
Non-Functional Requirements in Business Process Modeling

Christopher J. Pavlovski and Joe Zou
IBM Corporation

55 Pyrmont Street, Sydney
NSW Australia

chris_pav @ au1.ibm.com, joezou @ au1.ibm.com

Abstract
Business process modeling entails the capture of a set of
tasks that invariably model the functional behavior of a
system. Another aspect of business process modeling
involves the accurate capture of operational behavior and
the associated process constraints. Whether the process is
automated or manual, such operational constraints and
behavior exist. This may include a variety of properties
including performance expectations, policy constraints,
and security controls. These characteristics later manifest
as the non-functional requirements of an intended system,
and often such information is generally identified at some
point after the business process modeling exercise. The
non-functional characteristics of the business are arguably
more difficult to capture in business process modeling,
since the focus of such methods is the modeling of
functional behavior. We propose how two new artifacts
may be applied to model the constraints associated with a
business process. This is the operating condition to
denote a business process constraint and the control case
to define controlling criteria to mitigate risk associated
with an operational condition. Modeling constraints in
this way provides an opportunity to capture these
characteristics of business process early in the systems
development life-cycle. This contributes to a model that
provides a more complete representation of the overall
business process. The methods will assist in mitigating
risk and facilitate the early discovery of non-functional
requirements during systems development. .

Keywords: Business Process Modeling, Conceptual
Control Case, Non-Functional Requirements, NFR.

1 Introduction
Conventional business process modeling includes the
capture of functional tasks and steps that form discrete
processes and sub-processes. While there is
comprehensive coverage of these functional
characteristics of the business, the non-functional
requirements (NFRs) of a particular business task are not
generally identified or captured. This may lead to key
information being overlooked or deferred. This is
particularly important when, from a business perspective,

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the 5th Asia-Pacific Conference on
Conceptual Modelling (APCCM2008), Wollongong, NSW,
Australia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 79. Editors, A. Hinze and M.
Kirchberg. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

the need to address non-functional characteristics is
business critical for certain tasks. This usually includes
completion time, security privileges, the availability of a
business process, and the regulatory or organization
constraints that apply.

Non-functional requirements are also referred to as
constraints, softgoals, and the quality attributes of a
system (Mylopoulos, Chung, and Nixon 1992). In the
context of business process modelling, the identification
of high-level business constraints or softgoals is the focus
for business users. Once the broad requirements are
captured within the business process, then subsequent
requirements analysis techniques will refine and specify
further the individual requirements (both functional and
non-functional). Given that business process modeling is
an initial step in the requirements engineering process,
the opportunity to capture some detail regarding the non-
functional requirements is available to the analyst.

It is generally understood that the Business Process
Modeling Notation (BPMN) does not support the
expression of non-functional business requirements
(Gorton and Reiff-Marganiec 2006). There is however,
some reference to performance related requirements
(OMG 2006). For instance the AdHocOrdering attribute
denotes whether a task is to be performed sequentially or
in parallel. This inherently addresses an operational
constraint to ensure that a particular service level, or
performance characteristic, is achieved with reference to
finite shared resources. The specifications also suggest
that groups may be used to highlight sections of a
diagram without adding constraints for performance,
which a sub-process would do. This implies that sub-
processes may add such information; however no
standardized approach for addressing the broader cast of
non-functional requirements is outlined.

At the business process modeling stage the constraints,
system qualities, and softgoals contribute to the definition
of the non-functional requirements. At this initial level of
requirements analysis, it would appear that a consistent
approach with functional requirements discovery would
necessitate the identification (or classification) of only the
high-level non-functional requirements. The idea of
using an operating condition and control case has been
introduced to model NFRs and have been applied to use
case modeling (Zou and Pavlovski 2006). The operating
condition and a high-level control case may also be used
at the business process modeling stage. More
specifically, we propose the use of these two constructs as
an extension to BPMN to model the non-functional
business requirements. Business process modeling
fundamentally involves the capture of dependency flow

within an ordered sequence of activities. However,
supporting information may be often overlooked. Using
the operating condition and control case to capture key
business constraints and operational qualities, will
facilitate the early detection of non-functional
requirements, laying the foundation for refining these
requirements. This notion of early requirements
engineering is also argued by Yu (1997).
In the next section, we provide background to the related
work and outline the motivations and contributions of our
work. Section 3.0 introduces the proposed constructs,
operating condition and control case, describing the
BPMN notation used. In section 4.0 a detailed example is
provided, illustrating how these artifacts may be used to
capture NFRs during business process modeling. Section
5.0 describes how the capture of NFRS during business
process modeling fits within an overall software
development life-cycle. Finally, in section 6.0 a summary
of the methods proposed here is given, we also discuss
areas of further work.

