
University of Southern Queensland

Faculty of Engineering & Surveying

Next-generation 3D Graphics Engine Design

A dissertation submitted by

J. Cameron

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering and Bachelor of Information Technology

Submitted: November, 2006

Abstract

3D engines, software used to render images from 3D data, for the most part vary little

in the technology utilised. All engines commercially available employ the same basic

techniques for rasterisation. An alternative approach to that commonly used will be

presented, which provides a cleaner result with comparable efficiency.

The history of 3D engines dates back before the era of personal computers. With

such limited resources of the time, only basic routines could be used. As technology

improved, these same methods were improved to eventually form what we now use

today. While some of the modern adaptations are innovative, it is put forward that a

change in technique from the standard practice is warranted to be more inline with the

demanding requirements of modern applications.

Currently, all engines use polygons. Polygons consist of 3 points in space, which are

joined together by line segments. A plane which passes through all 3 points is then

clipped by these lines to form a triangle. Several alternative approaches to this ageing

technology were analysed to determine viability on current hardware. Research was

limited to approaches which do not use polygons. Several promising methods were

found:

• Scanline rendering of curves

• Forward differencing of curves

• ‘3D pixels’

• Micropolygons

ii

From these alternatives, it was determined the most viable was forward differencing of

curves.

Reasonable analysis into this area is undertaken, along with provision for analysis of

existing research on the topic. The use of bicubic patches is a core component, partic-

ularly using Bezier curves. For this reason analysis into such curves is also provided.

While significant work is required to fully determine its effectiveness, it can now be seen

that such an alternative technique to current 3D engine architecture is most certainly

viable.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof R Smith

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

J. Cameron

0011221117

Signature

Date

Acknowledgments

I would like to acknowledge those that helped me with suggestions and also those that

supported me through this more stressful time. I would first like to mention my saviour

Jesus for giving me the ability to do this project despite all the circumstances. I would

like to thank Dr. John Leis for all the input he’s provided me over the whole course

of the dissertation, in particular when shipment difficulties arose and when I was sick.

I would also like to thank my family for supporting me and arranging me to go on

retreat to get the bulk of the programming done. I would also like to thank my friends

that were very understanding when it came to the workload, and provided me with

guidance on how to approach my studies. Thanks guys.

J. Cameron

University of Southern Queensland

November 2006

Contents

Abstract i

Acknowledgments v

Nomenclature ix

Chapter 1 Introduction 1

1.1 3D Graphics Engines . 1

1.2 Brief Overview of the Dissertation . 2

Chapter 2 A History of 3D Engines 3

2.1 Polygonal Engines . 3

2.1.1 Evolution of Polygons . 4

2.1.2 Hardware Implementation . 6

2.2 Need for Change . 8

Chapter 3 Curves and Curved Surfaces 10

3.1 Curves . 10

CONTENTS vii

Chapter 4 Alternatives Engines 12

4.1 Overview of Alternative Approaches . 12

4.2 Scan-line Rendering . 12

4.3 Forward Differencing . 15

4.4 ‘3D Pixels’ . 18

4.5 Micropolygons . 21

Chapter 5 Design 25

5.1 Comparison of Alternatives . 25

5.2 Selection . 26

5.3 Integration with Adaptive Subdivision 27

5.4 Adaptive Forward Differencing . 28

5.5 Other Factors and Optimisations . 29

Chapter 6 Implementation 30

6.1 Hardware and Software Implementation 30

6.1.1 Hardware Selection . 30

6.1.2 Software Selection . 31

6.2 Overflow Prevention . 31

Chapter 7 Conclusion 33

References 34

CONTENTS viii

Appendix A Project Specification 40

Appendix B Code Listing 42

B.1 Makefile . 44

B.2 Data and Variables . 44

B.3 Program Code . 53

Nomenclature

3D Acceleration Use of specialised hardware to increase the rendering speed

of a 3D engine. Requires special access such as an hardware-

accelerated API.

3D Engine A software system which takes raw model data and produces

an image or series of images.

6-neighbours Adjacent voxels which share a face

6-connected path A path of adjoining voxels in which each voxel is connected

to the next via one of its neighbours’ faces

18-neighbours Adjacent voxels which share at least one edge

18-connected path A path of adjoining voxels in which each voxel is connected

to the next via at least one of its neighbours’ edges

26-neighbours Adjacent voxels which share at least one vertex/corner

26-connected path A path of adjoining voxels in which each voxel is connected

to the next via at least one of its neighbours’ vertices/corners

API Short for Application Programming Interface. A set of li-

braries from which programmers can quickly create an ap-

plication using its pre-built routines for a specific purpose.

Backface Culling The process of removing the reverse side of a surface (tradi-

tionally a polygon).

Bézier Curve A special but common representation of a curve that is de-

picted by 4 control points. Used for examples that model

free-form curves and surfaces.

Nomenclature x

Bicubic Patch A curved surface represented by the combination of 4 curves

arranged along its edges.

Clipping The process of slicing an object in order to remove a sec-

tion. Often used at boundaries. Has the Boolean operation

equivalent of an OR.

Collision Detection A means of determining whether an object lies within an-

other object. Also traditionally used to determine whether

an object is moving through another object.

Cubic Curve A curve which can be represented by a cubic function, but

does not necessarily have to be in that form. It will thus

have 4 coefficients.

Cull To remove objects from consideration, typically for falling

outside a designated area.

Depth Buffer A section of memory used to store candidate pixels prior to

rendering. Depth information is also stored so subsequent

candidates for the same pixel can be compared and judged

according to distance from view.

Dicing The process of generating micropolygons from another rep-

resentation.

DirectX A 3D graphics API developed by Microsoft to compete with

OpenGL. It is now the most-used such API.

Distance Field The area between the Hither and Yon region in which models

can be seen. Objects outside these distances are typically

culled.

Eye Space The coordinate system determined by an objects position

relative to the ‘eye’, or viewing point. Similar to screen

space.

Forward Differencing An alternative to the traditional polygon method in which

curves are stepped through for at least every pixel drawn

with moderate speed.

Nomenclature xi

Frame The current image to be drawn, even if it does not contain

all elements at the time. Can also refer to an image that

has been rendered or will be rendered as part of a series of

renderings (or ‘Frames’).

Frame Buffer The memory that has been allocated to contain the current

or next frame. All current implementations use a frame

buffer, however that has not been historically true.

Height Map An image in which all pixels are instead references to the

height of the pixel with respect to the plane upon which it

has been placed. The use of one is usually restricted to offline

renderings, as the high calculation process is especially slow.

Hither A term used to indicate the closest an object can come before

clipping or culling.

Hybrid Engine An engine that employs multiple, unrelated ideas in its im-

plementation.

IrisGL The proprietary predecessor to OpenGL owned by SGI.

LGPL A licensing agreement used commonly by open-source prod-

ucts which allows for modification and use without special

permission.

Micropolygons Alternatives to regular polygons. Sub-pixel size and fast ren-

dering make them a candidate for an alternative 3D engine

design.

Mipmapping The process of storing smaller versions of utilised textures in

order to improve rendering speed with seamless integration.

Can be used in any situation where texturing is required.

Object Space The coordinate system relative to the object in question.

OpenGL The first true standard 3D engine API. Spawned from SGI’s

IrisGL, it is now overseen by an independent board.

Open-source Software with a license that includes the source code (the

code the software was written from) and permission to mod-

ify this code. Is common in software that is intended to be

standard.

Nomenclature xii

Pixel A single ‘dot’ on the computer screen. With the viewable

area of an image being divided into a matrix of small cells,

this would be one cell.

Rasterisation The process of generating pixels.

Ray Tracing A slow but accurate and visually appealing method of ren-

dering objects. Particularly used when accurate shadows or

lighting is needed.

Render The process of converting data from the scene into an image.

Scanline A row of adjacent pixels having the same x coordinate.

Scene The entire set of objects to be rendered.

Screen Space The coordinate system based around the position relative to

the screen. Similar to eye space.

SDL An API used for generating both 2D and 3D graphics. In-

cludes much of the OpenGL API as well as input functions.

Slicing The process of splitting a surface into multiple smaller sur-

faces.

Tessellation The process of converting an object into polygons from any

form.

Texture A matrix of pixels used to represent an image that will be

overlaid onto a surface. Is included in all currently used 3D

engines.

View Space See screen space.

Voxel A ‘3D pixel’. A cell or a 3-dimensional matrix used to rep-

resent an object. Traditionally also used for various other

things.

Wireframe The representation of an object that includes only the out-

line of its surfaces. Traditionally represents only the edges

of an objects’ polygons.

World Space The absolute coordinate system used in a scene. Commonly

used to reference objects contained in the scene.

Yon A term used to indicate the farthest an object can be before

clipping or culling.

Nomenclature xiii

Chapter 1

Introduction

1.1 3D Graphics Engines

At the heart of any program that displays 3D graphics is a 3D graphics engine. A 3D

graphics engine is a piece of software that transforms 3D object data into an image.

This data can be in any form, and is usually tailored towards the engine in question.

Often software development companies produce a piece of software that just contains

a 3D engine, and other software development companies use these engines to make

programs. Standard mechanisms have been developed to improve 3D Engine creation,

such as OpenGL and DirectX. Almost all computers nowadays include a hardware

implementation of both systems.

Due to the complexity and vastness of the data to be represented, the 3D engine is

always the bottleneck of any program in which it is used. Normally it is the component

that takes the longest to create. A vast amount of research has been undertaken to

make existing 3D engines faster. Both special hardware and software exist in order to

improve performance. People pay top dollar to obtain the latest, fastest 3D acceleration

hardware in order to make the 3D engine they use faster. This translates to a large

amount of money and a large market.

With all this increase in speed, 3D engines have managed to be fast and contain an ex-

1.2 Brief Overview of the Dissertation 2

traordinarily vast amount of detail. What I perceive is missing, however, is smoothness.

This translates to accuracy in the models being represented. All current 3D engines

in use today utilise the same method for displaying images. While it is fast and (rela-

tively) simple, it is not accurate (smooth), and produces obvious visual aliases. These

are in the form of ‘blockiness’ that can been seen around the visual edge, or silhouette,

of objects. The intention here is to provide an alternative 3D graphics display engine

that will not display such visual aliases, yet still be competitive in speed.

1.2 Brief Overview of the Dissertation

Presented in this paper is four reasonable candidates for consideration for being a

next-generation 3D graphics engine. The functions, strengths and weaknesses of each

of these is examined, and a suitable candidate chosen. Further analysis into this chosen

alternative to current engines is undertaken to find additional optimisations and tech-

niques. Lastly, an implementation (of sorts) is presented which is designed to testify

to its ability. Brief analysis is performed and a conclusion is reached.

Chapter 2

A History of 3D Engines

2.1 Polygonal Engines

The idea of 3D graphics (as we know it today), and thus the idea of 3D graphics engines,

has been around since mid-century. At that time computers were in their infancy.

Computers of the time spanned floors of a building, and were extremely expensive. 3D

graphics engines were initially thus built on very limited hardware. They consisted of

points in world space (absolute cartesian position) that are transformed into eye space

(position relative to the view). These transformations involve trigonometric operations,

which are not fast to process. Once in the correct position, lines are drawn between

these points, creating edges. The end result, called ‘wireframe’, took on the typical

form of a series of boxes loosely resembling simple objects.

Even drawing a simple line took a fair amount of resources for the technology of the

time. Thus the first 3D graphics engines were totally line-based. While such methods

were an achievement for back then, it is still very basic compared to what we have now.

The first optimisations were thus optimisation to the line-drawing algorithm. Most

notably the Bresenham line-drawing algorithm was both the first and the most popular

way of efficiently drawing lines. Others later followed that improved on it, but these

came too late to be noticed.

2.1 Polygonal Engines 4

The trouble with this representation was that the objects were essentially see-through.

The lines represented important edges of the objects, but objects behind them could be

seen as though they were in front. This caused a problem where both the position and

orientation of the objects were often vague. To overcome this, the idea of a solid object

was introduced. The gap between the lines was quartioned off, and nothing behind the

object was rendered (drawn to screen).

This gave birth to the idea of Polygons. These quartioned off areas could now be

considered flat surfaces. Polygons are are thus planar polyhedrons that are represented

in space as 3 or more points. Lines, visible or otherwise, are drawn between all these

points in a particular order and the space between these lines is filled. Nowadays most

polygons consist of 3 points to avoid ambiguity in the event that all points don’t lie

flat on a plane. Polygons are simple and very fast to render, which makes them very

convenient to implement.

2.1.1 Evolution of Polygons

As time progressed, the technology improved. Polygons were filled with colour rather

than being left blank. This created a more ‘solid’ look. Also by this time, colour

monitors were commonplace. The concept of lighting was then introduced. This took

the form of Polygons’ colours being reduced based on the angle they made with a light

source. This made them appear much more like what they are today.

The difference between different polygons was still considerably obvious, so better shad-

ing was introduced to make the whole object congruent. This is achieved by calculating

the normal vector (tangent vector to the plane - used to calculate the angle the plane

makes with the world and with lighting) for each vertex rather than for each polygon.

Blending of light intensity between the vertices of a polygon ensures congruence. This

is especially so as most polygons share vertices to form surfaces. Of course, like every

step, the engine got slower. While most other features’ calculation costs are evened out

with the increase in hardware performance, it is not the case here. Almost all real-time

3D engines in use today utilise the older affore mentioned shading method, however

this is expected to change in the future (around 40 years after it was developed).

2.1 Polygonal Engines 5

Regardless of the shading policy, polygons still only contained one colour. While colour

blending between vertices in much the same way as light blending would help, consid-

erably more is needed to create a believable result. Textures thus came into being.

Textures are 2D rasterised images used for overlaying onto polygons. The vertices then

contain information about their position on the image. Upon rendering, the points

in-between the vertices are interpolated based on these co-ordinates. Once textures are

placed on a polygon, the object then starts to resemble what it is supposed to be. Of

course, as with everything else, the texture position on a polygon is only truly accurate

at the vertices for curved surfaces unless it is perfectly rectangular.

At the time, textures were only small images, around 16×16 pixels. This was due to

the memory limitations of the systems of the time, the early ones having to use ROM

or magnetic media. Individual texture pixels were very obvious, as they usually took

up multiple screen pixels and produces a grid-like appearance when viewed up close.

The blockiness of objects in general was also still very much apparent. As technology

improved, the appearance of produced images improved as well. More polygons were

able to be included while maintaining acceptable speed. Textures got larger as well.

Eventually hardware was able to blend neighbouring texture pixels together for screen

pixels that fell in-between two texture pixels. This dramatically improved appearance,

but was not feaseable in any software implementation.

The process is very slow, however, for viewing large textures at a great distance (es-

sentially shrunk). Thus mipmapping was introduced. Mipmapping is a process where

successively smaller versions of a texture are also included (or generated). These sub-

images are used instead of the full image for cases where a large proportion of texture

pixels are skipped (i.e. at long distances). Further development allowed the technique

to even be used for many levels within the one polygon. ‘Tearing’ (a line of noticeable

change) was visible as the texture was changed from one scale to another, however it

was not too obvious and was worth the speedup.

To increase speed, lighting was calculated prior to use in real-time applications, typically

at model compliation time. This provided a convenient way of producing better-looking

images at a lower cost (to the renderer). In such circumstances, a crude form of

shadowing was also possible. Various light points (ray traces of sorts) were taken at

2.1 Polygonal Engines 6

regular intervals, and mapped onto surfaces. Due to the added rendering load, these

points were fairly sparse. Of course, this only worked on occasions where the models

would not move in such a way as to conflict with the expected lighting.

Models which are stationary to either the view or the world were feasible, however

everything else was not. This problem was solved by categorising models into world,

moving and view. World models were those that are always fixed relative to the global

x, y and z co-ordinates. Decent lighting and shadowing was quite feasible for such

models. Moving objects raised the most problems, as they could be oriented in any

direction. Mid-range lighting was placed in strategic points in order to attempt to

blend in with the surroundings, and lighting was then calculated as before. Nowadays

this is all done at rendering time.

2.1.2 Hardware Implementation

In the early 90’s, specialised hardware began to emerge. By this time, 3D engines had

progressed far enough that simple forms were able to be implemented for real-time

applications. When 3D games emerged, the market for all things 3D opened up, and

now high-volume production of hardware was possible. At the start, it took the form

of an expansion card, which pluggs into a standard expansion port in a PC. The video

card then blugs into this card, as does the monitor. This specialised card was called

a 3D accelerator, and was particularly designed for games. The games of the time

were designed for ordinary PCs, however they had special extensions to allow for ‘3D

acceleration ’.

Just prior to this, when 3D acceleration cards were quite expensive and designed specif-

ically for high-end machines, various APIs were introduced. Large firms that manu-

facture specialised minicomputers and microcomputers developed libraries and systems

that forms the basis for efficiently implementing 3D engines (that uses polygons). This

was done for specific hardware, and had drawbacks when trying to implement engines

that supported different hardware. Even when implementing for different hardware

from the same vendor, programmers had to manage features that existed on some

systems and not on others. Some of these libraries even grew into APIs (Applica-

2.1 Polygonal Engines 7

tion Programming Interfaces). This means that it is then possible for engines to be

implemented in different programming languages.

The most prominent of the companies to do this is SGI. SGI developed a popular

framework called IrisGL. It was significanly easier to use than the standard of the time

(PHIGS), and gained popularity. Eventually it became apparent that due to large

competition between companies, any API developed would be meaningless in the push

to make programs compatible with hardware from competing vendors. Programmers

refused to go with just one company, and therefore did not use any proprietary API.

Being robust enough, SGI decided to release IrisGL to the community as a standard

API.

‘Releasing to the community’ means to make it open-source. This means that control

of the code is no longer in the hands of the originating company and never will be.

Anyone can look at the underlying code and even change it, given a few loose con-

ditions. This code thus had to undergo significant change in order for it to be read

and accepted. Along with that, in order for it’s growth to be controlled, an indepen-

dent body comprising of representatives from the industry was formed. This body’s

sole purpose is to ensure it gets used in an effective and innovative manner. SGI also

took this opportunity to revise the API before release, enough to warrant a new name,

OpenGL.

OpenGL quickly became the standard interface, however hardware took a long time

to catch up with it. A new feature was that if hardware is unable to support all the

features of OpenGL, these features would be implemented in software. Even with this,

budget hardware, like that found in a PC of the time, was still not powerful enough to

take the load required for a smooth experience. Thus subsets of OpenGL were common,

such as Glide. These subsets behaved like the fully-fledged OpenGL, but with many of

the instructions unavailable. Hardware eventually grew enough to support the entire

API, however by then subsequent revisions included extra features that were beyond

this. In this way, OpenGL has always kept ahead of budget, home-user hardware,

making engines run in an awkward hardware/software conglomerate.

