is the right
word) optimally-connected networks. Surprisingly, it
involves making connections at random, i.e. with a
fixed probability p of an edge between any pair of
nodes (the Erdős-Rényi model). This strategy is suc-
cessful when the graph is large enough, and is use-
ful militarily for e.g. “swarms” of many low-cost un-
manned aerial vehicles or UAVs (Parunak et al. 2002).
The connections must, however, be made genuinely at
random, rather than depending on the physical dis-
tances between nodes.

The following result shows that with probability
approaching 100%, such random graphs will be opti-
mally connected:

Theorem 4.1 For any randomly generated graph of
size n, the probability that κ = λ = dmin approaches
1 as n → ∞.

Proof. Theorem 7.6 of Bollobás (2001) and note fol-
lowing. �

Convergence here is surprisingly rapid. In a sim-
ple test of 200,000 random graphs with size n ranging
from 7 to 30 and average degree

√
n, we found that the

percentage of optimally connected graphs increased
from 94.8% for n = 7 to 99.98% for n = 30. The per-
centages fitted very closely (with a correlation of 0.97)
to the curve 100 − 20e−0.2n. This result is indicative
only, but if extrapolation of this was valid, the per-
centage of optimally connected graphs for n = 100
would be approximately 99.9999999%.

Random graphs are in general not node-similar
(indeed, in most cases, as n → ∞, the probability
approaches 100% that the only automorphism is the
identity: see Theorem 9.3 of Bollobás (2001)). How-
ever, for random graphs, nodes are equally important
in a statistical sense: since links are placed randomly,
no node is privileged by design.

5 Graph Diameter and Link Load

An important graph-theoretic concept is diameter.
The diameter D of a graph is the longest of all the
shortest paths between pairs of nodes. In general,
we wish the diameter of networks to be low, since
long paths between nodes contribute to both longer
message transmission times and greater load on links.
Dineen (1991) and Hafner (1995) describe some tech-
niques for constructing graphs of small diameter.

The worst case for the diameter of node-similar
graphs is a ring of size n, where the diameter is

⌊
n
2

⌋
.

The following result sets a bound on the best case for
graph diameter:

Theorem 5.1 For any regular graph of size n, with
degree d ≥ 3 and diameter D:

(i) n ≤ d(d−1)D−2
d−2 (the Moore bound)

(ii) D ≥ log(n−1)
log d

Proof.

(i) Theorem 10.1 of Bollobás (2001).

(ii) From (i), n − 1 ≤ dD, and the result follows. �

Note that the bound in (ii) is tight. For example,
the completely connected graph Kn has d = n−1 and
D = 1, while the Petersen Graph has n = 10, d = 3,
and D = 2 (see Figure 6.14 of Gibbons (1985)). On
the other hand, there are examples where no graph
exists with diameter 	log(n − 1)/ log d
, e.g. for n =
16 and d = 4, log(n − 1)/ log d = 1.95, but all graphs
of degree d = 4 and diameter D = 2 have size n ≤ 15
(see note following Theorem 10.1 of Bollobás (2001)).

For random regular graphs, the diameter will be
approximately double the bound in (ii): see Theorem
10.15 of Bollobás (2001).

Table 3 shows several families of node-similar
graphs which are optimally connected with κ =
λ = d, together with their diameters. For the
torus/hypertorus, the best case (a 3q hypertorus) and
worst case (a 3 × m torus) are shown explicitly. The
prism is a double ring, with links between the rings
forming a ring of squares. The antiprism is a dou-
ble ring with twice as many connections between the
rings forming a ring of triangles (facing alternately up
and down).