2 Related Work and Motivation
While there is considerable work on modeling non-
functional requirements and constraints in general process
models (Lu, Sadiq, et al. 2006, Mylopoulos, Chung, and
Nixon 1992, Bresciani and Giorgini 2002, Chung and
Nixon 1995), the different approaches vary considerably
in complexity and scope and may not be ideally suited for
the business end users. The theme of modeling the non-
functional properties of a system using BPMN is more
limited, although there are several related works (Hepp
and Roman 2007, Cysneiros and Yu 2004, Gorton and
Reiff-Marganiec 2006, Demirors, Gencel, and Tarhan
2003). Even though non-functional requirements are not
explicitly dealt with by BPMN, the straightforward
approach would be to associate annotated text artifacts to
activities where such constraints apply. This may be
considered an unstructured approach to initiating the
capture of these business constraints, as arbitrary
information may be captured at the discretion of the
analyst, and this may vary considerably or be excluded.
Furthermore, annotated text does not naturally support
machine interpretation.

Recker, Indulska, Rosemann and Green (2006)
comprehensively analyse BPMN using the Bunge-Wand-
Weber ontology for theoretical analysis and complement
this with an empirical survey. Their theoretical model
identifies nine different limits and shortcomings of
BPMN. Some of these limits relate to construct deficit,
suggesting that users are not able to apply existing BPMN
notations to fully describe certain real-world phenomena.
The authors also note that survey participants, with an IT
background, are in favour of more BPMN symbols with
extended expressiveness so they can add sufficient rigor
for making their models fit for use in software
implementation projects. We also suggest that a
construct deficit exists for modelling NFRs.

Rosemann, Recker, et al. (2006) propose the concept of
context-awareness process design in order to draw
attention to flexibility and adaptation in process
modeling. The authors reason that contextual changes,

(for example) such as increased incoming phone calls
during storm season require integration into process
design. Such context aware information clearly entails
non-functional requirements in process design.

Hepp and Roman (2007) point out that constraints are
relevant for modeling business processes, noting that the
process space is further influenced by constraints from
legal, regulatory, or managerial rules. The authors further
suggest that such sequencing in a workflow-centric model
may meet the constraint, but does not actually capture the
constraint. They observe that workflow-centric modeling
does not distinguish between the constraints of a process
and the execution of the process. It is suggested that
while some constraints are stored within the actual
process, in order to remove redundancy and improve
maintenance of such processes, such information is to be
stored separately. They discuss the relationship between
the workflow-centric representations and enterprise
ontology, proposing an ‘enterprise rules and constraints’
ontology to assist in identifying constraints.

Yu (1997) argues that a different approach for
requirements modeling is necessary in order to model
requirements during early phases of systems
development. He proposes the i* framework modelling
technique, with emphasis on “why” this is done from an
organisational perspective, rather than the “what” aspect
during requirement modelling. Cysneiros and Yu (2004)
also point out the need to model dependency, freedoms,
and constraints. They discuss agent autonomy and show
how the i* framework is used in a health care business
process scenario to illustrate how constraints such as
goal, task, and resource dependencies may be modeled. In
particular, they focus their attention on how softgoals,
such as response time, are addressed, observing that these
are qualitative in nature. They further discuss ideas on
how to map the i* model to BPMN, in order to capture
these constraints and behaviour. These techniques help to
elicit the business constraints. However, the mapping of
specific constraints and softgoals to BPMN is preliminary
and not well defined.