A few years after OpenGL was released and had gained popularity, Microsoft released

2.2 Need for Change 8

DirectX, which runs purely under Windows. This is a rival API designed to compete

with OpenGL. DirectX works in a similar manner to OpenGL, however it includes fea-

tures outside the scope of 3D graphics including user input control, windowing control

and 2D graphics. Like OpenGL, DirectX also suffers from a lag in vendor hardware

implementation, resulting in a mix of hardware acceleration and software emulation.

2.2 Need for Change

Thus current 3D graphics engines have evolved considerably. 50 years of modifications

and implementations have made them what they are today. Most consider a 3D graphics

engine and a 3D polygonal engine one and the same. Due to competition by rival

companies and standards, 3D acceleration hardware has progressed massively. Most of

the ‘legwork’ for an engine has already been done by the API, so the programmer now no

longer has to be concerned about the mechanisms 3D egnines utilise. Along with that,

the basic knowledge of how a 3D engine is waning out of existence. Programmers almost

always use one of the two standard APIs, and those that don’t still use traditional

architectures designed by someone else.

In short, it’s simply too convenient to use current technology to design a 3D application.

Numerous tools exist. Due to the large amount of support, I doubt if most even think

about whether there is an alternative. The culture is that ‘if it aint broke, don’t fix it’.

While this may prove to work, it doesn’t mean it’s necessarily the best implementation

possible.

Also due to the strong advances in hardware, it is viewed that any alternative would

be significantly slower due to the lack of acceleration. This paper will not use any

special features of 3D acceleration hardware. With this said, that does not mean that

implementations need not use such features. OpenGL’s relatively new 2.0 and later

specifications were numbered so due to the addition of a new programming specifica-

tion. With this, programmers can now develop small routines that are purely run in

hardware (assuming the hardware supports it – which it will, as discussed prior). It

would be reasonable to assume that soon any given alternative 3D graphics engine im-

2.2 Need for Change 9

plementation would have a major component that can be implemented in this. This will

effively ‘3D accelerate’ the purely software implementation. Such methods, however,

are beyond the scope of this research.

To recap, the slow evolution of the traditional 3D engine model has made it what it

is today. While it is due to hardware constraints forcing the prior implementations

down a particular path, this path need not necessarily be the fastest or most efficient.

Most consider it the best because current trends and technology favor this method,

and indeed most perceive it as the sole form of 3D engine. This is unnecessary, and

untrue. This paper strongly suggests that technology has evolved enough to be able to

support a new, better technique for generating 3D images, that sheds away the long

history of slight modifications from basic principles. To be consise, a next generation

of 3D engine is now plausable and warranted.

Chapter 3

Curves and Curved Surfaces

3.1 Curves

The main problem with current 3D engines today, as stated before, is the visual artifacts

created by using sparsely separated vertex points joined together by linear patches. A

linear approximation to a surface is simply not good enough for most objects. Any

object that has a curved surface is only accurately approximated around the vertex

points. All other areas display a huge deviation from the shape intended. One option is

to increase the vertex count to reduce the error. The more vertices, however, the slower

the image renders. Nowadays this is OK for offline rendering, where the speed is not

important. Applications such as CGI for movies or still images take advantage of this

technique. For the majority of applications, however, real-time rendering is involved.

There is a limit to the number of vertices and polygons that can be accommodated

before the usability of the entire program is compromised.

Thus an alternative method for representing image data is warranted. There are various

methods for representing objects, however to design accurate models, certain techniques

are necessary. While some of these techniques generate data that is not in any curved

form, means of designing models is necessary in order to get this data. Thus, curved

object representation is necessary.

3.1 Curves 11

Regardless of which representation of curves you use, it can always be transformed into

a power series curve. These curves take the forms such as equations 3.1, 3.2 and 3.3.

x = ay + b (3.1)

x = ay2 + by + c (3.2)

x = ay3 + by2 + cy + d (3.3)

Equation 3.1, for instance, represents a line, regardless of the form used to render it.

This could be classified as a 1st-order curve (even though it does not curve at all). A

2nd-order curve, referred to a quadratic, is represented by equation 3.2. A cubic, a

3rd-order curve as represented by equation 3.3, is the lowest order possible in order to

approximate arbitrary curves. Thus cubic and higher curves are what will be employed

to generate more accurate images.

Various means of curve representation and rasterisation are presented here as some

approaches use this directly to generate images. Other schemes are also available that

can be either used to replace these curve representations or to generate models that

can be used in certain implementations.

Bézier curves are by far the most commonly used curves for research into computer

graphics. Originally created by Pierre Etienne Bézier for use at Renault, it is one

of the oldest and most convenient representations around. Bézier curves consist of 4

points. 2 are the endpoints of the curve, and the other 2 define how much the curve

bends, and towards where. Bézier curves still follow the formal rules for curves, though.

Having 4 points means it’s a 3rd-order curve. It can be translated into normal power

representation easily.

The advantage of Bézier curves is they are easily deformed by moving the control points,

and are also easily converted to power representation. Given the widespread use of

Bézier curves, I am not surprised that they are the chosen method by all alternative

3D engines discussed in this paper.

Chapter 4

Alternatives Engines

4.1 Overview of Alternative Approaches

Many alternatives are presented here. Selection is based primarily on the ability to

render images that are more accurate than that produced by polygonal engines and

with comparable speed. Due to the complexity of creating higher precision engines, it

is obvious that a low-polygon traditional 3D engine will be faster. Polygonal engines

have the advantage of being able to sacrifice image quality (and thus precision) in favour

of speed. The goal is thus to choose an approach that has a high likelihood of improved

performance over the polygonal engine of similar quality.

4.2 Scan-line Rendering

Scan-line rendering works in a much similar way to the current methods used for poly-

gons. With polygonal methods, the common (and fastest) way of generating pixels

is to join polygon points up with lines and sort them by y, then x. A ‘scan-line’ is

then introduced to scan the y direction from top to bottom. For each (horizontal) line,

points between the two edges of that section of the polygon are filled. (Whitted 1978)

was the first to produce such an implimentation. At the time, disk access was the

major bottleneck in for hardware. Implementations as was common back then used a

4.2 Scan-line Rendering 13

frame buffer to store rendered pieces of the image before everything was rendered. This

caused severe trashing of the harddisk. The scanline method did no do this however.

By calculating it in scan-line order, sequential disk access was possible. The meant

that little movement in the heads of the harddisk was necessary and that no time was

needed for the disk to move to the right orientation.

A significant speedup would have resulted from this method. It thus spawned everal

other scan-line techniques. Nowadays this is not an issue. Rendering is performed

in RAM, which has the same access time regardless of the memory’s location. A

framebuffer poses no problem then. In fact, a depth buffer is employed to distinguish

two objects that occupy the same x space.

A while later, (Blinn 1978) decided to re-explore this idea. It is unknown why it

was never taken up, however Blinn’s earlier work focused on shading techniques for

such surfaces. In face, Blinn is quite well known for this. Blinn’s algorithm, however,

quite closely resembles Whitted’s. Even the diagrams are familiar. He does go into more

detail about the different situations that can cause problems in such an implementation

though. In particular, when there’s a local maximum or minimum in one dimension,

or a combination of the two, the algorithm has to take special care in order to produce

the correct result. Along with the other sections which are described further down, a

special routine has to be implemented to correctly handle such situations.

(Lane, Carpenter, Whitted & Blinn 1980) looks at different scan-line algorithms in-

cluding those put forward by Whitted and Blinn. The lane-carpenter method is also

presented, however this is a hybrid engine that also uses polygons. Here we see how

scan-lines can be used to create polygons for use with traditional engines.

For each of these, the program essentially scans through each y line from top to bottom,

generating pixels for each polygon from left to right. It can be thought of as a series of

planes cutting through the z and x axes at each y pixel increment. This is reasonably

straightforward for linear polygons, as lines are reasonably fast to calculate (especially

considering a large amount of research is being done to make them even faster). Lines

are also monotonic in all axes, meaning that for any given x, y or z value, there is at

most one pixel value for the line.

4.2 Scan-line Rendering 14

Such luxuries do not exist for curves, however. Attempting to implement a similar

technique, Whitted developed a method for scan-line rendering of cubic curves. He

decided to use Bézier curves as his curve representation form. The first problem he

encountered was the existence of a potential silhouette in surfaces. A special pre-

processing algorithm had to be implemented in order to find all silhouettes. A problem

which arose with that was that the order of silhouettes was not limited to 3rd-order

(cubic) curves. Higher-order curves were produced, and thus needed to either be sliced

up or approximated to fit the rendering algorithm.

Another problem that arose was that since the curves have the potential to be neither

monotonic in x or y, they had to be split up in order to fit the algorithm. It’s designed

in a similar way to traditional linear algorithms, and thus only works if the curve does

not curve in on itself. Considering curves are being split anyway, silhouette curves

are also approached likewise. Thus, extensive pre-processing is done to ensure all the

curves are in the right form.

Once that is achieved, (Whitted 1978) uses Newton’s iteration is used to calculate

the x values. This process is made more efficient by an estimate being taken from

the previous solution, and iterated. Occasionally a solution is not found, however, and

more expensive procedures have to be taken to find the point.

(Blinn 1978), however, uses heuristics and numerical techniques instead. This can work

much more efficiently in a lot of cases, but has a major drawback. (Lane et al. 1980)

mentions that this method may fail, and more often than Whitted’s method. If that

is the case, as before, expensive, brute-force methods have to be used to resolve the

situation.

This method seems to be solid, and backed up by other research. Scan-line rendering

has the advantage of a speed boost due to the successive writing of pixels to adjacent

locations. This, of course, due to hardware advances, does not produce as much of a

speed boost as it once did. The rendering of pixels between curves is also very fast.

What lets it down is the curve calculation. Newton’s iteration is fairly slow, especially

when it fails and you have to go by brute force. A lot of calculation is involved pre-

rendering, as local maxima and minima have to be found along with silhouettes. All

4.3 Forward Differencing 15

these so as to slice curves up appropriately (and for every frame).

4.3 Forward Differencing

Forward Differencing uses a completely different technique. Here, curves are start off

initially in the Bézier form. At each frame, they are converted into parameter space.

This is another form which has a direct correlation to the Bézier form. Thus they can

easily be converted back if required.

(Klassen 1991b) intoduces the method well. A large amount of detail goes into explain

how Bézier curves are used. It can be seen that any curves can be used (although

any less than cubic would not be suitable for arbitrary surfaces), however most of the

research indicates a strong preference towards Bézier curves. Subsequent research also

keeps to this ideal.

In parameter space, functions are monotonic in one value, t, which does not represent

any axis. Thus a curve that curves in on itself in a normal axis can still be expressed

as a function, as it does not do so in parameter space. One significance of this form is

that 3 equations are produced; one for each axis. While the t does not represent any

particular axis, the result of stepping through t is the axis location for points along

the axis in question. Thus to render a curve, t is stepped through from one value to

another, with the same values for t used for every axis.

The stepping process is not an easy one. With traditional methods using cubic function

directly (or derivations thereof), a large number of multiplications are involved. For

example, the following cubic function for the x axis, equation 4.1, is expressed in the

computer as equation 4.2.

x = 4t3 + 3t2 + 2t + 1 (4.1)

x = 4×t×t×t + 3×t×t + 2×t + 1 (4.2)

4.3 Forward Differencing 16

While the number of multiplications can be halved, each operation still takes a pro-

portionally large amount of time to compute compared to an addition. Multiplication

and division operations are very computationally expensive, and thus must be avoided.

Forward differencing uses little of these operations, and usually uses bit shifts instead

of such operations. This will be further discussed in the next chapter.

(Shantz & Chang 1988), (Klassen 1991a), (Klassen 1991b) and (Klassen 1994) all

deal in the same area. They detail explicitly how forward differencing works, and some

provide extra information on how it may be improved. They do bring forward different

implementations, though, and some often provide different solutions to inherent prob-

lems. Thus, to analyse and explain how forward differencing works, all four papers

need to be considered at once. A point to note now is that all subsequent formulae,

etc. come from these sources — usually all of them.

Curves, of any form, first need to be converted to the correct form. The only valid

conversion from Bézier is to power form. This is done in the usual manner. Forward

difference form is related to power form by equation 4.3, which can be derived from

the general form found in (Shantz & Chang 1988) (which has a typographic error,

specifying d+1 instead of d−1). The conversion from power form to forward difference

form is done using the matrix in equation 4.4 from the same passage.

a0 + a1t + a2t
2 + a3t

3 = b0 + b1t + b2
t(t − 1)

2
+ b3

t(t − 1)(t − 2)
6

(4.3)

FD =



1 0 0 0

0 1 1 1

0 0 2 6

0 0 0 6


(4.4)

Once in this form, the curve can then be ‘stepped through’. The forward matrix, de-

noted in equation 4.5, also derived from (Shantz & Chang 1988). This simple operation

masks a more complex theory behind it. As stated before, the curves are a 3rd-degree

polynomial. We start at one end, which is known already. If we differentiate this curve,

we get a 2nd-degree polynomial. A successive differentiation yields a 1st-degree polyno-

4.3 Forward Differencing 17

mial. This becomes a linear equation of which the slope is trivial to find. Using a set

distance, we can trace this slope to the next point. Once obtained, the new point found

is treated as the original point in a new curve that resembles the original curve but is

shifted up the step distance. Earlier representations used a different matrix which too

more time to equate. This was using a slightly different basis, and once it was found

that the basis could be converted, this better representation was found.

E =



1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1


(4.5)

In order to resolve the problem the scanline method has, a final change in representation

is warranted. In this case, t is stepped from 0 to 1. This is a totally stable region in

which the calculation will always produce the correct result and not default. This

speeds up the process greatly.

While t is stepped through with even steps, it does not hold that the steps will be even

for any axis. This means that even though for some sections of the curve every pixel

may be filled using a certain step size, other parts of the curve can produce gaps for

the same step size. Moreover, some parts of the same curve may have the pixel filled

numerous times, resulting in a huge reduction in efficiency. Thus, in order to ensure

that all pixels are filled, a relatively small step size has to be chosen, which can result

in a large number of points falling on the same pixel. This endangers the viability of

the procedure, as too many operations could be performed for each pixel.

To alleviate this, several methods have been put forward: adaptive subdivision and

adaptive forward differencing. Adaptive subdivision also solves the problem of accu-

racy by splitting curves (subdividing) prior to forwared differencing. Adaptive forward

differencing adaptively changes the step size used depending on whether there was a

redundant pixel or a pixel gap in the rendering. More detail into these methods will

be explained in the next chapter.

One other important thing to note with forward differencing is that errors accumulate.

4.4 ‘3D Pixels’ 18

Due to each step producing a new curve, any error carries on for the rest of the curve.

Thus, if a large number of points along the curve are found (which would be not

uncommon), the error may grow large enough to be noticeable.

4.4 ‘3D Pixels’

‘3D Pixels’ is a term colloquially used to describe a number of 3D engines developed

around a concept of a cubic frame buffer. The term ‘Voxels’ was traditionally used,

however it is now used to describe several newer components used by traditional 3D

engines. This term originated from the term ‘volumetric pixels’, and over time evolved

into several varying ideas. I will use the term ‘Voxel’ to describe a single 3D pixel, as

the term ‘pixel’ by itself usually implies a 2D pixel. There are several flavours of ‘3D

Pixels’ including CUBE, GODPA, PARCUM and 3DP4 architectures. My analysis is

on the most recent and the most comprehensive form, the CUBE architecture presented

by (Kaufman 1987).

‘3D Pixels’ are centred around the idea that 2D pixels can be extended into 3D. Pixels

are simply points on the screen, referenced by the horizontal and vertical (or x and y)

position. Because of the cardinality of the pixels, they are seen as squares covering the

screen. Pixels are organised into matrices in traditional 2D engines. These matrices are

called ‘sprites’. 2D engines use pixel mapping to move the sprites around the screen

forming the basis for the engine.

This is extended precisely in 3D, however the operations get a bit more complicated.

As well as movement, zooming and rotation have to be performed. For this, the size of

the pixels as well as the transformation operation have to be considered. This method

breaks away from the 2D model a bit more for this reason.

A voxel is obviously thus just like a pixel except for the extra z dimension. Thus, a 3D

matrix of pixels is formed for every object. The biggest problem with this idea is that

a large amount of memory is required to store everything. For example, the normal

resolution for PCs is 1024×768 pixels. So, in order to accommodate an object that fills

the screen and performs appropriate operations, the largest dimension must be taken to

4.4 ‘3D Pixels’ 19

all dimensions. The standard bit depth for each pixel in contemporary applications is

32 bits, or 4 bytes. This means, this object would be 1,024 × 1,024 × 1,024 × 4 bytes,

or 4GB (4,294,967,296 bytes)! This is more than the total RAM for most computers.

Obviously this is unacceptable, and poses a formidable obstacle. It is quite possible to

use a reduced resolution, however the quality of the result will be reduced.

100% perfect quality is not what we’re looking for, luckily, so this approach still warrants

consideration. As hinted previously, significant research has been done into this area,

indicating the plausibility of a decent implementation.

Due to the fact that objects can be viewed at any angle, a method has to be developed to

find the correct voxels to render into pixels. As the object may be further away, voxels

will be missed. The CUBE architecture uses a traversal system to find the correct

voxels. Starting at any arbitrary voxel (you could optimise it to find a nice match,

however this would lower the performance slightly), specific algorithms are used to

find the appropriate voxels for neighbouring pixels. These will be explained in general

shortly.

Adjacent voxels are categorised into 3 categories: ‘6-neighbours’, ‘18-neighbours’ and

‘26-neighbours’. 6-neighbours are the voxels that share one face (thus the 6 faces of

a cube). 18-neighbours are voxels that share one edge. They thus each share 1 face

in 2 6-neighbours. 26-neighbours are voxels that share one vertex. They thus share 1

face in 3 18-neighbours and no faces in any 6-neighbours. So, for a change in 1 axis

(for example to move 1 voxel in the x direction, and none in the y or z directions), a

6-neighbour is found. For change in 2 axes, a 18-neighbour is found. Likewise, for a

change in 3 axes, a 26-neighbour is found. This concept lends itself to paths as well.

A traversal between several 6-neighbours is called a ‘6-connected path’; between 18-

neighbours, it’s a ‘18-connected path’ and between 26-neighbours, it’s a ‘26-connected

path’. In this manner, it is easier to find the next voxel to be considered.