In some ways more important than the diameter
is the average distance Dave between pairs of nodes.
This is bounded by the diameter:

Theorem 5.2 For any node-similar graph with size
n and diameter D:

nD

2(n − 1)
≤ Dave ≤ D

Proof. Consider an arbitrary node a. There is at
least one node b at a distance D from a, and by node-
similarity the tree of nodes from a “looks like” the
tree of nodes from b. The result follows by the triangle
inequality. �

The lower bound in this theorem is tight: equality
holds for e.g. the octahedron (n = 6, D = 2), the
icosahedron (n = 12, D = 3), the dodecahedron (n =
20, D = 5), the hypercube (n = 2q, D = q), or the
ring of even size (n = 2m, D = m). For the tightness
of the upper bound, consider the following family of
graphs:

Definition 5.3 The Hamming graph Hq
m is the

graph whose nodes are all the vectors (a1, . . . , aq)
with ai ∈ {0, . . . , m − 1}, and with links between
vectors that differ in exactly one position, i.e. with
a Hamming distance of 1 (Lidl & Pilz 1984).

Note that H1
m is the completely connected graph

Km; Hq
2 is the hypercube; and Hq

3 is the 3q hyper-
torus. The graph Hq

m is symmetric; and has degree
d = q(m − 1), diameter D = q, and average distance
given by the following theorem:

Theorem 5.4 The Hamming graph Hq
m has average

distance:

Dave =
q(m − 1)mq−1

mq − 1

Proof. By induction on q. �

For q = 1, the Hamming graph Hq
m has Dave =

D = 1, and for q > 1, Dave → q = D as m → ∞, i.e.



Graph Size n Number of Links κ = λ = d Symmetric
Tetrahedron 4 6 3 yes
Cube 8 12 3 yes
Octahedron 6 12 4 yes
Dodecahedron 20 30 3 yes
Icosahedron 12 30 5 yes
Soccer Ball 60 90 3 —
Truncated Tetrahedron 12 18 3 —
Truncated Cube 24 36 3 —
Truncated Dodecahedron 60 90 3 —
Mutilated Icosahedron 60 150 5 —
Fully Connected n n(n − 1)/2 n − 1 yes
Hypercube 2q q2q−1 q yes
Torus/Hypertorus m1m2 · · ·mq qm1m2 · · ·mq 2q if mi equal
Minimal Cayley Graph |G| κ|G|/2 |{x,�x|x ∈ S}| sometimes

Table 2: Some Optimally Connected Node-Similar Graphs

Graph Size n κ = λ = d Diameter D Symmetric
Lower Bound n d ≥ 3 D ≥ log(n−1)

log d —
Fully Connected n n − 1 1 yes
Hypercube 2q q q yes
(Hyper)torus m1 · · ·mq 2q

⌊
m1
2

⌋
+ · · · + ⌊mq

2

⌋
if mi equal

3q Hypertorus 3q 2q q yes
3 × m Torus 3m 4 1 +

⌊
m
2

⌋
= 1 +

⌊
n
6

⌋
if m = 3

Ring n 2
⌊

n
2

⌋
yes

Prism 2m 3 1 +
⌊

m
2

⌋
= 1 +

⌊
n
4

⌋
if m = 4

Antiprism 2m 4
⌊

m+1
2

⌋
=

⌊
n+2

4

⌋
if m = 3

Twisted Prism 2m 4 max
(
2,

⌊
n
4

⌋)
yes

Table 3: Diameters of Some Optimally Connected Node-Similar Graphs

the upper bound of Theorem 5.2 is tight for all values
of D.

The average distance between nodes is important
in determining the amount of communication traffic
on links. For the purpose of analysis, we assume that:

(i) A unit amount of traffic is exchanged between
every pair of nodes.

(ii) Traffic between two nodes is sent along the short-
est path.

(iii) If they are several shortest paths, traffic is di-
vided equally between them.

For symmetric networks, every link “looks the
same,” and hence every link carries the same traffic
load L. For non-symmetric networks, some links can
carry more traffic than others, and so we consider the
maximum traffic load Lmax (i.e. on the most heavily
loaded link). The following result places bounds on
L and Lmax:

Corollary 5.5 For any node-similar graph with size
n, degree d and diameter D:

(i) For symmetric graphs, L = (n−1)Dave
d ≥ nD

2d

(ii) In other cases, Lmax ≥ (n−1)Dave
d ≥ nD

2d

Proof. Since a total traffic of n(n−1)Dave
2 is divided

among nd
2 links. �

Table 4 shows the values of L or Lmax for some
families of optimally connected node-similar graphs,

and Table 5 shows the values for a selection of 12-
node optimally connected node-similar graphs. The
K6 prism is a prism with the top and bottom faces
completely connected. The six graphs marked with
asterisks are the minimal Cayley graphs in Figure 2.