Since BPMN does not readily support the expression of
non-functional business requirements, a graphical
notation that builds upon BPMN for supporting
constraints such as policies has been proposed (Gorton
and Reiff-Marganiec 2006). This notation extends work
on policy enforcement languages for telecommunications
call control (Turner, Reiff-Marganiec, et al. 2006). The
authors suggest their notation is more specific to
modeling business processes to be used as web services.
Tasks are modeled as business activities, with input and
output controls added. Composite tasks are termed task
sub-maps and are subject to policies that alter the flow of
behaviour within the task map. Both data and control
flows are modeled, with several functions defined that
operate on control flows. The approach is comprehensive,
though this adds complexity to the business process
model, which may be more difficult to understand by
business users.

Other practical studies in eliciting both functional and
non-functional requirements from business processes
have also suggested that the non-functional requirements

may be determined by analysing implicit requirements of
the business process models (Demirors, Gencel, and
Tarhan 2003). Given that some literature is dedicated to
the constraints and operational performance requirements
that may be applied, it seems that a construct that can be
used with BPMN will be useful to system modelers and
analysts.

There is general acceptance that the key aspects of
process constraints, which manifest later as non-
functional requirements, are not properly addressed in
business process modeling. The previous works have
sought to address aspects of modeling constraints;
however, comprehensive coverage of all operational and
non-operational NFRs appears not to be addressed. Pesic
and Van Der Aalst (2006) point out that when constraints
are modeled by sequence of activities this leads to over
specification, which also leads to redundancy. Given that
a key objective of BPMN is to model business process in
a way that is easily understood by the business end users
and analysts, this motivates the need to model non-
functional business requirements whilst ensuring the
model remains uncomplicated.

In this paper, we suggest an extension to BPMN that
allows the business constraints and operational qualities,
(NFRs; i.e. context awareness), to be identified and
modeled during the early requirements engineering phase.
The proposed extensions build upon the previous work by
outlining artifacts that model both the business
constraints and operational behaviour, illustrating how
these artifacts are applied within a development life
cycle. Our work does not alter the semantic flow or
syntactic approach to business process modeling, but
rather complements the existing notation. The main idea
is to apply the operating condition and control case to
business process models. These constructs have been
proposed in use case modeling and the applicability of
this notation to business process modeling was also
suggested as further work. Using these artifacts in this
way provides an opportunity to identify, at a business
level, the non-functional properties of a business process.
Moreover, we view the main contribution as follows.

1. Illustrate how the operating condition and control
case are able to complement the existing BPMN
method to commence high-level capture of NFRs.

2. Show how this initial step fits naturally within a
software development life-cycle as a pre-cursor to
the subsequent requirements gathering techniques
and machine interpretation.

3. Formally define new BPMN artifacts for modeling
non-functional requirements that are associated to
business flow objects.

3 Modeling Business Process Constraints
At the business process phase of systems development the
functional requirements are captured using a business
process model. We wish to take advantage of the
opportunity to commence discovery of the non-functional
requirements during this process modeling phase. In
order to maintain the principle of being readable by
business users, the requirements gathering activity needs

to be conducted at a suitable level of detail. Hence the
intention is to bootstrap or initiate later phases of systems
development that specify and capture detailed non-
functional requirements.

In more specific terms, we purpose artifacts to identify
the set of constraints applicable to a business process.
This may include security policies, organisational
policies, regulatory constraints, and operational
performance characteristics. In order to model the non-
functional requirement that is associated with a process
task, the operating condition is used to denote that such a
constraint is associated to a flow object. The control case
is further used to define the business controls to be put in
place to manage the risk associated with the identified
operating condition. The level of requirements detail
identified during business process gathering will mandate
that only the high-level, or a conceptual, control case is
discovered at this stage.

3.1 Operating Condition and Control Case
There are two broad categories of non-functional
requirements, the operational and non-operational NFRs.
The operational NFRs typically include system
performance, reliability, security, response time, quality
of service, and system availability. The non-operational
NFRs generally include prescribed technology and
development standards, portability characteristics,
maintainability, and architectural constraints to be
applied. At the business process level, implementation
detail is not a concern, but rather the business related
constraints are to be understood. As such, the set of
business constraints (or operational conditions) that may
be discussed during business process modeling include:

• performance of a task;
• security policies that apply;
• availability of an activity or process;
• activity response time,
• organisational standards that apply;
• regulatory constraints; and
• quality of user interaction with activity.