(Kaufman 1987) mainly demonstrates several algorithms for efficiently converting other

representations into voxels. This is also reflected in the later paper, (Kaufman &

Shimony 1986). Here’s the conversion practices is extended to various different imple-

mentations based on the object type. An interesting note is that a ‘3D Curves’ object

4.4 ‘3D Pixels’ 20

type is presented with a very similar implementation to the forward differencing method

previously discussed. Kaufman and Shimony have also extended this into surfaces, pro-

viding insight into how 3 dimensions could be implemented using this technique. Thus

you could consider a hybrid engine where bicubic patches are converted into voxels

using forward differencing and all the additions previously discussed (as well as some

discussed later).

Once the connected paths are established, Kaufman assumes it is easy to obtain an

implementation for rendering. Successive voxels are selected based on the difference

between the x, y and z values. Thus, if most of the change is in one axis, a 6-connected

path is used. Likewise, for 2 axes, an 18-connecte path, and for 3 axes, a 26-connected

path. I can be demonstrated, however, that this is not the optimal method for voxel

selection. L-shaped paths access the next voxel. A recommendation for improvement

would be to move on a diagonal, using a differently-connected path until equilibrium

is reach whereapon the correct path is used.

To provide an example, imagine how a knight moves on a chess board. It moves 2

squares in one axis, and 1 in the other axis. If you consider it this way, the knight has

moved 3 squares. If, however, you consider it to move 1 square in a diagonal axis (i.e.

1 unit in 2 axes — a higher connected path) and then 1 square in 1 axes, you will yield

the same result. The knight, however, has only moved 2 squares. This might only be

a 1-square advantage, however it increased the efficiency of the algorithm by 1
3 . This

is scalable linearly to an arbitrary number of squares, and is also scalable to the 3rd

dimension.

The advantage of both these methods is that pixel- and voxel-finding operations are

reasonably quick. This is offset, however, if ‘in-between’ pixels (i.e. pixels that don’t

have a corresponding voxel due to the object being too close to the viewing screen)

need to be found. Morphing or changing objects may pose a problem, as a large

number of memory access operations (as well as numerous calculations) need to be

performed in order to re-populate a matrix. Most simulations, however, require little

of this. If memory if abundant, the option to pre-populate ‘frame’ matrices can also

be considered. This is where an animation is pre-empted, and motion is drawn offline

in numerous separate matrices. All that is required, then, is to change matrices for the

4.5 Micropolygons 21

next ‘frame’.

The most prominent benefit for using this method, however, is it’s ability to display

non-solid objects and objects that cannot be represented by curve patches. For non-

solid objects like particle fields, smoke, clouds, etc. many voxels have to be accessed and

rendered to a single pixel. This can be emulated by changing the value of the outside

voxels to emulate this state (producing less voxels). Other non-solid objects such as

crinkled plastic or cloth can be easily displayed using a similar technique. In fact,

such objects, transparent or otherwise, lend themselves better to this representation

than any other, as the complexity of the object being represented as no bearing on

the rendering time. 3D engines, are more commonly found these days with such items,

especially when dealing with character animation. Solving the problem of deformable

material such as cloth and hair has long been seen as one of the most difficult and

important obstacles facing 3D engines.

One last thing to note is that engines can be developed that use both this method, and

other methods at the same time. This is not a hybrid engine as is mentioned previously.

Here, voxels and polygons are used in the same scene without any conversion between

the two. (Kreeger & Kaufman 1999) shows an example where a polygonal jet is flying

through a voxel-based cloud. Two totally different implementations working together

to produce a working image. This would be an area for further study.

4.5 Micropolygons

Much less research has been done into the area of micropolygons than the previous

areas. That being said, it has been successfully used by companies like Pixar to render

high-quality, offline scenes. Although it was not used for real-time purposes back then,

20 years have passed, and thus the method is worth considering.

Micropolygons are basically small polygons. They behave in a similar way to regular

polygons, but the approach used to deal with them is vastly different. Micropolygons

have a maximum size of 1
2 pixel when converted into screen space, and therefore only

ever affect one pixel. With anti-aliasing methods, they can affect more than one sub-

4.5 Micropolygons 22

pixel though. Considering their size, they need only contain one colour. This makes

texture mapping simpler and quicker than any of the other methods discussed.

All rendered objects are eventually converted into micropolygons for each frame. This

is called ‘dicing’. Going over the details, I cannot see why this has to be done so often.

If objects change form or move dramatically (so that either some micropolygons are

greater than 1
2 the size of the pixel or they become too small to handle efficiently),

then re-conversion needs to be performed, however most objects do not behave as such

often. I propose that computation-saving efforts be brought forth in order to limit this

process. Diced objects could be stored in separate buffers to be used on subsequent

frames, saving a large amount of computation time. Considering the age of this method,

perhaps the designers felt that too much memory would have been used (at the time,

the maximum amount of RAM on offer would have been 1MB – 1,048,576 bytes). All

model data would have been stored on a hard-drive, making memory access a severe

bottleneck. This would have led to the designer’s strong preference to limit memory

thrashing, which ultimately affected the design choice.

History aside, the idea behind the concept still holds strong. (Kreeger & Kaufman

1999) lays it out in detail (and unlike the other alternatives, this has been used in

movies). Objects are originally in any arbitrary form, of which a bicubic patch is

recommended. The viewing area (an envellope for determening whether an object will

be within view) is considered, and all objects not falling within this are removed. The

distance field has also to be considered. Drawing from the traditional polygonal method

for rendering, objects will undergo a perspective transformation, and thus be subject

to mathematical instability if an object is too close to the ‘eye’. Unlike traditional

methods, however, objects are not immediately trimmed to make them either in-view

or far enough away from the ‘eye’. This was done in order to have room for a ‘heigh

map’ to be overlayed onto a surface. A hight map is like a texture map, however

instead of containing colour information, it contains height information. Vertices for

each micropolygon are moved to reflect the height point referenced to the corresponding

pixel on the height map. This often stretches the micropolygon (And also has the

potential to break the 1
2 pixel size rule). Thus, a micropolygon that would otherwise

be offscreen has the potential to be onscreen. While not implemented and beyond the

4.5 Micropolygons 23

scope of the paper, height maps can increase the complexity and quality of the result.

Room for such a quick implementation improves the outlook for this approach.

Not all objects can be immediately diced. Some objects would produce too many

micropolygons, and others start off in a form initially unsuitable for such an operation.

For these cases, the object is then split into smaller parts, or ‘sliced’. For the case of

bicubic patches, this means subdividing them into smaller patches. Given the nature

of cubic curves in that they do not follow uniform tesselation, this will most likely

produce more suitably spaced micropolygons. As explained in other sections, repeated

subdivision operations are too computationally slow for this to be employed often. I

would expect, though, that a normal scene would require few objects to be sliced.

Once all objects are diced, the original world and object coordinates need not be consid-

ered any longer (unless the previous suggestion of keeping micorpolygon data between

frames is considered). Thus there is no need for any inverse operations. Since we are

now dealing with screen space, micropolygons that fall entirely outside the viewing field

can be culled. It is at this point, also, that micropolygons falling outside the hither-yon

range (i.e. they are either too close or too far away from the ‘eye’) are culled. While

not mentioned, backface culling should be able to be performed at this point as well.

A depth buffer is used to distinguish micropolygons which fall under the same pixel.

This need be the only form of collission detection used, given the size of micropoly-

gons. It is suggested that lighting and texture calculations be performed prior to depth

calculations, however I stipulate that this need not be the case. As mentioned before,

the intention was to cut down on memory thrashing and disk access. This need not be

the case, as sufficient memory is now available to store everything necessary in RAM.

Another reason was to allow extensibility and compatability with other engines. It was

envisioned that some objects be rendered using other methods, such as ray-tracing, due

to requirements such as reflection. This is no longer necessary.

Shading is all that is left to produce the image. It is suggested that certain filtering

be performed to reduce ailising, however this will decrease performance. Calculation

of light intensity is easily done using the same method as used in traditional 3D en-

gines. Although mapping such as texturing and height mapping will have already been

4.5 Micropolygons 24

performed, extra mapping such as glossiness etc. can also be added at this stage.

This method lends itself to implementation in modern graphics hardware more than

the others. This is due to its resemblance to traditional 3D engines as well as features

of current standards to accomodate normals (the direction the polygon is facing) in

points. A major drawback, though, is the large quantity of micropolygons produced

in a normal scene. Even with the suggested changes, the number of points taken into

account in each frame are enormous.

Chapter 5

Design

5.1 Comparison of Alternatives

The four alternatives discussed each have different advantages and disadvantages. All

of them have a rather long history. At the time of their inception, computer hardware

was severely limited. Memory access was synonymous with disk access, which is very

different to today, where all mentioned memory operations are done in RAM. Each of

these alternatives were intended for non-interactive rendering on reasonably large and

expensive systems. The intention here is to compare how they would perform on a

normal PC computer system of today’s standards.

The scanline method looks good, however several things slow it down considerably.

When the curve algorithm fails to converge, a lot of time is spent obtaining an answer.

Also, The pre-processing algorithms are fairly lengthy. Particularly, the silhouette de-

tector is a very costly operation, and needs to be performed for every patch, sometimes

multiple times.

Forward differencing solves most of the problems associated with the scanline method,

however there is a lot of redundancy from the large amount of pixels being re-written so

that no gaps appear. Further optimisations can be made, however they do not solve the

problem entirely. Especially when translating between curves and surfaces, redundant

5.2 Selection 26

pixels are still a huge slowdown.

The cubic frame biffer is quite good in the speed aspect. Each operation is quite simple,

and there is no slowdown. Problems can occur, however, when objects are enlarged too

much. The main issues is memory. A huge amount of memory is required to store all

objects. This has a significant impact on how this method is treated.

Micropolygons suffer for a mixture of the above. Once objects are diced, a large number

of micropolygons are produced. This is not enough to run out of memeory, however

it could be more than can be processed in a reasonable amount of time. Along with

that, significant pre-processing has to be performed before any micropolygons are made.

Even with the suggested changes, it still leaves a lot of data to process for each frame.

5.2 Selection

Ironically, the order the alternatives are presented in represents the initial expected

performance at the onset of the research. This proved to be inconsistent with the

final theoretical analysis. Note that the scope of the research is not to implement all

avenues, but rather to choose the best from available information and then compare an

implementation to the traditional form.

The objective is to choose an engine that is the fastest on current standard home

computers. This is the environment most 3D engines are targeted for. This system has

roughly a 3 GHz CPU, 200 GB HDD, 1 GB RAM and a graphics card that has 256

MB RAM. Ideally it should run smooth on such a system. The system obtained for

the test has slightly lower specifications, but enough that a real-time test is feaseable.

The cubic frame buffer engine simply takes too much memory. Models would have to be

stored on disk, making access times horrendous. Even though it’s fast, it’s not practical

at this point in time. Micropolygons are also too cumbersome. Objects are split into

thousands of micropolygons, making both the splitting task and the remaining tasks

extremely slow.

5.3 Integration with Adaptive Subdivision 27

Both the scanline and the forward differencing methods have great appeal. Adopting

a scanline guarantees no missing pixels and no redundant pixels. Forward differencing

guarantees not to default to significantly slower and more painful means and does not

require pre-processing to find silhouettes etc.

The speedup produced by the scanline order is now fairly irrelevent, as stated before.

Not only that, but the scanline order will prove more computationally expensive to

implement with textures. Along with the additional ways of speeding up its implemen-

tation, it can be easily seen to be faster than the scanline method. Detailed algorithms

are available which add extra speed boosts on top of the additional methods which

utilise bit shifting and clever use of registers.

5.3 Integration with Adaptive Subdivision

The main difficulty with a surface representation using forward differencing is that the

inaccuracies accumulate too much. The only solution by (Klassen 1994) and all the

others the address this issue is to increase the register width. At the time, this involved

joining two 32-bit registers together to form a pseudo-64-bit register. This operation

takes a lot of time, and thus reduces the efficiency of the algorithm too much.

According to (Klassen 1994), adaptive subdivision is the appropriate alternative. Like

forward differencing, points with a fixed step size are chosen. Unlike forward differ-

encing, these points are then used to split the curve. Thus instead of one curve, an

arbitary number of curves is produced. Since the inaccuracies are related to the num-

ber of steps, and the number of steps is related to the curve size, the number of curves

produces can be talored to the size of the curve.

Another advantage of this method is that it helps monotonise the resultant spacing

of points found. Normally curves have sections which have a higher density of points.

Using forward differencing, the step size can be reduced to accomodate these sections.

Subdivision is reasonably slow, however. New curves are created, and more slower

and traditional methods have to be utilised to split the curves in the first place. This

5.4 Adaptive Forward Differencing 28

slowdown, however, is still less than that produced by having to joing two registers

together. With the advent of common 64-bit registers, the slowdown of joining two 32-

bit registers becomes non-existent. Everything can be done in a single register. Thus,

this implementation becomes reasonably slow due to the disappearance of the tradeoff.

5.4 Adaptive Forward Differencing

Adaptive forward differencing is mentioned in quite a few papers. It is put best, how-

ever, in (Lien, Shantz & Pratt 1987). Several transformations have been developed to

halve the step size 5.1 or double it 5.2. This goes back to first principles of differentia-

tion. If you had initially decreased or increased the step size to start off with, it would

work this way. Thus, to re-arrange the calculations, simple algebra can be employed.

L =



1 0 0 0

0 2 1 0

0 0 4 4

0 0 0 8


(5.1)

L−1 =



1 0 0 0

0 1
2 −1

8
1
16

0 0 1
4 −1

8

0 0 0 1
8


(5.2)

The change in step size is triggered by the distance the current pixels is from the

previous one. If a pixel is missed, a half-step (or step-down) is performed on the

previous result to obtain the next correct pixel. If the step size results in a new pixel

that is less than half a pixel away from the previous one, a double-step (or step-up) is

performed.

In this way, far fewer redundant pixels are produced while still covering the entire curve.

An extra check has to be performed after each pixel is calculated, however after testing

it has been found that a step-up or step-down is rare. Other than this, the algorithm

5.5 Other Factors and Optimisations 29

works with the precision and speed of ordinary forward differencing.

Adaptive forward differencing is thus the preferred choice for implementation, and will

be considered for the rest of the paper.

5.5 Other Factors and Optimisations

It is possible to combine the two optimisations, however there would be no discernable

speed increase (and would most likely produce a speed decrease), as both overheads

are added and the advantages overlap.

(Elber & Cohen 1996) provides an interesting optimisation. As it is common for

free-form surfaces to be concave, often adjacent curves overlap to produce a very large

amount of redundant pixels. Since we cannot skip curves (as that would result in a gap

at the ends), that is usually just assumed to be a result of the technique used. (Elber

& Cohen 1996) has used a technique to stop curves prematurely. In this way, when a

concave surface’s curve starts to overlap the previous one, it is terminated at that end.

While not mentioned in the paper, it would be presumable that the curve then needs to

be started from the other end to avoid a possible gap there. This method actually saves

as many pixels as adaptive forward differencing, and is thus worthy of consideration.

Chapter 6

Implementation

6.1 Hardware and Software Implementation

(Chang, Shantz & Rocchetti 1989) provides a very neat template for implementing

adaptive forward differencing. 32-bit registers are laid out and are complete for a

curve implementation. While 64-bit registers will be needed for surfaces, the method

can conceivably be easily transfered from curves to surfaces. This will take an extra

dimension, and thus an extra matrix operation. Since the research mainly deals with the

32-bit section, and due to hardware supply problems, the 32-bit registers and associated

curves will be discussed.

Matrices can be converted into computations by cross-multiplying. With this, a few

optimisations can be performed due to ordering. Register shifts can also be used to

squeeze precision out, resulting in a fixed-point format. With the speed of processors,

this allows for equivalent efficiency over iteger precision.

6.1.1 Hardware Selection

As hinted before, only a 64-bit processor will be viable for such an implementation.

(Chang et al. 1989) provides information on a 64-bit implementation, which would be

ideal. Unfortunately this was not possible in our test due to a hardware supply problem.

6.2 Overflow Prevention 31

The techniques can still be used in a higher-level language, however the efficiency will

suffer.

With 64-bit registers, greater freedom in terms of precision is possible. While it is

mostly fixed for surface calculations, curve calculations have a wide birth of freedom.

Unfortunately when testing, the implementation did not live up to this expectation.

Tests conclude that the accuracy is too low to be useable. Further tests were thus not

possible. Speed tests on curves could still be performed, however.

6.1.2 Software Selection

Due to the lack of timely resources, it was decided to implement the algorithm in

C/C++. Classes are not necessary, however certain advantages from C++ notation

were appreciated. The implementation is included in Appendix B.

An API called SDL was used for input/output. SDL is an open-source set of libraries

that also include OpenGL. The advantage of using SDL is that it has compatability

for both the Linux and Windows operating systems as well as support for 2D and 3D

acceleration. While 3D acceleration is not an issue given this situation, 2D acceleration

is appreciated. Unfortunatly most of that acceleration was lots in the implementation,

and resulted in custom memory access functions. It can still be considered a fast

implementation given the resources.

Unfortunately there was not enough time to finish the software component. The frame-

work is completely done, and the bezier points (and associations between them) can be

seen. Normal 3D operations can be performed on the view, making it a 3D engine in

its own right.

6.2 Overflow Prevention

Due to the use of 32-bit registers and the high demands for screen size and view space,

it is possible to have a register overflow. For this reason, our fixed-point algorithm

6.2 Overflow Prevention 32

shifts the registers to prevent this. Unlike some other implementations, our algorithm

allocates more bits for the significand. This is reflected in the register shifts.

Early tests resulted in a lack of precision that indicated an overflow. This was before

the register shifts were introduced. Thus, register shifts are an essential component in

obtaining a workable solution.

Chapter 7

Conclusion

Unfortunately the alternative 3D engine method did not live up to expectations. The

32-bit register implementation lacked the needed precision given the methods used. It

is possible further register shifting can solve this problem, however not enough time was

allowed to test this. Vital computer parts were significantly delayed enough to disallow

adequate time for implementation and testing. The author also sufferd a prolonged

sickness during the implementation phase that delayed the project significantly.

Partial results, as explained before, were obtained. Apart from the lack of precision,

the performance was adequate. The object was viewable in real-time with a forward

difference algorithm with a sufficient density to disallow pixel gaps. That being said,

a surface algorithm was not developed. While not enough progress was performed to

confirm this, it can be reasonably argued that all thing considered, this implemen-

tation would not stand up to the traditional polygonal method. Even given further

optimisations, such a high accuracy of image at a decent frame-rate is unachieveable.