6 Robustness and Link Load

Previously we have considered the impact of node de-
struction in terms of potentially disconnecting a net-
work. However, node destruction can also have a dra-
matic impact in terms of link load (L or Lmax). Sev-
eral serious failures of the US electrical power distri-
bution network have resulted from this phenomenon.

Optimal connectivity is important in reducing the
impact of node destruction on link load. In general,
there are at least λ link-disjoint paths between two
nodes, and traffic can be distributed over the short-
est of these paths, to avoid congestion. If κ < λ,
the number of link-disjoint paths, after the loss of a
critical node, may drop dramatically from λ to κ− 1.
However, if κ = λ, node destruction can destroy at
most one of the λ link-disjoint paths between nodes.

For a ring, the impact of node loss on link load is
very serious: for large rings, the load on the most se-
riously affected link will approximately double. To be
precise, the percentage increase in traffic on the most
seriously affected link is 100

⌊
n−3

2

⌋
/
⌊

n+1
2

⌋
%, which

approaches 100% as n becomes large.
For any topology based on a double ring, such as

a prism, antiprism, or twisted prism, the increase in
link load also approaches 100%. For a topology based
on a triple ring, such as the 3×m torus, the increase



Graph κ = λ = d Link Load L or Lmax Increase on Node Loss
Lower Bound d L, Lmax ≥ nD

2d ≥ n log(n−1)
2d log d 0 . . . 100%

Fully Connected n − 1 L = 1 0%
Hamming Graph Hq

m q(m − 1) L = mq−1 −→ 0%
Ring 2 L = 1

2

⌊
n
2

⌋⌊
n+1

2

⌋ −→ 100%
Prism 3 Lmax = max

(
n
2 ,

⌊
n
4

⌋⌊
n+2

4

⌋) −→ 100%
Antiprism 4 Lmax =

⌊
n
4

⌋ (⌊
n+2

4

⌋ − 1
2

) −→ 100%

Twisted Prism 4 L = 1
2 + n

4

⌊
n
4

⌋ − 1
2

⌊
n
4

⌋2 −→ 100%
3 × m Torus 4 Lmax = 3

2

⌊
n
6

⌋⌊
n+3

6

⌋ −→ 50%

Table 4: Some Optimally Connected Node-Similar Graphs with n Nodes

in link load approaches 50%. On the other hand, for
the completely connected network Kn, there is no in-
crease in link load when a node is destroyed. For
the other Hamming graphs Hq

m (e.g. the hypercube
or 3q hypertorus) the increase in link load may be
nonzero due to asymmetries created by node loss, but
approaches 0% as m → ∞ or q → ∞. Table 4 sum-
marises these results, and Table 5 shows the increase
in link load for a selection of 12-node graphs.

Any network design which includes large subrings
potentially suffers from the problems of ring networks
at a local scale. For example, the “soccer-ball” and
the truncated dodecahedron both have 60 nodes and
90 links, but the “soccer-ball” (which is made up of
hexagons and pentagons) has Lmax = 96.67 (increas-
ing 35% on node loss), while the truncated dodeca-
hedron (which is made up of triangles and decagons)
has Lmax = 151 (increasing 39% on node loss).

7 Two-Level Networks

We can combine the advantages of high node connec-
tivity and small diameter in networks by relaxing the
condition of node-similarity slightly, and permitting
the use of communications hubs. A two-level network
has a base graph and a much smaller hub graph, both
of which are node-similar on their own:

Definition 7.1 A two-level network T (G, H, h) con-
sists of an optimally connected node-similar base
graph G, an optimally connected node-similar hub
graph H with nodes H1, . . . , Hm, and a surjective
mapping h from base nodes to hub nodes, such that
each node x in G is connected to h(x) in H . We
write Ĥi for the set of nodes in G connected to Hi,
and require that for each Hi and Hj there is an au-
tomorphism of T (G, H, h) that maps Ĥi to Ĥj .