This list is not intended to be exhaustive, rather it
provides context to the level of detail that is the focus at
the business process level. Using this context, we now
describe the two proposed artifacts, operating condition
and control case, for capturing high-level non-functional
requirements during business process modeling.

Activity Operating Condition

<<operates under>>

Figure 1: Operating Condition and Business Activity

The first step in defining non-functional requirements is
to identify the operating conditions. The operating
condition serves as a classification or grouping of
constraints, hence it is a high-level view of potential non-
functional requirements to be defined. At the business

process modeling stage, defining the operating conditions
blends with an evolutionary approach to identifying
requirements by establishing the groups and types of
constraints that are applicable to a business process. The
constraints listed above are applicable to an activity, and
we use the operating condition notation to denote the
business constraints that are associated with an activity,
see Figure 1.

The operating condition used in this way declares
additional semantic constraints for the process activity. It
is not intended to introduce or disrupt the sequenced flow
of activities, nor does it introduce or receive message
flows. The operating condition signifies an applicable
constraint and is an associated artifact to a business
activity.

When an activity is identified as having some associated
operating condition, it may be necessary to further define
control mechanisms that are to be put in place to control
the operating condition. This is in order to mitigate or
reduce the business risk; the ‘why’ aspect of requirements
engineering (Yu 1997). The additional control
mechanisms are defined within the control case. A
control case is modeled using both notation and text that
captures the additional properties of the business
constraint and the controls to be applied. Once again, at
the business process level only the high-level business
controls, that are relevant to the business process
analysed, need to be captured. As such, a conceptual (or
high-level) control case seems appropriate to specify the
control information. The control case may also be
considered an optional artifact to model, since it also
refines further, by providing additional information, the
identified operating condition. The diagram below
illustrates the notation for the control case, see Figure 2.

Activity

Operating Condition

<<operates under>>

Control Case

<<controlled by>>

Figure 2: Control Case and Operating Condition

The control case is associated with the operating
condition and is denoted as a shaded ellipse. The textual
description of the control is catalogued further as text.
This is shown in Figure 3. The control case captures the
business risk associated with the operating condition and
the business controls to be put in place to mitigate the
risk. For instance, non-compliance to a regulatory
constraint will result in financial penalty. A control may
be put in place to ensure conformance to additional
quality assurance standards is met, such as quality review,
employee training, or external audits/inspections. Such
controls will mitigate the risk of non-compliances and
reduce the business exposure. A further example is
availability of a business activity. For instance, the ability
to authorise and process payment card transactions is 24

× 7 for many institutions. Loss of such availability may
directly impact the revenue of the business, and hence
business controls may be established to ensure that the
business process has suitable redundancy applied. At the
business process level we make no assumption if the
process will be automated (implemented as an IT system)
or manual (with human resources). The operating
conditions and control cases identified and defined in this
way are equally applicable to implementation outcome.

Figure 3: Control Case

When modeling business constraints with operating
conditions, it is not necessary to name the associations in
practice. In addition, the control case may be optionally
used to capture additional information regarding the
controls to be applied, and is anticipated to appear in sub-
process diagrams rather than the top level business
process model. Taking the opportunity to model these
aspects of the business will provide critical input to
subsequent detail requirements analysis and brings
attention to business risk that is otherwise often
overlooked.

3.2 Artifact Definition and Formal Notation
In a formal sense we now describe the notation for the
modeling tools outlined in the previous section. Using
the BPMN as a well defined notation for business process
modeling, we define the artifacts operating condition and
control case as follows.

ArtifactType (DataObject | Group | Annotation |
Operating Condition | Control Case)

Attributes Description

ConstraintType
(organisational |
policy | security |
quality |
regulatory |
availability | other
): String

Name and type of the operating
condition. The business constraints
may be further sub-divided or
extended where appropriate. For
example quality may indicate a user
interaction or quality of service
constraint. Security may be
designated as confidentiality,
integrity, or authorisation.
Performance related constraints such
as response time may be added.

Table 1: Operating Condition Attributes

CONTROL CASE: Name of the Control Case

Operating condition: Name of associated operating
condition.