It could also be considered, though, that a more inaccurate representation using similar

techniques to the ones presented in this paper could be a viable candidate to be called

a next-generation 3D graphics engine. This would be an area of further research.

References

Abram, G. & Westover, L. (1985), Efficient alias-free rendering using bit-masks and

look-up tables, in ‘Proceedings of the 27th annual conference on Computer Graph-

ics and interactive techniques’, ACM Special Interest Group on Computer Graph-

ics and Interactive Techniques, San Francisco California, pp. 53–59.

Amburn, P., Grant, E. & Whitted, T. (1986), ‘Managing geometric complexity with

enhanced procedural models’, Computer Graphics 20(4), 189–195.

AMD (2002), AMD x86-64 Architecture Programmers Manual, Vol. 1, 3.07 edn, Ad-

vanced Micro Devices Inc., Sunnyvale California.

Bajaj, C., Chen, J. & Xu, G. (1995), ‘Modeling with cubic a-patches’, ACM Transac-

tions on Graphics 14(2), 103–133.

Bishop, G. & Weimer, D. (1986), ‘Fast phong shading’, Computer Graphics 20(4), 103–

106.

Blinn, J. (1978), A scan line algorithm for displaying parametrically defined surfaces, in

‘Proceedings of the 5th annual conference on Computer Graphics and interactive

techniques’, ACM Special Interest Group on Computer Graphics and Interactive

Techniques, Atlanta Georgia, p. 27.

Blinn, J. (1982), ‘A generalization of algebraic surface drawing’, ACM Transactions on

Graphics 1(3), 235–256.

Carpenter, L. (1984), ‘The a-buffer, an antialiased hidden surface method’, Computer

Graphics 18(3), 103–108.

REFERENCES 35

Catmull, E. & Smith, A. (1980), 3-d transformations of images in scanline order, in

‘Proceedings of the 7th annual conference on Computer Graphics and interactive

techniques’, ACM Special Interest Group on Computer Graphics and Interactive

Techniques, Seattle Washington, pp. 279–285.

Chang, S., Shantz, M. & Rocchetti, R. (1989), ‘Rendering cubic curves and surfaces

with integer adaptive forward differencing’, Computer Graphics 23(3), 157–166.

Cheng, F. & Lin, C. (1985), Clipping of bzier curves, in ‘Proceedings of the 1985 ACM

annual conference on The range of computing: mid-80s perspective’, Association

for Computing Machinery, Denver Colorado, pp. 74–84.

Chhugani, J. & Kumar, S. (2003), Budget sampling of parametric surface patches,

in ‘Proceedings of the 2003 symposium on Interactive 3D graphics’, ACM Spe-

cial Interest Group on Computer Graphics and Interactive Techniques, Monterey

California, pp. 131–138, 244.

Chiyokura, H. & Kimura, F. (1983), ‘Design of solids with free-form surfaces’, Computer

Graphics 17(3), 289–298.

Christensen, P., Stollnitz, E., Salesin, D. & DeRose, T. (1990), ‘Global illumination

of glossy environments using wavelets and importance’, ACM Transactions on

Graphics 15(1), 37–71.

Cook, R., Carpenter, L. & Catmull, E. (1987), ‘The reyes image rendering architecture’,

Computer Graphics 21(4), 95–102.

DeRose, T. & Barsky, B. (1988), ‘Geometric continuity, shape parameters, and ge-

ometric constructions for catmull-rom splines’, ACM Transactions on Graphics

7(1), 1–41.

Duff, T. (1992), ‘Interval arithmetic and recursive subdivision for implicit functions

and constructive solid geometry’, Computer Graphics 26(2), 131–138.

Earnshaw, R. (1977), Line generation for incremental and raster devices, in ‘Proceed-

ings of the 4th annual conference on Computer graphics and interactive tech-

niques’, ACM Special Interest Group on Computer Graphics and Interactive Tech-

niques, San Jose California, pp. 199–205.

REFERENCES 36

Efremov, A., Havran, V. & Seidel, H. (2005), Robust and numerically stable bzier

clipping method for ray tracing nurbs surfaces, in ‘Proceedings of the 21st spring

conference on Computer graphics’, ACM Special Interest Group on Computer

Graphics and Interactive Techniques, Budmerice, pp. 127–135.

Elber, G. & Cohen, E. (1996), ‘Adaptive isocurve-based rendering for freeform surfaces’,

ACM Transactions on Graphics 15(3), 249–263.

Forsey, D. & Bartels, R. (1988), ‘Hierarchical b-spline refinement’, Computer Graphics

22(4), 205–212.

Fournier, A. & Fussell, D. (1980), ‘Stochastic modeling in computer graphics’, Prelim-

inary papers to be published in Communications of the ACM 14(SI), 1–8.

Frisken, S., Perry, R., Rockwood, A. & Jones, T. (2000), Adaptively sampled distance

fields: A general representation of shape for computer graphics, in ‘Proceedings

of the 27th annual conference on Computer Graphics and interactive techniques’,

ACM Special Interest Group on Computer Graphics and Interactive Techniques,

New Orleans California, pp. 249–254.

Goldman, R. (2002), ‘On the algebraic and geometric foundations of computer graph-

ics’, ACM Transactions on Graphics 21(1), 52–86.

Grocker, G. (1984), ‘Invisibility coherence for fast scan-line hidden surface algorithms’,

Computer Graphics 18(3), 95–102.

Han, S. & Medioni, G. (1996), Triangular nurbs surface modeling of scattered data,

in ‘Proceedings of the 7th conference on visualization 96’, ACM Special Interest

Group on Computer Graphics and Interactive Techniques, San Francisco Califor-

nia, pp. 295–302.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. & Stuetzle, W. (1992), ‘Surface

reconstruction from unorganised points’, Computer Graphics 26(2), 71–78.

Kaufman, A. (1987), ‘Efficient algorithms for 3d scan-conversion of parametric curves,

surfaces, and volumes’, Computer Graphics 21(4), 171–179.

Kaufman, A. & Shimony, E. (1986), 3d scan-conversion algorithms for voxel-based

graphics, in ‘Proceedings of the 1986 workshop on Interactive 3D graphics’, ACM

REFERENCES 37

Special Interest Group on Computer Graphics and Interactive Techniques, Chapel

Hill North Carolina, pp. 45–75.

Klassen, V. (1991a), ‘Drawing antialiased cubic spline curves’, ACM Transactions on

Graphics 10(1), 92–108.

Klassen, V. (1991b), ‘Integer forward differencing of cubic polynomials- analysis and

algorithms’, ACM Transactions on Graphics 10(2), 152–181.

Klassen, V. (1994), ‘Exact integer hybrid subdivision and forward differencing of cu-

bics’, ACM Transactions on Graphics 13(3), 240–255.

Kreeger, K. & Kaufman, A. (1999), Hybrid volume and polygon rendering with cube

hardware, in ‘SIGGRAPH/Eurographics Workshop on Graphics Hardware’, ACM

Special Interest Group on Computer Graphics and Interactive Techniques, Los

Angeles California, pp. 15–24, 138.

Lane, J., Carpenter, L., Whitted, T. & Blinn, J. (1980), ‘Scan line methods for display-

ing parametrically defined surfaces’, Communications of the ACM 23(1), 23–34.

Levoy, M. & Whitted, T. (1985), The use of points as a display primitive, Technical

Report 85-022, University of North Carolina, Chapel Hill.

Li, F. & Lau, R. (1999), Real-time rendering of deformable parametric free-form sur-

faces, in ‘Proceedings of the ACM symposium on Virtual reality software and

technology’, ACM Special Interest Group on Computer Graphics and Interactive

Techniques and ACM Special Interest Group on Computer-Human Interaction,

London, pp. 131–138.

Lien, S., Shantz, M. & Pratt, V. (1987), ‘Adaptive forward differencing for rendering

curves and surfaces’, Computer Graphics 21(4), 111–118.

Loop, C. & DeRose, T. (1989), ‘A multisided generalization of bzier surfaces’, ACM

Transactions on Graphics 8(3), 204–234.

Menon, J. (1993), An introduction to constructive shell representations for free-form

surfaces and solids, in ‘Proceedings of the second ACM symposium on Solid mod-

eling and applications’, ACM Special Interest Group on Computer Graphics and

Interactive Techniques, Montreal Quebec, pp. 23–34.

REFERENCES 38

Neuerburg, K. (2003), Bzier curves, in ‘Proceedings of the Spring 2003 Louisiana-

Mississippi Section of the Mathematical Association of America’, Louisiana-

Mississippi Section of the Mathematical Association of America, Clinton Missis-

sippi.

Ramamoorthi, R. & Barr, A. (1997), Fast construction of accurate quaternion splines,

in ‘Proceedings of the 24th annual conference on Computer Graphics and in-

teractive techniques’, ACM Special Interest Group on Computer Graphics and

Interactive Techniques, Los Angeles California, pp. 287–292.

Reinhard, E., Shirley, P. & Hansen, C. (2001), Parallel point projection, in ‘Proceedings

of the IEEE 2001 symposium on parallel and large-data visualization and graphics’,

Institute of Electrical and Electronic Engineers, San Diego California, pp. 29–35.

Schweitzer, D. & Cobb, E. (1982), ‘Scanline rendering of parametric surfaces’, Computer

Graphics 16(3), 265–271.

Sederberg, T. (1995), ‘Point and tangent computation of tensor product rational bzier

surfaces’, Computer-Aided Geometric Design 12(1), 103–106.

Sederberg, T. & Zundel, A. (1989), ‘Scan line display of algebraic surfaces’, Computer

Graphics 23(3), 147–156.

Shantz, M. & Chang, S. (1988), ‘Rendering trimmed nurbs with adaptive forward

differencing’, Computer Graphics 22(4), 189–198.

Vashnav, H. & Rockwood, A. (1993), Calculating offsets of a bezier curve, in ‘Proceed-

ings of the second ACM symposium on Solid modeling and applications’, ACM

Special Interest Group on Computer Graphics and Interactive Techniques, Mon-

treal Quebec, pp. 491–492.

Vlasic, D. (2002), Fake phong shading, Masters thesis, The Massachusetts Institute of

Technology, Massachusetts.

Von Herzen, B., Barr, A. & Zatz, H. (1990), ‘Geometric collisions for time-dependent

parametric surfaces’, Computer Graphics 24(4), 39–48.

Walia, E. & Singh, C. (2003), Bi-quadratic interpolation of intensity for fast shading

of three dimensional objects, in ‘Proceedings of the Image and Vision Computing

REFERENCES 39

2003 New Zealand’, Image and Vision Computing New Zealand, Palmerston North,

pp. 96–101.

Warren, J. (1992), ‘Creating multisided rational bzier surfaces using base points’, ACM

Transactions on Graphics 11(2), 127–139.

Watson, B. & Hodges, L. (1992), Algorithms for rendering cubic curves, Technical

report, Georgia Institute of Technology, Georgia.

Whitted, T. (1978), A scan line algorithm for computer display of curved surfaces, in

‘Proceedings of the 5th annual conference on Computer Graphics and interactive

techniques’, ACM Special Interest Group on Computer Graphics and Interactive

Techniques, Atlanta Georgia, p. 26.

Wu, S., Abel, J. & Greenberg, D. (1977), ‘An interactive computer graphics approach

to surface representation’, Communications of the ACM 20(10), 703–712.

Appendix A

Project Specification

University of Southern Queensland
Faculty of Engineering and Surveying

ENG 4111/4112 Research Project
PROJECT SPECIFICATION

CONFIDENTIAL

FOR: Justin John Cameron

TOPIC: Next-generation 3D graphics engine design

SUPERVISOR: Prof. John Leis

PROJECT AIM: This project aims to investigate alternative approaches to 3D
engines that do not utilise polygons, and then implement a
new design in a low-level programming language.

PROGRAMME: Issue A, 27th March 2006

1. Research existing alternatives to polygonal 3D engines to determine their

viability for high-speed applications

2. Analyse the strengths and weaknesses of the most viable alternatives

3. Develop a plan for a new engine that draws from the strengths of these

previous engines with the emphasis on speed

4. Research a low-level programming language capable of implementing this

engine efficiently.

5. Implement the core routines of the engine

6. Implement the base framework for the engine so it can be utilised by an

application

As time permits:

7. Implement a standard interface for the engine so it can be separated from the

application

8. Implement a test application to determine its capabilities

9. Analyse the performance of the engine using this application

AGREED: (Student) (Supervisor)

 (dated) / / . (dated) / / .

Appendix B

Code Listing

43

This appendix contains the complete listing of the program developed to implement

the chosen 3D graphics engine design. The interface used to access graphics hardware

and input devices is SDL (Simple Directmedia Layer). Thus, SDL must be installed on

the system. In order to comply with the LGPL license (A fairly standard license for

open systems), the library libsdl.so must be available for modification by users.

B.1 Makefile 44

B
.1

M
a
k
e
fi
le

L
is

ti
ng

B
.1

:
M

ak
efi

le
fo

r
te

st
pr

og
ra

m
O
U
TP

U
T

=
p
ro

gr
am

FL
A

G
S

=
−

W
al

l
‘s

d
l−

co
n

fi
g

−−
cf

la
g
s

‘
−

lS
D

L
FI

N
A

LF
LA

G
S

=
−

O
3
−

ff
a
st

−
m

at
h
−

fu
n

ro
ll
−

a
ll
−

lo
o
p

s
L
IB

S
=

d
eb

u
g

:
@

g+
+

m
ai

n
.c

p
p

−
o

$
(O

U
TP

U
T

)
$
(F

LA
G

S)
$
(L

IB
S

)
p
ro

gr
am

: @
g+

+
m

ai
n

.c
p
p

−
o

$
(O

U
TP

U
T

)
$
(F

IN
A

LF
LA

G
S
)

$
(F

LA
G

S)
$
(L

IB
S

)

cl
ea

n
:

@
rm

p
ro

gr
am

B
.2

D
a
ta

a
n
d

V
a
ri

a
b
le

s

T
hi

s
fil

e,
v
a
r
s
.
h
,
co

nt
ai

ns
al

l
th

e
cu

st
om

is
ea

bl
e

va
ri

ab
le

s.
In

cl
ud

ed
al

so
is

th
e

da
ta

fo
r

cr
ea

ti
ng

th
e

m
od

el
th

at
is

us
ed

,
th

e
in

fa
m

ou
s

U
ta

h

T
ea

po
t.

B.2 Data and Variables 45

L
is

ti
ng

B
.2

:
T

he
he

ad
er

fil
e

co
nt

ai
ni

ng
th

e
m

od
el

da
ta

an
d

th
e

va
ri

ab
le

s
#

if
n
d
e
f

A
T

T
R

IB
U

T
E

S
H

#
d
e
fi

n
e

A
T

T
R

IB
U

T
E

S
H

#
in

cl
u
d
e

<
SD

L
/S

D
L

.h
>

//
C

h
a
n
ge

a
bl

e
V

a
ri

a
bl

es
//

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

//
S
cr

ee
n

m
od

e
:

1
:

80
0
x6

00
,

2
:

10
24

x7
60

#
d
e
fi

n
e

J
SC

R
E

E
N

SI
Z
E

2
//

M
ou

se
S

e
n

si
ti

v
it

y
(
D

ef
a
u
lt
−

10
)

#
d
e
fi

n
e

J
M

O
U

SE
SE

N
SI

T
IV

IT
Y

10
//

K
ey

bo
ar

d
S

e
n

si
ti

v
it

y
(
D

ef
a
u
lt
−

10
)

#
d
e
fi

n
e

J
K

E
Y

SE
N

SI
T

IV
IT

Y
10

//
E
nd

o
f

ch
a
n
ge

a
bl

e
v
a
ri

a
b
le

s

#
if

J
SC

R
E

E
N

SI
Z
E

=
=

2
#

d
ef

in
e

J
SC

R
E
E
N

W
ID

T
H

10
24

#
d

ef
in

e
J

SC
R

E
E
N

H
E
IG

H
T

76
8

#
e
ls

e
#

d
ef

in
e

J
SC

R
E
E
N

W
ID

T
H

80
0

#
d

ef
in

e
J

SC
R

E
E
N

H
E
IG

H
T

60
0

#
e
n
d
if

#
d
e
fi

n
e

J
C

E
N

T
R

E
X

(J
SC

R
E
E
N

W
ID

T
H

)
/

2
#

d
e
fi

n
e

J
C

E
N

T
R

E
Y

(J
SC

R
E
E
N

H
E
IG

H
T

)
/

2

//
D

ef
in

es
th

e
sa

m
pl

e
m

od
el

u
si

n
g

b
ic

u
b
ic

p
a
tc

h
es

(
th

e
O

R
IG

IN
A
L

U
ta

h
te

a
p
o
t)

#
d
e
fi

n
e

J
N

U
M

P
A

T
C

H
E
S

28
#

d
e
fi

n
e

J
N

U
M

C
U

R
V

E
S

4
#

d
e
fi

n
e

J
N

U
M

P
O

IN
T

S
4

#
d
e
fi

n
e

J
N

U
M

D
IM

E
N

T
IO

N
S

3

B.2 Data and Variables 46

//
A

rr
ay

:
N

um
be

r
o
f

p
a
tc

h
es

;
4

cu
rv

es
/
p
a
tc

h
;

4
p
o
in

ts
/
cu

rv
e

;
3

d
im

en
ti

o
n
s/

p
o
in

t
d
o
u
b
le

p
a
tc

h
a
rr

a
y

[J
N

U
M

P
A

T
C

H
E
S

][
J

N
U

M
C

U
R

V
E
S

][
J

N
U

M
P
O

IN
T

S
][

J
N

U
M

D
IM

E
N

T
IO

N
S

]
=

{
{

{{
1
.4

,
2
.2

5
,

0}
,

{1
.3

3
7
5

,
2
.3

8
1
2
5

,
0}

,
{1

.4
3
7
5

,
2
.3

8
1
2
5

,
0}

,
{1

.5
,

2
.2

5
,

0}
}

,
{{

1
.4

,
2
.2

5
,

0
.7

8
4
}

,
{1

.3
3
7
5

,
2
.3

8
1
2
5

,
0
.7

4
9
}

,
{1

.4
3
7
5

,
2
.3

8
1
2
5

,
0
.8

0
5
}

,
{1

.5
,

2
.2

5
,

0
.8

4
}}

,
{{

0
.7

8
4

,
2
.2

5
,

1
.4
}

,
{0

.7
4
9

,
2
.3

8
1
2
5

,
1
.3

3
7
5
}

,
{0

.8
0
5

,
2
.3

8
1
2
5

,
1
.4

3
7
5
}

,
{0

.8
4

,
2
.2

5
,

1
.5
}}

,
{{

0
,

2
.2

5
,

1
.4
}

,
{0

,
2
.3

8
1
2
5

,
1
.3

3
7
5
}

,
{0

,
2
.3

8
1
2
5

,
1
.4

3
7
5
}

,
{0

,
2
.2

5
,

1
.5
}}

}
,
{ {{
0

,
2
.2

5
,

1
.4
}

,
{0

,
2
.3

8
1
2
5

,
1
.3

3
7
5
}

,
{0

,
2
.3

8
1
2
5

,
1
.4

3
7
5
}

,
{0

,
2
.2

5
,

1
.5
}}

,
{{

−
0.