The following theorem shows how two-level net-
works combine high node connectivity with small di-
ameter:

Theorem 7.2 Let T (G, H, h) be a two-level network
where the base graph G has node connectivity κ ≥ 2
and diameter D, and the hub graph H has node con-
nectivity κ′ ≥ κ and diameter D′ ≤ D − 2. Then
T (G, H, h) is optimally connected with node connec-
tivity κ + 1 and diameter 2 + D′.

Proof. The diameter result is trivial. For connectiv-
ity, consider the impact of deleting κ nodes. If these
are all deleted from G, connectivity is maintained via
H , and vice versa. If some nodes are deleted from G
and some from H , both G and H remain connected,
and the number of nodes remaining in H will be at
least one more than the number of nodes deleted from

Figure 4: Two-Level “Soccer-Ball” Network

G, so that at least one link will remain to connect G
and H . �

Figure 4 shows an example two-level network
where the base graph is a “soccer-ball,” and the hub
graph is a tetrahedron. The resulting network has
node connectivity κ = 4 and diameter D = 3, while
the “soccer-ball” alone had κ = 3 and D = 9.

The following theorem places bounds on the link
load for an important class of two-level networks:

Theorem 7.3 Let T (G, H, h) be a two-level network
where the base graph G has degree d = κ ≥ 2 and size
n, and the hub graph H is the completely connected
graph Km. Then:

(i) The load on links in the base graph G is at most
3d2 + n

m .

(ii) The load on links between G and H is at most
3
2 (n − d) + m − 1.

(iii) The load on links in the hub graph H is at most
(1 + n

m )2.

Proof. By considering cases. Traffic between nodes
up to a distance 1 apart will go via the base graph,
traffic between nodes a distance 4 or more apart will
go via the hub graph, and traffic between nodes a
distance 2 or 3 apart will be divided between G and
H . �

For the network in Figure 4, these bounds are 42,
88.5, and 256, while the actual maximum link loads
of each type are 19.83, 54.83, and 198.42.

In the event of losing a single hub node, the max-
imum link loads in the base graph will increase sub-
stantially, up to values comparable to those in the
base graph alone. For example, for the example in
Figure 4, base link loads increase 390% to 96.45 (com-
pared to 96.67 for the “soccer-ball” alone). Loads



Graph κ=λ=d Diameter Link Load Increase on
D L or Lmax Node Loss

Ring (symmetric) 2 6 18 67%
Truncated Tetrahedron∗ 3 3 10 25%
Ring + 6-chords 3 3 9 22%
Hexagonal Prism∗ 3 4 9 17%
Hexagonal Antiprism 4 3 7.5 53%
Ring + 4-chords 4 3 6 9%
3 × 4 Torus∗ 4 3 6 0%
Hex Prism + Diagonals∗ 4 2 5 3%
Twisted Prism∗ (symmetric) 4 3 5 23%
Cuboctahedron∗ (symmetric) 4 3 4.75 25%
Ring + 4- & 6-chords 5 2 3.667 14%
Icosahedron (symmetric) 5 3 3.6 32%
K6 Prism 6 2 6 0%
K12 (symmetric) 11 1 1 0%

Table 5: Some Optimally Connected Node-Similar Graphs with 12 Nodes

on links to hubs can also more than double. How-
ever, the most heavily loaded links will usually still
be those between hubs, where the increase is up to
50(m − 1)/(m − 2)%. For the example in Figure 4,
this bound is 75%, while the actual increase is 50%
(from 198.42 to 297.6).

Both the maximum link load and the increase on
hub loss are improved if hub regions Ĥi are inter-
leaved. As an example, consider a base graph which
is a ring of 30 nodes, and a hub graph which is a
triangle of 3 nodes. If Ĥi is a group of 10 adjacent
nodes, the maximum link load Lmax is 108.2, increas-
ing 89% (to 204) on hub loss. On the other hand, if
Ĥi consists of every third node in the ring, the max-
imum link load is 37.67, increasing only 5% (to 39.5)
on hub loss.