Description: Description of the risk due to the operating
condition and the focus area in mitigating the risk.

Business Constraint: Description of the constraint to the
business process.

Business Risk: Explanation of the business risk or threat.

Business Controls: Controls to be applied to mitigate
risk (e.g. ISO90001).

This extension is consistent with the standard notation, as
it is pointed out that the ArtifactType list may be
extended to include new types (OMG 2006). The
corresponding attribute definitions for the operating
condition and control case are shown in Table 1 and
Table 2 respectively.

Table 2: Control Case Attributes

Since only a high-level (conceptual) control case requires
definition during business process development, a subset
of the attributes of a control case (Zou and Pavlovski
2006) require definition. The following table describes
the attributes that require attention.

The symbols used for operating condition and control
case are defined artifacts in the process diagram; the core
BPMN notation from OMG (2006) is extended to include
the operating condition and control case as artifacts. The
additional information shown in Table 2 for the control
case would be catalogued elsewhere, and would
supplement the process diagrams.

3.3 BPMN Criteria for Artifact Definition
In terms of BPMN artifact definition, we assess whether
the principles for sequence flow and message flow
connection are preserved. OMG’s BPMN notation
specification allows the modeler to add new artifact types
to provide additional information on the process (OMG
2006). The operating condition provides additional
information regarding the environment state where the
process or activities operate. On the other hand, the
control case allows the process stakeholders to appreciate
the NFRs that mitigate the risk to the process or activity,
and the control mechanism to achieve the NFRs. The
BPMN principles for artifact sequence and message flow
connections are given below (OMG 2006). Moreover, an
artefact:

• must not be a target for sequence flow.
• must not be a source for sequence flow.
• must not be a target for message flow.
• must not be a source for message flow.

The proposed operating condition and control case do not
invalidate these principles. The proposed artifacts are
neither a target nor a source for message or sequence
flows. Rather the operating condition is associated with a
flow object to identify an operational constraint that
applies. In addition, the control case is associated with an
operating condition, depicting the controls to be placed
upon the process activity, via the operating condition, in
order to mitigate risk. It follows that the BPMN sequence
flow rules and message flow rules are satisfied.

4 Scenarios in Business Process Modeling
In this section we use a banking ATM business process as
an example to demonstrate how the operating condition
and control case can help business process analysts to
identify non-functional requirements to mitigate risk.

Figure 4: High Level ATM Business Process with Operating Condition

Attributes Description

Name: String Name is an attribute that is a text
description of the object.

Description:
String

Description of the control case and
the focus area in mitigating the risk.

Constraint:
String

Description of business constraint
identified by operating condition: i.e.
organisational, policy, security,
regulatory, etc.

Risk: String Description of the business risk.

Controls: String Description of controls to be applied
to mitigate business risk.

In practice, the analyst may model a business process that
comprises a single start node and trigger in one map. In
our example we use a combination of collaboration
processes, swimlanes, and message flows between pool
boundaries to provide context of complexity when
introducing the operating condition and control case.

Figure 4 shows a high level, simplified ATM business
process. From a goal oriented requirement engineering
perspective, the focus is on the enterprise goal and the
process goal (Kavakli and Loucopoulos 2005). A
reasonable enterprise goal in this case is attaining
customer satisfaction while reducing banking operational
cost. The process goal here is to satisfy the customer’s
ATM transaction requests in an efficient manner. When a
financial institute faces the task of implementing this
generic process, it will need to first analyse the specific
operating conditions around the process and understand
the risks involved with those conditions. Then it may
need to add control mechanisms to mitigate the business
risk for specific processes.

The physical location of the ATM and also the banks
automated IT systems determine the operating conditions
of the ATM process. For example, the operating
condition for an ATM inside the branch is very different
to one in a shopping mall; and it is quite different again
with one on a street as well. For instance, a shopping mall
ATM would expect a higher daily transaction volume,
therefore requiring more frequent stocking on notes.
Conversely, being situated on the street may expose
higher risk of theft and fraud which may require a
stronger degree of physical security controls.

Identifying the operating conditions that are associated
with the activity is a first step to collect the non-
functional requirements for the business process. We now
discuss how the operating condition is applied in Figure 4
below. In this example, two operating conditions are
added to the original BPMN diagram as follows.