78
4

,
2
.2

5
,

1
.4
}

,
{−

0.
74

9
,

2
.3

8
1
2
5

,
1
.3

3
7
5
}

,
{−

0.
80

5
,

2
.3

8
1
2
5

,
1
.4

3
7
5
}

,
{−

0.
84

,
2
.2

5
,

1
.5
}}

,
{{

−
1.

4
,

2
.2

5
,

0
.7

8
4
}

,
{−

1.
33

75
,

2
.3

8
1
2
5

,
0
.7

4
9
}

,
{−

1.
43

75
,

2
.3

8
1
2
5

,
0
.8

0
5
}

,
{−

1.
5

,
2
.2

5
,

0
.8

4
}}

,
{{

−
1.

4
,

2
.2

5
,

0}
,

{−
1.

33
75

,
2
.3

8
1
2
5

,
0}

,
{−

1.
43

75
,

2
.3

8
1
2
5

,
0}

,
{−

1.
5

,
2
.2

5
,

0}
}

}
,
{ {{
−

1.
4

,
2
.2

5
,

0}
,

{−
1.

33
75

,
2
.3

8
1
2
5

,
0}

,
{−

1.
43

75
,

2
.3

8
1
2
5

,
0}

,
{−

1.
5

,
2
.2

5
,

0}
}

,
{{

−
1.

4
,

2
.2

5
,

−
0.

78
4}

,
{−

1.
33

75
,

2
.3

8
1
2
5

,
−

0.
74

9}
,

{−
1.

43
75

,
2
.3

8
1
2
5

,
−

0.
80

5}
,

{−
1.

5
,

2
.2

5
,

−
0.

84
}}

,
{{

−
0.

78
4

,
2
.2

5
,

−
1.

4}
,

{−
0.

74
9

,
2
.3

8
1
2
5

,
−

1.
33

75
},

{−
0.

80
5

,
2
.3

8
1
2
5

,
−

1.
43

75
},

{−
0.

84
,

2
.2

5
,

−
1.

5}
},

{{
0

,
2
.2

5
,

−
1.

4}
,

{0
,

2
.3

8
1
2
5

,
−

1.
33

75
},

{0
,

2
.3

8
1
2
5

,
−

1.
43

75
},

{0
,

2
.2

5
,

−
1.

5}
}

}
,
{ {{
0

,
2
.2

5
,

−
1.

4}
,

{0
,

2
.3

8
1
2
5

,
−

1.
33

75
},

{0
,

2
.3

8
1
2
5

,
−

1.
43

75
},

{0
,

2
.2

5
,

−
1.

5}
},

{{
0
.7

8
4

,
2
.2

5
,

−
1.

4}
,

{0
.7

4
9

,
2
.3

8
1
2
5

,
−

1.
33

75
},

{0
.8

0
5

,
2
.3

8
1
2
5

,
−

1.
43

75
},

{0
.8

4
,

2
.2

5
,

−
1.

5}
},

B.2 Data and Variables 47

{{
1
.4

,
2
.2

5
,

−
0.

78
4}

,
{1

.3
3
7
5

,
2
.3

8
1
2
5

,
−

0.
74

9}
,

{1
.4

3
7
5

,
2
.3

8
1
2
5

,
−

0.
80

5}
,

{1
.5

,
2
.2

5
,

−
0.

84
}}

,
{{

1
.4

,
2
.2

5
,

0}
,

{1
.3

3
7
5

,
2
.3

8
1
2
5

,
0}

,
{1

.4
3
7
5

,
2
.3

8
1
2
5

,0
}

,
{1

.5
,

2
.2

5
,

0}
}

}
,
{ {{

1
.5

,
2
.2

5
,

0}
,

{1
.7

5
,

1
.7

2
5

,
0}

,
{2

,
1
.2

,
0}

,
{2

,
0
.7

5
,

0}
}

,
{{

1
.5

,
2
.2

5
,

0
.8

4
}

,
{1

.7
5

,1
.7

2
5

,
0
.9

8
}

,
{2

,
1
.2

,
1
.1

2
}

,
{2

,
0
.7

5
,

1
.1

2
}}

,
{{

0
.8

4
,

2
.2

5
,

1
.5
}

,
{0

.9
8

,
1
.7

2
5

,
1
.7

5
}

,
{1

.1
2

,
1
.2

,
2}

,
{1

.1
2

,
0
.7

5
,

2}
}

,
{{

0
,

2
.2

5
,

1
.5
}

,
{0

,
1
.7

2
5

,
1
.7

5
}

,
{0

,
1
.2

,
2}

,
{0

,
0
.7

5
,

2}
}

}
,
{ {{
0

,
2
.2

5
,

1
.5
}

,
{0

,
1
.7

2
5

,
1
.7

5
}

,
{0

,
1
.2

,
2}

,
{0

,
0
.7

5
,

2}
}

,
{{

−
0.

84
,

2
.2

5
,

1
.5
}

,
{−

0.
98

,
1
.7

2
5

,
1
.7

5
}

,
{−

1.
12

,
1
.2

,
2}

,
{−

1.
12

,
0
.7

5
,

2}
}

,
{{

−
1.

5
,

2
.2

5
,

0
.8

4
}

,
{−

1.
75

,
1
.7

2
5

,
0
.9

8
}

,
{−

2,
1
.2

,
1
.1

2
}

,
{−

2,
0
.7

5
,

1
.1

2
}}

,
{{

−
1.

5
,

2
.2

5
,

0}
,

{−
1.

75
,

1
.7

2
5

,
0}

,
{−

2,
1
.2

,
0}

,
{−

2,
0
.7

5
,

0}
}

}
,
{ {{
−

1.
5

,
2
.2

5
,

0}
,

{−
1.

75
,

1
.7

2
5

,
0}

,
{−

2,
1
.2

,
0}

,
{−

2,
0
.7

5
,

0}
}

,
{{

−
1.

5
,

2
.2

5
,

−
0.

84
},

{−
1.

75
,

1
.7

2
5

,
−

0.
98

},
{−

2,
1
.2

,
−

1.
12

},
{−

2,
0
.7

5
,

−
1.

12
}}

,
{{

−
0.

84
,

2
.2

5
,

−
1.

5}
,

{−
0.

98
,

1
.7

2
5

,
−

1.
75

},
{−

1.
12

,
1
.2

,
−

2}
,

{−
1.

12
,

0
.7

5
,

−
2}

},
{{

0
,

2
.2

5
,

−
1.

5}
,

{0
,

1
.7

2
5

,
−

1.
75

},
{0

,
1
.2

,
−

2}
,

{0
,

0
.7

5
,
−

2}
}

}
,
{ {{
0

,
2
.2

5
,

−
1.

5}
,

{0
,

1
.7

2
5

,
−

1.
75

},
{0

,
1
.2

,
−

2}
,

{0
,

0
.7

5
,

−
2}

},

B.2 Data and Variables 48

{{
0
.8

4
,

2
.2

5
,

−
1.

5}
,

{0
.9

8
,

1
.7

2
5

,
−

1.
75

},
{1

.1
2

,
1
.2

,
−

2}
,

{1
.1

2
,

0
.7

5
,

−
2}

},
{{

1
.5

,
2
.2

5
,

−
0.

84
},

{1
.7

5
,

1
.7

2
5

,
−

0.
98

},
{2

,
1
.2

,
−

1.
12

},
{2

,
0
.7

5
,

−
1.

12
}}

,
{{

1
.5

,
2
.2

5
,

0}
,

{1
.7

5
,

1
.7

2
5

,
0}

,
{2

,
1
.2

,
0}

,
{2

,
0
.7

5
,

0}
}

}
,
{ {{
2

,
0
.7

5
,

0}
,

{2
,

0
.3

,
0}

,
{1

.5
,

0
.0

7
5

,
0}

,
{1

.5
,

0
,

0}
}

,
{{

2
,

0
.7

5
,

1
.1

2
}

,
{2

,
0
.3

,
1
.1

2
}

,
{1

.5
,

0
.0

7
5

,
0
.8

4
}

,
{1

.5
,

0
,

0
.8

4
}}

,
{{

1
.1

2
,

0
.7

5
,

2}
,

{1
.1

2
,

0
.3

,
2}

,
{0

.8
4

,
0
.0

7
5

,
1
.5
}

,
{0

.8
4

,
0

,
1
.5
}}

,
{{

0
,

0
.7

5
,

2}
,

{0
,

0
.3

,
2}

,
{0

,
0
.0

7
5

,
1
.5
}

,
{0

,
0

,
1
.5
}}

}
,
{ {{
0

,
0
.7

5
,

2}
,

{0
,

0
.3

,
2}

,
{0

,
0
.0

7
5

,
1
.5
}

,
{0

,
0

,
1
.5
}}

,
{{

−
1.

12
,

0
.7

5
,

2}
,

{−
1.

12
,

0
.3

,
2}

,
{−

0.
84

,
0
.0

7
5

,
1
.5
}

,
{−

0.
84

,
0

,
1
.5
}}

,
{{

−
2
,

0
.7

5
,

1
.1

2
}

,
{−

2,
0
.3

,
1
.1

2
}

,
{−

1.
5

,
0
.0

7
5

,
0
.8

4
}

,
{−

1.
5

,
0

,
0
.8

4
}}

,
{{

−
2
,

0
.7

5
,

0}
,

{−
2,

0
.3

,
0}

,
{−

1.
5

,
0
.0

7
5

,
0}

,
{−

1.
5

,
0

,
0}

}
}

,
{ {{
−

2
,

0
.7

5
,

0}
,

{−
2,

0
.3

,
0}

,
{−

1.
5

,
0
.0

7
5

,
0}

,
{−

1.
5

,
0

,
0}

}
,

{{
−

2
,

0
.7

5
,

−
1.

12
},

{−
2,

0
.3

,
−

1.
12

},
{−

1.
5

,
0
.0

7
5

,
−

0.
84

},
{−

1.
5

,
0

,
−

0.
84

}}
,

{{
−

1.
12

,
0
.7

5
,

−
2}

,
{−

1.
12

,
0
.3

,
−

2}
,

{−
0.

84
,

0
.0

7
5

,
−

1.
5}

,
{−

0.
84

,
0

,
−

1.
5}

},
{{

0
,

0
.7

5
,

−
2}

,
{0

,
0
.3

,
−

2}
,

{0
,

0
.0

7
5

,
−

1.
5}

,
{0

,
0

,
−

1.
5}

}
}

,
{

B.2 Data and Variables 49

{{
0

,
0
.7

5
,

−
2}

,
{0

,
0
.3

,
−

2}
,

{0
,

0
.0

7
5

,
−

1.
5}

,
{0

,
0

,
−

1.
5}

},
{{

1
.1

2
,

0
.7

5
,

−
2}

,
{1

.1
2

,
0
.3

,
−

2}
,

{0
.8

4
,

0
.0

7
5

,
−

1.
5}

,
{0

.8
4

,
0

,
−

1.
5}

},
{{

2
,

0
.7

5
,

−
1.

12
},

{2
,

0
.3

,
−

1.
12

},
{1

.5
,

0
.0

7
5

,
−

0.
84

},
{1

.5
,

0
,

−
0.

84
}}

,
{{

2
,

0
.7

5
,

0}
,

{2
,

0
.3

,
0}

,
{1

.5
,

0
.0

7
5

,
0}

,
{1

.5
,

0
,

0}
}

}
,
{ {{
−

1.
6

,
1
.8

7
5

,
0}

,
{−

2.
3

,
1
.8

7
5

,
0}

,
{−

2.
7

,
1
.8

7
5

,
0}

,
{−

2.
7

,
1
.6

5
,

0}
}

,
{{

−
1.

6
,

1
.8

7
5

,
0
.3
}

,
{−

2.
3

,
1
.8

7
5

,
0
.3
}

,
{−

2.
7

,
1
.8

7
5

,
0
.3
}

,
{−

2.
7

,
1
.6

5
,

0
.3
}}

,
{{

−
1.

5
,

2
.1

,
0
.3
}

,
{−

2.
5

,
2
.1

,
0
.3
}

,
{−

3,
2
.1

,
0
.3
}

,
{−

3,
1
.6

5
,

0
.3
}}

,
{{

−
1.

5
,

2
.1

,
0}

,
{−

2.
5

,
2
.1

,
0}

,
{−

3,
2
.1

,
0}

,
{−

3,
1
.6

5
,

0}
}

}
,
{ {{
−

1.
5

,
2
.1

,
0}

,
{−

2.
5

,
2
.1

,
0}

,
{−

3,
2
.1

,
0}

,
{−

3,
1
.6

5
,

0}
}

,
{{

−
1.

5
,

2
.1

,
−

0.
3}

,
{−

2.
5

,
2
.1

,
−

0.
3}

,
{−

3,
2
.1

,
−

0.
3}

,
{−

3,
1
.6

5
,

−
0.

3}
},

{{
−

1.
6

,
1
.8

7
5

,
−

0.
3}

,
{−

2.
3

,
1
.8

7
5

,
−

0.
3}

,
{−

2.
7

,
1
.8

7
5

,
−

0.
3}

,
{−

2.
7

,
1
.6

5
,

−
0.

3}
},

{{
−

1.
6

,
1
.8

7
5

,
0}

,
{−

2.
3

,
1
.8

7
5

,
0}

,
{−

2.
7

,
1
.8

7
5

,
0}

,
{−

2.
7

,
1
.6

5
,

0}
}

}
,
{ {{
−

2.
7

,
1
.6

5
,

0}
,

{−
2.

7
,

1
.4

2
5

,
0}

,
{−

2.
5

,
0
.9

7
5

,
0}

,
{−

2,
0
.7

5
,

0}
}

,
{{

−
2.

7
,

1
.6

5
,

0
.3
}

,
{−

2.
7

,
1
.4

2
5

,
0
.3
}

,
{−

2.
5

,
0
.9

7
5

,
0
.3
}

,
{−

2,
0
.7

5
,

0
.3
}}

,
{{

−
3
,

1
.6

5
,

0
.3
}

,
{−

3,
1
.2

,
0
.3
}

,
{−

2.
65

,
0
.7

8
7
5

,
0
.3
}

,
{−

1.
9

,
0
.4

5
,

0
.3
}}

,
{{

−
3
,

1
.6

5
,

0}
,

{−
3,

1
.2

,
0}

,
{−

2.
65

,
0
.7

8
7
5

,
0}

,

B.2 Data and Variables 50

{−
1.

9
,

0
.4

5
,

0}
}

}
,
{ {{
−

3
,

1
.6

5
,

0}
,

{−
3,

1
.2

,
0}

,
{−

2.
65

,
0
.7

8
7
5

,
0}

,
{−

1.
9

,
0
.4

5
,

0}
}

,
{{

−
3
,

1
.6

5
,

−
0.

3}
,

{−
3,

1
.2

,
−

0.
3}

,
{−

2.
65

,
0
.7

8
7
5

,
−

0.
3}

,
{−

1.
9

,
0
.4

5
,

−
0.

3}
},

{{
−

2.
7

,
1
.6

5
,

−
0.

3}
,

{−
2.

7
,

1
.4

2
5

,
−

0.
3}

,
{−

2.
5

,
0
.9

7
5

,
−

0.
3}

,
{−

2,
0
.7

5
,

−
0.

3}
},

{{
−

2.
7

,
1
.6

5
,

0}
,

{−
2.

7
,

1
.4

2
5

,
0}

,
{−

2.
5

,
0
.9

7
5

,
0}

,
{−

2,
0
.7

5
,

0}
}

}
,
{ {{

1
.7

,
1
.2

7
5

,
0}

,
{2

.6
,

1
.2

7
5

,
0}

,
{2

.3
,

1
.9

5
,

0}
,

{2
.7

,
2
.2

5
,

0}
}

,
{{

1
.7

,
1
.2

7
5

,
0
.6

6
}

,
{2

.6
,

1
.2

7
5

,
0
.6

6
}

,
{2

.3
,

1
.9

5
,

0
.2

5
}

,
{2

.7
,

2
.2

5
,

0
.2

5
}}

,
{{

1
.7

,
0
.4

5
,

0
.6

6
}

,
{3

.1
,

0
.6

7
5

,
0
.6

6
}

,
{2

.4
,

1
.8

7
5

,
0
.2

5
}

,
{3

.3
,

2
.2

5
,

0
.2

5
}}

,
{{

1
.7

,
0
.4

5
,

0}
,

{3
.1

,
0
.6

7
5

,
0}

,
{2

.4
,

1
.8

7
5

,
0}

,
{3

.3
,

2
.2

5
,

0}
}

}
,
{ {{

1
.7

,
0
.4

5
,

0}
,

{3
.1

,
0
.6

7
5

,
0}

,
{2

.4
,

1
.8

7
5

,
0}

,
{3

.3
,

2
.2

5
,

0}
}

,
{{

1
.7

,
0
.4

5
,

−
0.

66
},

{3
.1

,
0
.6

7
5

,
−

0.
66

},
{2

.4
,

1
.8

7
5

,
−

0.
25

},
{3

.3
,

2
.2

5
,

−
0.

25
}}

,
{{

1
.7

,
1
.2

7
5

,
−

0.
66

},
{2

.6
,

1
.2

7
5

,
−

0.
66

},
{2

.3
,

1
.9

5
,

−
0.

25
},

{2
.7

,
2
.2

5
,

−
0.