Two-level networks can therefore achieve good
node connectivity and small diameter, but robustness
requires that links in the base graph have sufficient ex-
cess capacity to pick up the massive load increase that
can occur if hub nodes are lost. This may not always
be feasible, and it may be preferable to instead use
node-similar graphs of small diameter, where these
exist (Dineen 1991, Hafner 1995).

8 Scale-Free Networks

Scale-free networks were introduced by Barabási &
Albert (1999) and have attracted a great deal of in-
terest (Barabási 2002). Scale-free networks grow by
a process of preferential attachment. In particular,
an r-linked scale-free graph grows by incrementally
adding nodes, and connecting each new node by r
links to existing nodes. The nodes that these links
go to are chosen randomly with probability propor-
tional to their degree (it is possible for some or all of
these links to go to the same node). The properties of
scale-free graphs have been derived by Bollobás and
others (Bollobás 2001):

Theorem 8.1 For an r-linked scale-free graph of size
n, with r ≥ 2:
(i) With probability approaching 1 as n → ∞, the

graph is connected.

(ii) As n → ∞, the diameter D approaches log n
log log n .

(iii) The number of nodes of degree d is approximately

2r(r + 1)n
(d + r + 1)(d + r + 2)(d + r + 3)

Proof. Theorem 10.29 of Bollobás (2001) and note
following. �

Note that the expected diameter does not depend
on r, provided that r ≥ 2. Note also that the average
distance Dave will be close to the diameter D, as was
the case with other large graphs of small diameter,
such as the Hamming graphs Hq

m (Theorem 5.4). As
a consequence of (iii), a log-log plot of the number of
nodes against degree will be expected to fit a straight
line with slope −3.

The World-Wide Web is very close to a scale-
free graph, if links are considered to be undirected.
Broder et al. (2000) studied a large sample of 204
million web pages, and found that:

(i) There was an average of 7 links per page, so that
we can estimate r = 7, although in fact the out-
degree of pages varied from 0 to very large values
(following a power-law distribution). One result
of this is that the Web is not completely con-
nected.

(ii) 92% of the sample was connected, and 28% was
strongly connected, in the sense of pages being
mutually reachable by following directed links.

(iii) The average distance Dave between connected
pages was 6.83, considering links to be undi-
rected (i.e. links can be followed both forwards
and backwards). This value is very similar
to the theoretical value for the diameter D
(log n/ log log n = 6.48), so that we can estimate
D ≈ 7 (it is interesting to note that n, D, and
Dave for the Web are all very similar to the Ham-
ming graph H7

16, although that graph has 7 times
as many links).

(iv) A log-log plot of the number of pages against
in-degree has slope −2.1. This differs from the
predicted value of −3, either because of non-
linearities in the relationship between probabil-
ity and degree during preferential attachment
(Barabási et al. 2000), or because of the distri-
bution of out-degrees (Mossa et al. 2002).

Scale-free graphs have small diameter, but are not
particularly robust against deliberate attack (Albert
& Barabási 2002, Bollobás & Riordan 2003), and have
low connectivity (κ = 1). However, we can com-
bine the advantages of node-similar networks (or the
Erdős-Rényi random networks described in Section 4)
with the low diameter of scale-free networks, in a way
which generalises the two-level networks of Section 7:



Corollary 8.2 Consider an optimally connected
node-similar base graph G, with size n and node con-
nectivity κ, and construct a 2-linked scale-free graph
on the nodes of G, adding the new links to the existing
ones. Then with probability approaching 1 as n → ∞:

(i) The resulting hybrid graph is optimally con-
nected, with node connectivity κ + 1.

(ii) The resulting hybrid graph has diameter D ≈
log n/ log log n (or the diameter of G, if smaller).

Proof. Since the new links add one path between
each pair of nodes. �

For example, if we begin with a node-similar op-
timally connected graph with 1000 nodes and κ = 3,
and add 2 links per node, we will obtain an optimally
connected network with node connectivity 4, and di-
ameter D ≈ 4.

There is some evidence that the World-Wide Web
is already a hybrid network of this kind (with an
Erdős-Rényi random base graph), since when all
pages of in-degree 10 or more are removed, more than
50% of the Web remains connected (Broder et al.
2000).

As was the case with two-level networks, most of
the traffic will travel via hubs (i.e. nodes of high de-
gree), but in the event of hub loss, links in the base
network may experience massive increases in load.
Robustness therefore requires that links in the base
graph have sufficient excess capacity to pick up this
load increase, and, as before, it may be preferable
to instead use node-similar graphs of small diameter,
where these exist (Dineen 1991, Hafner 1995).

9 Conclusions

We have discussed the graph-theoretic concepts of
node connectivity and link connectivity as measures
of network robustness, and argued that node connec-
tivity is most appropriate for modelling the robust-
ness of network topologies in the face of possible node
destruction. This is important both for military net-
works and for civilian networks facing possible terror-
ist activity.

The most robust networks are optimally connected,
which means that the node connectivity is as high as
possible, given the node degrees.

An important class of networks are the node-
similar networks, where every node “looks the same.”
This means that no node is a particularly high-value
target, since that the impact of losing a node does not
depend on which node is lost. Node-similar networks
are particularly appropriate for decentralised forms
of Network Centric Warfare. We have described five
ways of designing node-similar networks which are op-
timally connected:

(i) We can apply trial and error to network design,
calculating the node connectivity for each option.
The CAVALIER tool which we have developed
has the capacity to do this at the touch of a but-
ton.

(ii) All node-similar networks of degree d ≤ 4 are op-
timally connected. The “soccer-ball” graph and
the torus are two examples.

(iii) Minimal Cayley graphs, derived from the math-
ematical objects called groups, using minimal
sets of generators, are node-similar and optimally
connected. We have provided a number of exam-
ples of minimal Cayley graphs, generated using
our CAVALIER tool.

(iv) Symmetric graphs, in which all links “look the
same,” are optimally connected. Symmetric
graphs also have advantages in terms of balanc-
ing communications load across links. The hy-
percube is an example of a symmetric graph.

(v) A network derived from some optimally con-
nected network by means of a process which
preserves node-distinct paths will also be opti-
mally connected. One such process is trunca-
tion/mutilation, which replaces nodes of degree d
by completely connected subnetworks of d nodes.
The resulting networks are candidates for use
particularly in the naval environment.

We have also considered the impact of node de-
struction on the communications load of links (if node
loss causes overload of some links, the result may be
almost as serious as if those links were destroyed).
This has provided a number of additional network
design principles:

(i) Optimal connectivity has the additional advan-
tage of reducing the impact of node loss on link
load.

(ii) The ring is a very poor network design, since the
impact of node loss on traffic load approaches
100%.

(iii) Double rings such as the prism or antiprism are
also poor network designs, since the impact of
node loss on traffic load also approaches 100%.

(iv) Network designs which include large subrings po-
tentially suffer from the same problem at a local
scale.

(v) Link load decreases as the degree of a network,
and hence the number of links, increases.

(vi) In general, a lower diameter D can also result in
a lower link load: the lower bound on link load
is proportional to D. However, Table 5 shows
that increases in diameter can be associated with
decreases in link load.

(vii) Symmetric networks have lower maximum link
load, since traffic is equally balanced across links.

(viii) Network diameter can be reduced by adding com-
munications hubs, including the use of scale-free
networks. In this case, robustness requires a
high-capacity base network which can absorb the
increase in load resulting from loss of a hub, but
this may not always be feasible.

We therefore suggest that military networks, or
civilian communications backbones, be node-similar
and optimally connected, with degree as high as fea-
sible, diameter as low as feasible, symmetric if possi-
ble, and containing no large subrings. Group theory
and (minimal) Cayley graphs provide a useful way of
generating such networks.
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