25
}}

,
{{

1
.7

,
1
.2

7
5

,
0}

,
{2

.6
,

1
.2

7
5

,
0}

,
{2

.3
,

1
.9

5
,

0}
,

{2
.7

,
2
.2

5
,

0}
}

}
,
{ {{

2
.7

,
2
.2

5
,

0}
,

{2
.8

,
2
.3

2
5

,
0}

,
{2

.9
,

2
.3

2
5

,
0}

,
{2

.8
,

2
.2

5
,

0}
}

,
{{

2
.7

,
2
.2

5
,

0
.2

5
}

,
{2

.8
,

2
.3

2
5

,
0
.2

5
}

,
{2

.9
,

2
.3

2
5

,
0
.1

5
}

,
{2

.8
,

2
.2

5
,

0
.1

5
}}

,
{{

3
.3

,
2
.2

5
,

0
.2

5
}

,
{3

.5
2
5

,
2
.3

4
3
7
5

,
0
.2

5
}

,
{3

.4
5

,
2
.3

6
2
5

,
0
.1

5
}

,

B.2 Data and Variables 51

{3
.2

,
2
.2

5
,

0
.1

5
}}

,
{{

3
.3

,
2
.2

5
,

0}
,

{3
.5

2
5

,
2
.3

4
3
7
5

,
0}

,
{3

.4
5

,
2
.3

6
2
5

,
0}

,
{3

.2
,

2
.2

5
,

0}
}

}
,
{ {{

3
.3

,
2
.2

5
,

0}
,

{3
.5

2
5

,
2
.3

4
3
7
5

,
0}

,
{3

.4
5

,
2
.3

6
2
5

,
0}

,
{3

.2
,

2
.2

5
,

0}
}

,
{{

3
.3

,
2
.2

5
,

−
0.

25
},

{3
.5

2
5

,
2
.3

4
3
7
5

,
−

0.
25

},
{3

.4
5

,
2
.3

6
2
5

,
−

0.
15

},
{3

.2
,

2
.2

5
,

−
0.

15
}}

,
{{

2
.7

,
2
.2

5
,

−
0.

25
},

{2
.8

,
2
.3

2
5

,
−

0.
25

},
{2

.9
,

2
.3

2
5

,
−

0.
15

},
{2

.8
,

2
.2

5
,

−
0.

15
}}

,
{{

2
.7

,
2
.2

5
,

0}
,

{2
.8

,
2
.3

2
5

,
0}

,
{2

.9
,

2
.3

2
5

,
0}

,
{2

.8
,

2
.2

5
,

0}
}

}
,
{ {{
0

,
3

,
0}

,
{0

.8
,

3
,

0}
,

{0
,

2
.7

,
0}

,
{0

.2
,

2
.5

5
,

0}
}

,
{{

0
,

3
,

0
.0

0
2
}

,
{0

.8
,

3
,

0
.4

5
}

,
{0

,
2
.7

,
0}

,
{0

.2
,

2
.5

5
,

0
.1

1
2
}}

,
{{

0
.0

0
2

,
3

,
0}

,
{0

.4
5

,
3

,
0
.8
}

,
{0

,
2
.7

,
0}

,
{0

.1
1
2

,
2
.5

5
,

0
.2
}}

,
{{

0
,

3
,

0}
,

{0
,

3
,

0
.8
}

,
{0

,
2
.7

,
0}

,
{0

,
2
.5

5
,

0
.2
}}

}
,
{ {{
0

,
3

,
0}

,
{0

,
3

,
0
.8
}

,
{0

,
2
.7

,
0}

,
{0

,
2
.5

5
,

0
.2
}}

,
{{

−
0.

00
2

,
3

,
0}

,
{−

0.
45

,
3

,
0
.8
}

,
{0

,
2
.7

,
0}

,
{−

0.
11

2
,

2
.5

5
,

0
.2
}}

,
{{

0
,

3
,

0
.0

0
2
}

,
{−

0.
8

,
3

,
0
.4

5
}

,
{0

,
2
.7

,
0}

,
{−

0.
2

,
2
.5

5
,

0
.1

1
2
}}

,
{{

0
,

3
,

0}
,

{−
0.

8
,

3
,

0}
,

{0
,

2
.7

,
0}

,
{−

0.
2

,
2
.5

5
,

0}
}

}
,
{ {{
0

,
3

,
0}

,
{−

0.
8

,
3

,
0}

,
{0

,
2
.7

,
0}

,
{−

0.
2

,
2
.5

5
,

0}
}

,
{{

0
,

3
,

−
0.

00
2}

,
{−

0.
8

,
3

,
−

0.
45

},
{0

,
2
.7

,
0}

,

B.2 Data and Variables 52

{−
0.

2
,

2
.5

5
,

−
0.

11
2}

},
{{

−
0.

00
2

,
3

,
0}

,
{−

0.
45

,
3

,
−

0.
8}

,
{0

,
2
.7

,
0}

,
{−

0.
11

2
,

2
.5

5
,

−
0.

2}
},

{{
0

,
3

,
0}

,
{0

,
3

,
−

0.
8}

,
{0

,
2
.7

,
0}

,
{0

,
2
.5

5
,

−
0.

2}
}

}
,
{ {{
0

,
3

,
0}

,
{0

,
3

,
−

0.
8}

,
{0

,
2
.7

,
0}

,
{0

,
2
.5

5
,

−
0.

2}
},

{{
0
.0

0
2

,
3

,
0}

,
{0

.4
5

,
3

,
−

0.
8}

,
{0

,
2
.7

,
0}

,
{0

.1
1
2

,
2
.5

5
,

−
0.

2}
},

{{
0

,
3

,
−

0.
00

2}
,

{0
.8

,
3

,
−

0.
45

},
{0

,
2
.7

,
0}

,
{0

.2
,

2
.5

5
,

−
0.

11
2}

},
{{

0
,

3
,

0}
,

{0
.8

,
3

,
0}

,
{0

,
2
.7

,
0}

,
{0

.2
,

2
.5

5
,

0}
}

}
,
{ {{

0
.2

,
2
.5

5
,

0}
,

{0
.4

,
2
.4

,
0}

,
{1

.3
,

2
.4

,
0}

,
{1

.3
,

2
.2

5
,

0}
}

,
{{

0
.2

,
2
.5

5
,

0
.1

1
2
}

,
{0

.4
,

2
.4

,
0
.2

2
4
}

,
{1

.3
,

2
.4

,
0
.7

2
8
}

,
{1

.3
,

2
.2

5
,

0
.7

2
8
}}

,
{{

0
.1

1
2

,
2
.5

5
,

0
.2
}

,
{0

.2
2
4

,
2
.4

,
0
.4
}

,
{0

.7
2
8

,
2
.4

,
1
.3
}

,
{0

.7
2
8

,
2
.2

5
,

1
.3
}}

,
{{

0
,

2
.5

5
,

0
.2
}

,
{0

,
2
.4

,
0
.4
}

,
{0

,
2
.4

,
1
.3
}

,
{0

,
2
.2

5
,

1
.3
}}

}
,
{ {{
0

,
2
.5

5
,

0
.2
}

,
{0

,
2
.4

,
0
.4
}

,
{0

,
2
.4

,
1
.3
}

,
{0

,
2
.2

5
,

1
.3
}}

,
{{

−
0.

11
2

,
2
.5

5
,

0
.2
}

,
{−

0.
22

4
,

2
.4

,
0
.4
}

,
{−

0.
72

8
,

2
.4

,
1
.3
}

,
{−

0.
72

8
,

2
.2

5
,

1
.3
}}

,
{{

−
0.

2
,

2
.5

5
,

0
.1

1
2
}

,
{−

0.
4

,
2
.4

,
0
.2

2
4
}

,
{−

1.
3

,
2
.4

,
0
.7

2
8
}

,
{−

1.
3

,
2
.2

5
,

0
.7

2
8
}}

,
{{

−
0.

2
,

2
.5

5
,

0}
,

{−
0.

4
,

2
.4

,
0}

,
{−

1.
3

,
2
.4

,
0}

,
{−

1.
3

,
2
.2

5
,

0}
}

}
,
{ {{
−

0.
2

,
2
.5

5
,

0}
,

{−
0.

4
,

2
.4

,
0}

,
{−

1.
3

,
2
.4

,
0}

,

B.3 Program Code 53

{−
1.

3
,

2
.2

5
,

0}
}

,
{{

−
0.

2
,

2
.5

5
,

−
0.

11
2}

,
{−

0.
4

,
2
.4

,
−

0.
22

4}
,

{−
1.

3
,

2
.4

,
−

0.
72

8}
,

{−
1.

3
,

2
.2

5
,

−
0.

72
8}

},
{{

−
0.

11
2

,
2
.5

5
,

−
0.

2}
,

{−
0.

22
4

,
2
.4

,
−

0.
4}

,
{−

0.
72

8
,

2
.4

,
−

1.
3}

,
{−

0.
72

8
,

2
.2

5
,

−
1.

3}
},

{{
0

,
2
.5

5
,

−
0.

2}
,

{0
,

2
.4

,
−

0.
4}

,
{0

,
2
.4

,
−

1.
3}

,
{0

,
2
.2

5
,

−
1.

3}
}

}
,
{ {{
0

,
2
.5

5
,

−
0.

2}
,

{0
,

2
.4

,
−

0.
4}

,
{0

,
2
.4

,
−

1.
3}

,
{0

,
2
.2

5
,

−
1.

3}
},

{{
0
.1

1
2

,
2
.5

5
,

−
0.

2}
,

{0
.2

2
4

,
2
.4

,
−

0.
4}

,
{0

.7
2
8

,
2
.4

,
−

1.
3}

,
{0

.7
2
8

,
2
.2

5
,

−
1.

3}
},

{{
0
.2

,
2
.5

5
,

−
0.

11
2}

,
{0

.4
,

2
.4

,
−

0.
22

4}
,

{1
.3

,
2
.4

,
−

0.
72

8}
,

{1
.3

,
2
.2

5
,

−
0.

72
8}

},
{{

0
.2

,
2
.5

5
,

0}
,

{0
.4

,
2
.4

,
0}

,
{1

.3
,

2
.4

,
0}

,
{1

.3
,

2
.2

5
,

0}
}

}
}; #
e
n
d
if

B
.3

P
ro

g
ra

m
C

o
d
e

T
hi

s
fil

e,
m
a
i
n
.
c
p
p
,

co
nt

ai
ns

th
e

pr
og

ra
m

.
O

f
co

ur
se

it
’s

in
co

m
pl

et
e

du
e

to
ti

m
e

co
ns

tr
ai

nt
s,

bu
t

it
co

nt
ai

ns
al

l
th

e
fr

am
ew

or
k

fo
r

th
e

in
te

nd
ed

im
pl

em
en

ta
ti

on
.

B.3 Program Code 54

L
is

ti
ng

B
.3

:
T

he
C

+
+

pr
og

ra
m

co
de

#
in

cl
u
d
e

<
io

st
re

am
>

#
in

cl
u
d
e

<
cm

at
h>

#
in

cl
u
d
e

<
cs

td
li

b
>

#
in

cl
u
d
e

<
SD

L
/S

D
L

.h
>

#
in

cl
u
d
e

”
v
a
rs

.h
”

u
si

n
g

n
am

es
p
ac

e
st

d
;

in
t

d
ep

th
b

u
ff

er
si

ze
;

S
D

L
S
u
rf

ac
e

∗s
cr

ee
n

;
U

in
t8

d
ep

th
b

u
ff

er
[J

SC
R

E
E
N

W
ID

T
H

][
J

SC
R

E
E
N

H
E
IG

H
T

];
in

t
co

n
tr

o
lp

o
in

ts
[J

N
U

M
P
A

T
C

H
E
S

][
J

N
U

M
C

U
R

V
E
S

][
J

N
U

M
P
O

IN
T

S
][

J
N

U
M

D
IM

E
N

T
IO

N
S

];
d
o
u
b
le

x
fe

rp
o
in

ts
[J

N
U

M
P
A

T
C

H
E
S

∗
J

N
U

M
C

U
R

V
E
S

∗
J

N
U

M
P
O

IN
T

S
∗

J
N

U
M

D
IM

E
N

T
IO

N
S

];
d
o
u
b
le

ro
ta

te
h

o
z

,
ro

ta
te

v
er

t
;

in
t

p
an

h
oz

,
p
an

v
er

t
;

d
o
u
b
le

zo
om

;
b
o
o
l

p
an

n
in

gh
oz

,
p
an

n
in

gv
er

t
,

zo
om

in
g

;
b
o
o
l

m
ov

in
g

;

b
o
o
l

in
it

ia
li

se
()

;
v
o
id

d
e
in

it
ia

li
se

()
;

v
o
id

se
tp

ix
el

(i
n
t

,
in

t
,

U
in

t8
,

U
in

t8
,

U
in

t8
,

U
in

t8
);

v
o
id

se
tp

ix
el

(i
n
t

,
in

t
,

U
in

t8
,

fl
o
a
t

,
fl

o
a
t

,
fl

o
a
t

,
fl

o
a
t

);
v
o
id

d
ra

w
li

n
e

(i
n
t

,
in

t
,

in
t

,
in

t
,

fl
o
a
t

,
fl

o
a
t

,
fl

o
a
t

,
fl

o
a
t

);
b
o
o
l

p
o
ll

a
ct

io
n

()
;

v
o
id

g
et

sc
re

en
()

;
v
o
id

fr
ee

sc
re

en
()

;
v
o
id

d
ra

w
st

u
ff

()
;

v
o
id

se
tc

o
u

rs
e

()
;

v
o
id

re
se

tc
o
u

rs
e

(b
o
o
l,

b
o
o
l,

b
o
o
l,

b
o
o
l,

b
o
o
l)

;
v
o
id

ch
a
n

g
ec

o
u

rs
e
(i

n
t

,
in

t
,

in
t

,
in

t
,

in
t

);
v
o
id

ch
a
n

g
ed

ir
ec

ti
o
n

()
;

v
o
id

en
ga

ge
()

;
v
o
id

d
ra

w
cu

rv
e
(i

n
t

[]
,

in
t

[]
,

in
t

[]
,

in
t

[]
)
;

B.3 Program Code 55

//
P

re
p
a
re

s
th

in
gs

li
k
e

th
e

vi
d
eo

ca
rd

,
th

e
fr

am
e

an
d

d
ep

th
bu

ff
er

s
,

O
pe

nG
L

,
et

c
.

b
o
o
l

in
it

ia
li

se
()

{
co

n
st

U
in

t3
2

v
id

eo
m

o
d

e
fl

a
g
s

=
SD

L
H

W
SU

R
FA

C
E

|
SD

L
O

P
E
N

G
LB

LI
T

|
SD

L
FU

LL
SC

R
E
E
N

;

SD
L

W
ar

pM
ou

se
(J

C
E
N

T
R

E
X

,
J

C
E
N

T
R

E
Y

);

if
(S

D
L

In
it

(S
D

L
IN

IT
V

ID
E

O
|

SD
L

IN
IT

T
IM

E
R

|
SD

L
IN

IT
E
V

E
N

T
T

H
R

E
A

D
)

=
=

−
1)

{
co

u
t<

<
”S

D
L

V
id

eo
an

d
T

im
er

E
rr

or
:

”<
<

S
D

L
G

et
E

rr
or

()
<

<
en

d
l;

re
tu

rn
fa

ls
e

;
} S

D
L

G
L

S
et

A
tt

ri
b
u
te

(S
D

L
G

L
R

E
D

SI
Z
E

,
8
);

S
D

L
G

L
S
et

A
tt

ri
b
u
te

(S
D

L
G

L
G

R
E

E
N

SI
ZE

,
8
);

S
D

L
G

L
S
et

A
tt

ri
b
u
te

(S
D

L
G

L
B

L
U

E
SI

Z
E

,
8
);

S
D

L
G

L
S
et

A
tt

ri
b
u
te

(S
D

L
G

L
A

L
P

H
A

SI
Z
E

,
8
);

S
D

L
G

L
S
et

A
tt

ri
b
u
te

(S
D

L
G

L
D

O
U

B
LE

B
U

FF
E
R

,
1
);

//
T

hi
s

is
in

ca
se

th
e

vi
d
eo

ca
rd

do
es

n
’t

su
p
p
o
rt

th
e

ri
g
h
t

d
is

p
la

y
m

od
e

fo
r

(
d

ep
th

b
u

ff
er

si
ze

=
3
2
;

d
ep

th
b

u
ff

er
si

ze
>

=
8
;

d
ep

th
b

u
ff

er
si

ze
−

=
8)

{
S
D

L
G

L
S
et

A
tt

ri
b
u
te

(S
D

L
G

L
D

E
P

T
H

SI
Z
E

,
d

ep
th

b
u

ff
er

si
ze

);
sc

re
en

=
S
D

L
S
et

V
id

eo
M

od
e(

J
SC

R
E
E
N

W
ID

T
H

,
J

SC
R

E
E
N

H
E
IG

H
T

,
32

,
v
id

eo
m

o
d

e
fl

a
g
s

);
if

(
sc

re
en

!=
N

U
LL

)
{

b
re

ak
;

}
} if

(
d

ep
th

b
u

ff
er

si
ze

<
8)

{
co

u
t<

<
”S

D
L

V
id

eo
M

od
e

E
rr

or
:

”<
<

S
D

L
G

et
E

rr
or

()
<

<
en

d
l;

re
tu

rn
fa

ls
e

;
} /∗

if
(S

D
L

S
et

A
lp

ha
(s

cr
ee

n
,

SD
L

SR
C
A
LP

H
A

|
SD

L
R
LE

A
C
C
E
L
,

SD
L

A
LP

H
A

O
P
A
Q
U
E

)
<

0)
{

co
u
t<

<
”S

D
L

A
lp

ha
W

ar
ni

ng
:

”<
<

S
D

L
G

et
E

rr
or

()
<

<
en

d
l;

}∗
/

SD
L

Sh
ow

C
u
rs

or
(
fa

ls
e

);

B.3 Program Code 56

se
tc

o
u

rs
e

()
;

re
tu

rn
tr

u
e

;
} //

Is
(
a
u
to

m
a
ti

ca
ll

y
)

c
a
ll

e
d

w
he

n
th

e
pr

og
ra

m
q
u
it

s
v
o
id

d
e
in

it
ia

li
se

()
{

SD
L

Sh
ow

C
u
rs

or
(t

ru
e

);

S
D

L
Q

u
it

()
;

} //
F

a
st

fu
n
ct

io
n

fo
r

b
li

tt
in

g
a

p
ix

e
l

to
th

e
fr

am
e

b
u
ff

e
r

u
si

n
g

in
te

g
e
rs

bu
t

no
a
lp

h
a

ch
a
n
n
el

v
o
id

se
tp

ix
el

(i
n
t

x
,

in
t

y
,

U
in

t8
d
ep

th
,

U
in

t8
re

d
,

U
in

t8
gr

ee
n

,
U

in
t8

b
lu

e
)

{
if

(x
<

0
||

y
<

0
||

x
>

=
J

SC
R

E
E
N

W
ID

T
H

||
y

>
=

J
SC

R
E
E
N

H
E
IG

H
T

)
{

re
tu

rn
;

} U
in

t8
∗b

u
fp

=
(U

in
t8

∗)
sc

re
en

−>
p

ix
el

s
+

y
∗s

cr
ee

n
−>

p
it

ch
+

(x
<
<

2
);

if
(
d

ep
th

b
u

ff
er

[x
][

y
]

<
=

d
ep

th
)

{
re

tu
rn

;
} fl

o
a
t

sc
a
le

=
(
fl

o
a
t

)(
2
5
5

−
d
ep

th
)

/
2
5
5
;

b
u
fp

[0
]

=
(U

in
t8

)(
(
fl

o
a
t

)r
ed

∗
sc

a
le

);
b
u
fp

[1
]

=
(U

in
t8

)(
(
fl

o
a
t

)g
re

en
∗

sc
a
le

);
b
u
fp

[2
]

=
(U

in
t8

)(
(
fl

o
a
t

)b
lu

e
∗

sc
a
le

);
d

ep
th

b
u

ff
er

[x
][

y
]

=
d
ep

th
;

} //
S
lo

w
er

fu
n
ct

io
n

fo
r

b
li

tt
in

g
a

p
ix

e
l

to
th

e
fr

am
e

b
u
ff

e
r

u
si

n
g

fl
o
a
ts

(0
−

1)
in

cl
u
d
in

g
th

e
a
lp

h
a

ch
a
n
n
el

v
o
id

se
tp

ix
el

(i
n
t

x
,

in
t

y
,

U
in

t8
d
ep

th
,

fl
o
a
t

re
d

,
fl

o
a
t

gr
ee

n
,

fl
o
a
t

b
lu

e
,

fl
o
a
t

al
p
h
a

)
{

if
(x

<
0

||
y

<
0

||
x

>
=

J
SC

R
E
E
N

W
ID

T
H

||
y

>
=

J
SC

R
E
E
N

H
E
IG

H
T

)
{

re
tu

rn
;

}

B.3 Program Code 57

U
in

t8
∗b

u
fp

=
(U

in
t8

∗)
sc

re
en

−>
p

ix
el

s
+

y
∗s

cr
ee

n
−>

p
it

ch
+

(x
<
<

2
);

if
(
d

ep
th

b
u

ff
er

[x
][

y
]

<
=

d
ep

th
)

{
re

tu
rn

;
} fl

o
a
t

o
ld

p
o
rt

io
n

=
1
−

al
p
h
a

;
fl

o
a
t

sc
a
le

=
(
fl

o
a
t

)(
2
5
5

−
d
ep

th
)

/
2
5
5
;

b
u
fp

[0
]

=
(U

in
t8

)(
((

fl
o
a
t

)b
u
fp

[0
]

/
25

5
∗

o
ld

p
o
rt

io
n

+
re

d
∗

al
p
h
a

∗
sc

a
le

)
∗

2
5
5
);

b
u
fp

[1
]

=
(U

in
t8

)(
((

fl
o
a
t

)b
u
fp

[1
]

/
25

5
∗

o
ld

p
o
rt

io
n

+
g
re

en
∗

al
p
h
a

∗
sc

a
le

)
∗

2
5
5
);

b
u
fp

[2
]

=
(U

in
t8

)(
((

fl
o
a
t

)b
u
fp

[2
]

/
25

5
∗

o
ld

p
o
rt

io
n

+
b

lu
e

∗
al

p
h
a

∗
sc

a
le

)
∗

2
5
5
);

d
ep

th
b

u
ff

er
[x

][
y

]
=

d
ep

th
;

} //
B

re
se

n
ha

m
li

n
e
−

dr
aw

in
g

a
lg

o
ri

th
m

//
a
d
a
p
te

d
fr

om
h
tt

p
:/

/w
w
w

.
c
it

.g
u

.e
du

.a
u
/˜

an
th

on
y
/
in

fo
/
gr

a
p
h
ic

s/
br

es
en

ha
m

.p
ro

cs
v
o
id

d
ra

w
li

n
e

(i
n
t

x1
,

in
t

y1
,

in
t

z1
,

in
t

x2
,

in
t

y2
,

in
t

z2
,

fl
o
a
t

re
d

,
fl

o
a
t

gr
ee

n
,

fl
o
a
t

b
lu

e
,

fl
o
a
t

al
p
h
a

)
{

in
t

dx
,

dy
,

dz
,

l
,

m
,

n
,

x
in

c
,

y
in

c
,

z
in

c
,

er
r

1
,

er
r

2
,

dx
2

,
dy

2
,

d
z2

,
p

ix
el

x
,

p
ix

el
y

,
p

ix
el

z
;

p
ix

el
x

=
x1

;
p

ix
el

y
=

y1
;

p
ix

el
z

=
z1

;
dx

=
x2

−
x1

;
dy

=
y2

−
y1

;
d
z

=
z2

−
z1

;
x

in
c

=
(d

x
<

0)
?

−
1

:
1
;

l
=

ab
s(

dx
);

y
in

c
=

(d
y

<
0)

?
−

1
:

1
;

m
=

ab
s(

dy
);

z
in

c
=

(d
z

<
0)

?
−

1
:

1
;

n
=

ab
s(

d
z

);
d
x2

=
l

<
<

1
;

d
y2

=
m

<
<

1
;

B.3 Program Code 58

d
z2

=
n

<
<

1
;

if
((

l
>

=
m

)
&
&

(
l

>
=

n
))

{
er

r
1

=
d
y2

−
l;

er
r

2
=

d
z2

−
l;

fo
r

(i
n
t

i
=

0
;

i
<

l;
i+

+
)
{

se
tp

ix
el

(
p

ix
el

x
,

p
ix

el
y

,
(U

in
t8

)
p

ix
el

z
,

re
d

,
gr

ee
n

,
b
lu

e
,

al
p
h
a

);
if

(
er

r
1

>
0)

{
p

ix
el

y
+
=

y
in

c
;

er
r

1
−

=
d
x2

;
} if

(
er

r
2

>
0)

{
p

ix
el

z
+
=

z
in

c
;

er
r

2
−

=
d
x2

;
} er

r
1

+
=

d
y2

;
er

r
2

+
=

d
z2

;
p

ix
el

x
+
=

x
in

c
;

}
}

e
ls

e
if

((
m

>
=

l)
&
&

(m
>

=
n

))
{

er
r

1
=

d
x2

−
m

;
er

r
2

=
d
z2

−
m

;
fo

r
(i

n
t

i
=

0
;

i
<

m
;

i+
+

)
{

se
tp

ix
el

(
p

ix
el

x
,

p
ix

el
y

,
(U

in
t8

)
p

ix
el

z
,

re
d

,
gr

ee
n

,
b
lu

e
,

al
p
h
a

);
if

(
er

r
1

>
0)

{
p

ix
el

x
+
=

x
in

c
;

er
r

1
−

=
d
y2

;
} if

(
er

r
2

>
0)

{
p

ix
el

z
+
=

z
in

c
;

er
r

2
−

=
d
y2

;
} er

r
1

+
=

d
x2

;
er

r
2

+
=

d
z2

;
p

ix
el

y
+
=

y
in

c
;

}

B.3 Program Code 59

}
e
ls

e
{

er
r

1
=

d
y2

−
n

;
er

r
2

=
d
x2

−
n

;
fo

r
(i

n
t

i
=

0
;

i
<

n
;

i+
+

)
{

se
tp

ix
el

(
p

ix
el

x
,

p
ix

el
y

,
(U

in
t8

)
p

ix
el

z
,

re
d

,
gr

ee
n

,
b
lu

e
,

al
p
h
a

);
if

(
er

r
1

>
0)

{
p

ix
el

y
+
=

y
in

c
;

er
r

1
−

=
d
z2

;
} if

(
er

r
2

>
0)

{
p

ix
el

x
+
=

x
in

c
;

er
r

2
−

=
d
z2

;
} er

r
1

+
=

d
y2

;
er

r
2

+
=

d
x2

;
p

ix
el

z
+
=

z
in

c
;

}
} se

tp
ix

el
(
p

ix
el

x
,

p
ix

el
y

,
(U

in
t8

)
p

ix
el

z
,

re
d

,
gr

ee
n

,
b
lu

e
,

al
p
h
a

);
} //

SD
L

ev
en

t
h
a
n
d
le

r
b
o
o
l

p
o
ll

a
ct

io
n

()
{

SD
L

E
ve

nt
ev

en
t
;

st
a
ti

c
b
o
o
l

ig
n

o
re

=
fa

ls
e

;

w
h
il
e

(S
D

L
P

ol
lE

v
en

t(
&

ev
en

t
))

{
//

U
su

sa
ll

y
ch

a
n
ge

s
th

e
vi

ew
sw

it
ch

(e
v
en

t
.t

y
p
e
)

{
ca

se
SD

L
Q

U
IT

:
//

W
he

n
q
u
it

ti
n

g
re

tu
rn

fa
ls

e
;

ca
se

SD
L

K
EY

D
O

W
N

:
sw

it
ch

(e
v
en

t
.k

ey
.k

ey
sy

m
.s

ym
)

{
ca

se
SD

LK
E
SC

A
P
E

:
//

F
or

q
u
it

B.3 Program Code 60

re
tu

rn
fa

ls
e

;
ca

se
SD

LK
K

P
0
:

re
se

tc
o
u

rs
e

(f
a
ls

e
,

fa
ls

e
,

tr
u
e

,
tr

u
e

,
tr

u
e

);
b
re

ak
;

ca
se

SD
LK

K
P
1
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,
−

1,
1

,
0
);

b
re

ak
;

ca
se

SD
LK

K
P
2
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,

0
,

1
,

0
);

b
re

ak
;

ca
se

SD
LK

K
P
3
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,

1
,

1
,

0
);

b
re

ak
;

ca
se

SD
LK

K
P
4
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,
−

1,
0

,
0
);

b
re

ak
;

ca
se

SD
LK

K
P
5
:

re
se

tc
o
u

rs
e

(f
a
ls

e
,

fa
ls

e
,

tr
u
e

,
tr

u
e

,
fa

ls
e

);
b
re

ak
;

ca
se

SD
LK

K
P
6
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,

1
,

0
,

0
);

b
re

ak
;

ca
se

SD
LK

K
P
7
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,
−

1,
−

1,
0
);

b
re

ak
;

ca
se

SD
LK

K
P
8
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,

0
,
−

1,
0
);

b
re

ak
;

ca
se

SD
LK

K
P
9
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,

1
,
−

1,
0
);

b
re

ak
;

ca
se

SD
LK

K
P

P
E
R

IO
D

:
re

se
tc

o
u

rs
e

(t
ru

e
,

tr
u
e

,
tr

u
e

,
tr

u
e

,
tr

u
e

);
b
re

ak
;

ca
se

SD
LK

K
P

M
IN

U
S

:
ch

a
n

g
ec

o
u

rs
e

(0
,

0
,

0
,

0
,

−
1)

;
b
re

ak
;

B.3 Program Code 61

ca
se

SD
LK

K
P

P
LU

S
:

ch
a
n

g
ec

o
u

rs
e

(0
,

0
,

0
,

0
,

1
);

b
re

ak
;

ca
se

SD
LK

K
P

E
N

T
E
R

:
ch

a
n

g
ec

o
u

rs
e

(0
,

0
,

0
,

0
,

−
1)

;
b
re

ak
;

d
e
fa

u
lt

: b
re

ak
;

} b
re

ak
;

ca
se

SD
L

K
E
Y

U
P

:
sw

it
ch

(e
v
en

t
.k

ey
.k

ey
sy

m
.s

ym
)

{
ca

se
SD

LK
K

P
1
:

ca
se

SD
LK

K
P
2
:

ca
se

SD
LK

K
P
3
:

ca
se

SD
LK

K
P
4
:

ca
se

SD
LK

K
P
6
:

ca
se

SD
LK

K
P
7
:

ca
se

SD
LK

K
P
8
:

ca
se

SD
LK

K
P
9
:

ca
se

SD
LK

K
P

M
IN

U
S

:
ca

se
SD

LK
K

P
P
LU

S
:

ca
se

SD
LK

K
P

E
N

T
E
R

:
p
an

n
in

gh
oz

=
fa

ls
e

;
p

a
n

n
in

g
v
er

t
=

fa
ls

e
;

zo
om

in
g

=
fa

ls
e

;
m

ov
in

g
=

fa
ls

e
;

b
re

ak
;

d
e
fa

u
lt

: b
re

ak
;

} b
re

ak
;

ca
se

SD
L

M
O

U
SE

M
O

T
IO

N
:

if
(
ig

n
o
re

)
{

ig
n

o
re

=
fa

ls
e

;
co

n
ti

n
u
e

;
}

B.3 Program Code 62

ch
a
n

g
ec

o
u

rs
e
(e

v
en

t
.m

ot
io

n
.x

−
J

C
E
N

T
R

E
X

,
ev

en
t
.m

ot
io

n
.y

−
J

C
E
N

T
R

E
Y

,
0

,
0

,
0
);

ig
n

o
re

=
tr

u
e

;
SD

L
W

ar
pM

ou
se

(J
C

E
N

T
R

E
X

,
J

C
E
N

T
R

E
Y

);
b
re

ak
;

}
} re

tu
rn

tr
u
e

;
} //

H
og

th
e

fr
am

e
b
u
ff

e
r

fo
r

b
li

tt
in

g
v
o
id

g
et

sc
re

en
()

{
if

(!
SD

L
M

U
ST

LO
C
K

(
sc

re
en

))
{

if
(S

D
L

L
oc

k
S
u
rf

ac
e
(
sc

re
en

)
=
=

−
1)

{
co

u
t<

<
”S

D
L

S
cr

ee
n

L
oc

k
E

rr
or

:
”<

<
S
D

L
G

et
E

rr
or

()
<

<
en

d
l;

ex
it

(−
1)

;
}

}
} //

R
el

ea
se

th
e

fr
am

e
b
u
ff

e
r

v
o
id

fr
ee

sc
re

en
()

{
if

(!
SD

L
M

U
ST

LO
C
K

(
sc

re
en

))
{

S
D

L
U

n
lo

ck
S
u
rf

ac
e
(
sc

re
en

);
}

} //
C

a
ll

s
th

e
ro

u
ti

n
es

fo
r

u
p
d
a
ti

n
g

th
e

sc
re

en
v
o
id

d
ra

w
st

u
ff

()
{

g
et

sc
re

en
()

;

S
D

L
F

il
lR

ec
t(

sc
re

en
,

N
U

LL
,

SD
L

M
ap

R
G

B
A

(
sc

re
en

−>
fo

rm
at

,
0

,
0

,
0

,
2
5
5
))

;

fo
r

(i
n
t

x
=

0
;

x
<

J
SC

R
E
E
N

W
ID

T
H

;
x+

+
)
{

se
tp

ix
el

(x
,

0
,

0
,

28
,

28
,

2
8
);

se
tp

ix
el

(x
,

J
SC

R
E
E
N

H
E
IG

H
T

−
1

,
0

,
28

,
28

,
2
8
);

B.3 Program Code 63

} fo
r

(i
n
t

y
=

0
;

y
<

J
SC

R
E
E
N

H
E
IG

H
T

;
y+

+
)
{

se
tp

ix
el

(0
,

y
,

0
,

28
,

28
,

2
8
);

se
tp

ix
el

(J
SC

R
E
E
N

W
ID

T
H

−
1

,
y

,
0

,
28

,
28

,
2
8
);

} se
tp

ix
el

(0
,

0
,

0
,

25
5

,
25

5
,

2
5
5
);

se
tp

ix
el

(0
,

J
SC

R
E
E
N

H
E
IG

H
T

−
1

,
0

,
0

,
0

,
2
5
5
);

se
tp

ix
el

(J
SC

R
E
E
N

W
ID

T
H

−
1

,
J

SC
R

E
E
N

H
E
IG

H
T

−
1

,
0

,
25

5
,

0
,

0
);

se
tp

ix
el

(J
SC

R
E
E
N

W
ID

T
H

−
1

,
0

,
0

,
0

,
25

5
,

0
);

if
(m

ov
in

g
)

{
ch

a
n

g
ec

o
u

rs
e

(0
,

0
,

0
,

0
,

0
);

} en
ga

ge
()

;

fr
ee

sc
re

en
()

;

S
D

L
F

li
p

(
sc

re
en

);
S
D

L
G

L
S
w

ap
B

u
ff

er
s
()

;
//

F
or

d
o
u
bl

e−
b
u
ff

e
ri

n
g

} //
F

ir
in

g
up

in
t

m
ai

n
()

{

a
te

x
it

(
d

e
in

it
ia

li
se

);
if

(!
in

it
ia

li
se

()
)

{
co

u
t<

<
”
C

ou
ld

n
ot

in
it

ia
li

se
p
ro

gr
am

,
ex

it
in

g
..

.”
<
<

en
d

l;
ex

it
(−

1)
;

} w
h
il
e

(
p

o
ll

a
ct

io
n

()
)

{
d

ra
w

st
u

ff
()

;
}

}

B.3 Program Code 64

//
In

it
ia

li
se

th
e

vi
ew

v
o
id

se
tc

o
u

rs
e

()
{

//
N

o
rm

a
li

se
s

th
e

va
lu

es
fo

r
(u

n
si

g
n
ed

in
t

i
=

1
;

i
<

J
N

U
M

P
A

T
C

H
E
S

∗
J

N
U

M
C

U
R

V
E
S

∗
J

N
U

M
P
O

IN
T

S
∗

J
N

U
M

D
IM

E
N

T
IO

N
S

;
i

+
=

3)
{

((
d
o
u
b
le

∗)
p

a
tc

h
a
rr

a
y

)[
i]

−
=

1
.5

;
} re

se
tc

o
u

rs
e

(t
ru

e
,

tr
u
e

,
tr

u
e

,
tr

u
e

,
tr

u
e

);
} //

R
es

et
s

a
sp

ec
ts

o
f

th
e

vi
ew

v
o
id

re
se

tc
o
u

rs
e

(b
o
o
l

h
o
zr

o
ta

te
,

b
o
o
l

v
er

tr
o
ta

te
,

b
o
o
l

h
oz

p
an

,
b
o
o
l

v
er

tp
an

,
b
o
o
l

zo
om

am
ou

nt
)

{
b
o
o
l

ro
ta

ti
n

g
o
rz

o
o
m

in
g

=
fa

ls
e

;

if
(
h

o
zr

o
ta

te
)

{
ro

ta
te

h
o
z

=
0
;

ro
ta

ti
n

g
o
rz

o
o
m

in
g

=
tr

u
e

;
} if

(
v

er
tr

o
ta

te
)

{
ro

ta
te

v
er

t
=

0
;

ro
ta

ti
n

g
o
rz

o
o
m

in
g

=
tr

u
e

;
} if

(h
oz

p
an

)
{

p
an

h
oz

=
0
;

p
an

n
in

gh
oz

=
fa

ls
e

;
} if

(v
er

tp
an

)
{

p
an

v
er

t
=

0
;

p
a
n

n
in

g
v
er

t
=

fa
ls

e
;

} if
(z

oo
m

am
ou

nt
)

{
zo

om
=

1
;

zo
om

in
g

=
fa

ls
e

;
ro

ta
ti

n
g
o
rz

o
o
m

in
g

=
tr

u
e

;
}

B.3 Program Code 65

if
(p

an
n
in

gh
oz

=
=

fa
ls

e
&
&

p
a
n

n
in

g
v
er

t
=
=

fa
ls

e
&
&

zo
om

in
g

=
=

fa
ls

e
)

{
m

ov
in

g
=

fa
ls

e
;

} if
(
ro

ta
ti

n
g
o
rz

o
o
m

in
g

)
{

ch
a
n

g
ed

ir
ec

ti
o
n

()
;

} ch
a
n

g
ec

o
u

rs
e

(0
,

0
,

0
,

0
,

0
);

} //
U

pd
at

e
th

e
vi

ew
fo

r
sp

e
c
if

ic
va

lu
es

v
o
id

ch
a
n

g
ec

o
u

rs
e
(i

n
t

h
o
zr

o
ta

te
,

in
t

v
er

tr
o
ta

te
,

in
t

h
oz

p
an

,
in

t
v
er

tp
an

,
in

t
zo

om
am

ou
nt

)
{

st
a
ti

c
in

t
h
oz

pa
n
am

ou
nt

,
ve

rt
p
an

am
ou

n
t

,
zo

om
in

ga
m

ou
n
t
;

b
o
o
l

ro
ta

ti
n

g
o
rz

o
o
m

in
g

=
fa

ls
e

;

if
(
h

o
zr

o
ta

te
)

{
ro

ta
te

h
o
z

+
=

(d
o
u
b
le

)
h

o
zr

o
ta

te
∗

((
d
o
u
b
le

)J
M

O
U

SE
SE

N
SI

T
IV

IT
Y

/
1
0
0
0
);

ro
ta

ti
n

g
o
rz

o
o
m

in
g

=
tr

u
e

;
} if

(
v

er
tr

o
ta

te
)

{
ro

ta
te

v
er

t
+
=

(d
o
u
b
le

)
v

er
tr

o
ta

te
∗

((
d
o
u
b
le

)J
M

O
U

SE
SE

N
SI

T
IV

IT
Y

/
1
0
0
0
);

ro
ta

ti
n

g
o
rz

o
o
m

in
g

=
tr

u
e

;
} if

(h
oz

p
an

)
{

h
oz

p
an

am
ou

n
t

=
h
oz

p
an

;
p
an

n
in

gh
oz

=
tr

u
e

;
m

ov
in

g
=

tr
u
e

;
} if

(p
an

n
in

gh
oz

)
{

p
an

h
oz

−
=

h
oz

p
an

am
ou

n
t

∗
J

K
E

Y
SE

N
SI

T
IV

IT
Y

;
} if

(v
er

tp
an

)
{

ve
rt

p
an

am
ou

n
t

=
v
er

tp
an

;
p

a
n

n
in

g
v
er

t
=

tr
u
e

;
m

ov
in

g
=

tr
u
e

;
}

B.3 Program Code 66

if
(p

a
n

n
in

g
v
er

t)
{

p
an

v
er

t
−

=
ve

rt
p
an

am
ou

n
t

∗
J

K
E

Y
SE

N
SI

T
IV

IT
Y

;
} if

(z
oo

m
am

ou
nt

)
{

zo
om

in
ga

m
ou

n
t

=
zo

om
am

ou
nt

;
zo

om
in

g
=

tr
u
e

;
m

ov
in

g
=

tr
u
e

;
} if

(z
oo

m
in

g
)

{
zo

om
+
=

zo
om

in
ga

m
ou

n
t

∗
((

d
o
u
b
le

)J
K

E
Y

SE
N

SI
T

IV
IT

Y
/

1
3
0
);

ro
ta

ti
n

g
o
rz

o
o
m

in
g

=
tr

u
e

;
} if

(
ro

ta
ti

n
g
o
rz

o
o
m

in
g

)
{

ch
a
n

g
ed

ir
ec

ti
o
n

()
;

} fo
r

(u
n
si

g
n
ed

in
t

i
=

0
;

i
<

J
N

U
M

P
A

T
C

H
E
S

∗
J

N
U

M
C

U
R

V
E
S

∗
J

N
U

M
P
O

IN
T

S
∗

J
N

U
M

D
IM

E
N

T
IO

N
S

;
i

+
=

3)
{

((
U

in
t3

2
∗)

co
n

tr
o
lp

o
in

ts
)[

i]
=

J
C

E
N

T
R

E
X

−
(U

in
t3

2
)(

x
fe

rp
o
in

ts
[i

]
∗

((
fl

o
a
t

)J
SC

R
E
E
N

H
E
IG

H
T

/
6
))

+
p
an

h
oz

;
((

U
in

t3
2

∗)
co

n
tr

o
lp

o
in

ts
)[

i+
1]

=
J

C
E
N

T
R

E
Y

−
(U

in
t3

2
)(

x
fe

rp
o
in

ts
[i

+
1]

∗
((

fl
o
a
t

)J
SC

R
E
E
N

H
E
IG

H
T

/
6
))

+
p
an

v
er

t
;

((
U

in
t3

2
∗)

co
n

tr
o
lp

o
in

ts
)[

i+
2]

=
12

8
−

(U
in

t3
2

)(
x

fe
rp

o
in

ts
[i

+
2]

∗
(
fl

o
a
t

)3
2
);

}

} //
P

er
fo

rm
vi

ew
u
p
d
a
te

o
p
er

a
ti

o
n
s

v
o
id

ch
a
n

g
ed

ir
ec

ti
o
n

()
{

d
o
u
b
le

te
m

p
;

fo
r

(u
n
si

g
n
ed

in
t

i
=

0
;

i
<

J
N

U
M

P
A

T
C

H
E
S

∗
J

N
U

M
C

U
R

V
E
S

∗
J

N
U

M
P
O

IN
T

S
∗

J
N

U
M

D
IM

E
N

T
IO

N
S

;
i

+
=

3)
{

te
m

p
=

((
d
o
u
b
le

∗)
p

a
tc

h
a
rr

a
y

)[
i+

2]
∗

co
s
(
ro

ta
te

h
o
z

)
+

((
d
o
u
b
le

∗)
p

a
tc

h
a
rr

a
y

)[
i]

∗
si

n
(
ro

ta
te

h
o
z

);

x
fe

rp
o
in

ts
[i

]
=

((
(d

o
u
b
le

∗)
p

a
tc

h
a
rr

a
y

)[
i]

∗
co

s
(
ro

ta
te

h
o
z

)
−

((
d
o
u
b
le

∗)
p

a
tc

h
a
rr

a
y

)[
i+

2]
∗

si
n

(
ro

ta
te

h
o
z

))
∗

zo
om

;
x

fe
rp

o
in

ts
[i

+
1]

=
((

(d
o
u
b
le

∗)
p

a
tc

h
a
rr

a
y

)[
i+

1]
∗

co
s
(
ro

ta
te

v
er

t
)
−

te
m

p
∗

si
n

(
ro

ta
te

v
er

t
))

∗
zo

om
;

x
fe

rp
o
in

ts
[i

+
2]

=
te

m
p

∗
co

s
(
ro

ta
te

v
er

t
)

+
((

d
o
u
b
le

∗)
p

a
tc

h
a
rr

a
y

)[
i+

1]
∗

si
n

(
ro

ta
te

v
er

t
);

}
}

B.3 Program Code 67

//
S
et

ne
w

vi
ew

p
a
ra

m
et

er
s

v
o
id

en
ga

ge
()

{

fo
r

(i
n
t

x
=

0
;

x
<

J
SC

R
E
E
N

W
ID

T
H

;
x+

+
)
{

fo
r

(i
n
t

y
=

0
;

y
<

J
SC

R
E
E
N

H
E
IG

H
T

;
y+

+
)
{

d
ep

th
b

u
ff

er
[x

][
y

]
=

2
5
5
;

}
} fo

r
(u

n
si

g
n
ed

in
t

i
=

0
;

i
<

J
N

U
M

P
A

T
C

H
E
S
;

i+
+

)
{

d
ra

w
cu

rv
e
(
co

n
tr

o
lp

o
in

ts
[i

][
0

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
0

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
0

][
2

]
,

co
n

tr
o
lp

o
in

ts
[i

][
0

][
3

])
;

d
ra

w
cu

rv
e
(
co

n
tr

o
lp

o
in

ts
[i

][
3

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
3

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
3

][
2

]
,

co
n

tr
o
lp

o
in

ts
[i

][
3

][
3

])
;

d
ra

w
cu

rv
e
(
co

n
tr

o
lp

o
in

ts
[i

][
0

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
1

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
2

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
3

][
0

])
;

d
ra

w
cu

rv
e
(
co

n
tr

o
lp

o
in

ts
[i

][
0

][
3

]
,

co
n

tr
o
lp

o
in

ts
[i

][
1

][
3

]
,

co
n

tr
o
lp

o
in

ts
[i

][
2

][
3

]
,

co
n

tr
o
lp

o
in

ts
[i

][
3

][
3

])
;

} fo
r

(u
n
si

g
n
ed

in
t

i
=

0
;

i
<

J
N

U
M

P
A

T
C

H
E
S
;

i+
+

)
{

fo
r

(u
n
si

g
n
ed

in
t

j
=

0
;

j
<

J
N

U
M

C
U

R
V

E
S

;
j+

+
)
{

d
ra

w
li

n
e

(
co

n
tr

o
lp

o
in

ts
[i

][
j

][
0

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
0

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
0

][
2

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
3

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
3

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
3

][
2

]
,

0
.3

5
,

0
.3

5
,

1
,

0
.2

5
);

d
ra

w
li

n
e

(
co

n
tr

o
lp

o
in

ts
[i

][
j

][
1

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
1

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
1

][
2

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
2

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
2

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
2

][
2

]
,

0
.3

5
,

0
.3

5
,

1
,

0
.4

);
d

ra
w

li
n

e
(
co

n
tr

o
lp

o
in

ts
[i

][
j

][
2

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
2

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
2

][
2

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
3

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
3

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
3

][
2

]
,

0
.3

5
,

0
.3

5
,

1
,

0
.6

);
d

ra
w

li
n

e
(
co

n
tr

o
lp

o
in

ts
[i

][
j

][
0

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
0

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
0

][
2

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
1

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
1

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
1

][
2

]
,

0
.3

5
,

0
.3

5
,

1
,

0
.6

);

d
ra

w
li

n
e

(
co

n
tr

o
lp

o
in

ts
[i

][
0

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
0

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
0

][
j
][

2
]

,
co

n
tr

o
lp

o
in

ts
[i

][
3

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
3

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
3

][
j
][

2
]

,
0
.3

5
,

0
.3

5
,

1
,

0
.2

5
);

d
ra

w
li

n
e

(
co

n
tr

o
lp

o
in

ts
[i

][
1

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
1

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
1

][
j
][

2
]

,
co

n
tr

o
lp

o
in

ts
[i

][
2

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
2

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
2

][
j
][

2
]

,
0
.3

5
,

0
.3

5
,

1
,

0
.4

);
d

ra
w

li
n

e
(
co

n
tr

o
lp

o
in

ts
[i

][
2

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
2

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
2

][
j
][

2
]

,
co

n
tr

o
lp

o
in

ts
[i

][
3

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
3

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
3

][
j
][

2
]

,
0
.3

5
,

0
.3

5
,

1
,

0
.6

);
d

ra
w

li
n

e
(
co

n
tr

o
lp

o
in

ts
[i

][
0

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
0

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
0

][
j
][

2
]

,
co

n
tr

o
lp

o
in

ts
[i

][
1

][
j
][

0
]

,
co

n
tr

o
lp

o
in

ts
[i

][
1

][
j
][

1
]

,
co

n
tr

o
lp

o
in

ts
[i

][
1

][
j
][

2
]

,
0
.3

5
,

0
.3

5
,

1
,

0
.6

);
}

} fo
r

(u
n
si

g
n
ed

in
t

i
=

0
;

i
<

J
N

U
M

P
A

T
C

H
E
S
;

i+
+

)
{

fo
r

(u
n
si

g
n
ed

in
t

j
=

0
;

j
<

J
N

U
M

C
U

R
V

E
S

;
j+

+
)
{

fo
r

(u
n
si

g
n
ed

in
t

k
=

0
;

k
<

J
N

U
M

P
O

IN
T

S
;

k+
+

)
{

se
tp

ix
el

(
co

n
tr

o
lp

o
in

ts
[i

][
j

][
k

][
0

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
k

][
1

]
,

co
n

tr
o
lp

o
in

ts
[i

][
j

][
k

][
2

]
,

0
.5

,
1

,
0
.5

,
0

.5
);

}
}

B.3 Program Code 68

}
} //

T
he

gr
u
n
t

o
f

th
e

pr
og

ra
m

,
d
o
in

g
th

e
fo

rw
a
rd

st
ep

o
p
er

a
ti

o
n
s

v
o
id

d
ra

w
cu

rv
e
(
S

in
t3

2
pd

[]
,

S
in

t3
2

p
c

[]
,

S
in

t3
2

pb
[]

,
S

in
t3

2
pa

[]
)

{
S

in
t6

4
A

[3
]
,

B
[3

]
,

C
[3

]
,

D
[3

];
S

in
t6

4
a

[3
]
,

b
[3

]
,

c
[3

]
,

d
[3

];
S

in
t6

4
bb

[3
]
,

cc
[3

]
,

dd
[3

];
co

n
st

U
in

t6
4

n
=

4
,

N
=

1
6
;

S
in

t6
4

te
m

p1
,

te
m

p2
,

te
m

p3
;

fo
r

(u
n
si

g
n
ed

in
t

i
=

0
;

i
<

3
;

i+
+

)
{

te
m

p1
=

p
c

[i
]
−

pd
[i

];
te

m
p2

=
pb

[i
]
−

p
c

[i
];

te
m

p3
=

te
m

p2
−

te
m

p1
;

D
[i

]
=

pd
[i

];
C

[i
]

=
3

∗
te

m
p1

;
B

[i
]

=
3

∗
te

m
p3

;
A

[i
]

=
(p

a
[i

]
−

pb
[i

])
−

te
m

p2
−

te
m

p3
;

d
[i

]
=

D
[i

];
c

[i
]

=
C

[i
]+

(B
[i

]>
>

n
)+

((
A

[i
]>

>
n)

>
>

n
);

b
[i

]
=

2∗
B

[i
]+

((
6
∗A

[i
])

>
>

n
);

a
[i

]
=

(6
∗A

[i
])

>
>

n
;

} in
t

co
o
rd

s
[3

];
fo

r
(d

o
u
b
le

t
=

0
;

t
<

1
;

t+
=

0.
00

1)
{

fo
r

(i
n
t

co
=

0
;

co
<

3
;

co
+

+
)
{

//
D

is
p
la

y
th

e
tr

a
d
it

io
n

a
l

B
ez

ie
r

m
et

ho
d

//
co

o
rd

s
[c

o
]

=
(
in

t)
(A

[c
o

]∗
t∗

t∗
t

+
B

[c
o

]∗
t∗

t
+

C
[c

o
]∗

t
+

D
[c

o
])

;
//

D
is

p
la

y
it

in
fo

rw
a
rd

d
if

fe
re

n
c
e

fo
rm

by
tr

a
d
it

io
n

a
l

m
ea

ns
//

co
o
rd

s
[c

o
]

=
(
in

t
)(

(a
[c

o]
<

<
(n

+
n+

n
))

∗(
(
t∗

(t
−

1)
∗(

t−
2)

)/
6)

+
(b

[c
o]

<
<

(n
+
n+

n
))

∗(
(
t∗

(t
−

1)
)/

2)
+

(c
[c

o]
<

<
(n

+
n
))
∗

t
+

(d
[c

o]
<

<
n

))
;

}
se

tp
ix

el
(
co

o
rd

s
[0

]
,

co
o
rd

s
[1

]
,

co
o
rd

s
[2

]
,

25
5

,
12

8
,

1
2
8
);

B.3 Program Code 69

} co
n
st

u
n
si

g
n
ed

in
t

n
u
m

st
ep

s
=

1
<
<

n
;

fo
r

(u
n
si

g
n
ed

in
t

st
ep

=
0
;

st
ep

<
n
u
m

st
ep

s
;

st
ep

+
+

)
{

se
tp

ix
el

(d
[0

]
>
>

n
,

d
[1

]
>
>

n
,

d
[2

]
>
>

n
,

25
5

,
12

8
,

1
2
8
);

fo
r

(u
n
si

g
n
ed

in
t

i
=

0
;

i
<

3
;

i+
+

)
{

dd
[i

]
=

d
[i

]
+

(c
[i

]
>
>

n
);

cc
[i

]
=

c
[i

]
+

(b
[i

]
>
>

n
);

bb
[i

]
=

b
[i

]
+

a
[i

];

d
[i

]
=

dd
[i

];
c

[i
]

=
cc

[i
];

b
[i

]
=

bb
[i

];
}

}
}

	Abstract
	Acknowledgments
	Nomenclature
	Chapter Introduction
	3D Graphics Engines
	Brief Overview of the Dissertation

	Chapter A History of 3D Engines
	Polygonal Engines
	Evolution of Polygons
	Hardware Implementation

	Need for Change

	Chapter Curves and Curved Surfaces
	Curves

	Chapter Alternatives Engines
	Overview of Alternative Approaches
	Scan-line Rendering
	Forward Differencing
	`3D Pixels'
	Micropolygons

	Chapter Design
	Comparison of Alternatives
	Selection
	Integration with Adaptive Subdivision
	Adaptive Forward Differencing
	Other Factors and Optimisations

	Chapter Implementation
	Hardware and Software Implementation
	Hardware Selection
	Software Selection

	Overflow Prevention

	Chapter Conclusion
	References
	Appendix Project Specification
	Appendix Code Listing
	Makefile
	Data and Variables
	Program Code