Security Condition: This is the security policy
associated with the card authentication activity. This
means that additional authentication requirements apply

which may include pin strength policy such as a
minimum number of digits.

Load Condition: The transaction load condition is
associated with the three sub-processes: withdrawal,
enquiry and deposit. This has implications on the sub-
process response time to ensure that these are conducted
in a timely manner.

The two operating conditions illustrated may also be
associated with sub-processes that will typically require
further refinement. In general, at the highest level of the
business process model, it is anticipated that only the
operating condition would need to be illustrated. In
subsequent diagrams that decompose sub-processes, the
control cases may be added. The decision whether to add
a control case to the diagram is best decided by
considering whether the operating condition is sufficient
to draw attention to the non-functional requirement.
During business process modelling, in many instances the
type of business constraint will be well understood, such
as the security policy or authentication requirement. In
other cases, where variants exist or where the operating
condition may apply differently to a range of activities,
the control case will help to elicit and document these
variations in constraint, risk, and business controls.

Returning to the ATM example, we refine further the
NFRs by identifying additional operating conditions and
control cases while decomposing sub-processes. We
choose the cash withdraw sub-process as an example. In
Figure 5 below, the load condition (defined in Figure 4) is
further refined and associated with two activities: check
account balance and credit/debit account. A control case
is also associated with this operating condition, declaring
controls over response time for the load condition. A
security policy condition and control case is also defined
for these two activities to manage confidentiality. For
each control case defined, a textual description of the
control is catalogued further. The control case description
for ‘control confidentiality’ is shown in Figure 6. This
describes the constraints, risk to the business, and
business controls to be applied to mitigate that risk.

Figure 5: Operating Conditions and Control Cases in the Withdraw Sub Process

CONTROL CASE: Control Confidentiality

Operating Condition: Security Policy Condition.

Description: Confidentiality and integrity of sensitive
customer information is to be maintained during the
performance of the business process.

Business Constraint: Australia Payment Clearance
Association (APCA) has mandated 3DES encryption for
handling of sensitive personal data in ATM transactions.

Business Risk: Transmit sensitive data in plain text or
weak encryption such as DES will expose the business at
risk of non-compliance and potential litigation.

Business Controls: To mitigate the legal risk and
interoperability risk, adopt the mandated encryption
standards and supporting technology.
• For existing ATM in non-compliance, upgrade to

3DES.
• For new ATM, purchase ATM from the APCA

approved list.
• Adopt Remote Key Loading techniques.

Figure 6: Completed High Level Control Case

The approach outlined can be used to identify further
operating conditions and control cases for other sub-
processes as required. The control case specifies
additional granularity of information in an incremental
fashion. In general, a top-down process refinement will
be applied in an iterative and incremental fashion to
ensure all significant operating conditions and control
cases are captured.

5 Software Development Life Cycle Usage
We now illustrate how the use of the control case and
operating condition in business process analysis,
contributes to defining non-functional requirements as
part of an overall software development life-cycle. For
any software development methodology, whether it is
agile based or plan-driven, software development
involves essential activities such as requirement analysis,
design, implementation and test (Royce 1970, Boehm
1988). A BPM scenario also includes the feedback
control from runtime monitoring back to design (Muehlen
and Ho 2005).

In order to describe how the capture of NFRS during
business process modeling fits within an overall software
development life-cycle we adopt a generic method that
includes activities such as business analysis, requirement
definition, architecture and design, implementation,
testing, operation/maintenance and run time monitoring.
At each step we show how the identified business
constraints evolve further into detailed non-functional
requirements. In particular, business constraints identified
during business process analysis are used as input and
refined further to define non-functional requirements
during detailed requirements definition in subsequent
phases. The operating condition and control cases
defining NFRs are then applied to formalise the solution
architecture, may be machine interpreted to aid in

software construction, and are used to define acceptance
criteria for testing the solution.

Although the following describes the development
activities in a sequential manner, we do not assume that
the development of control case follows this strict
process. In fact, iterative and incremental development
within each step is likely to deliver the best outcome, as
advocated by the agile software development approach.

5.1 Business Analysis
At the early requirement elicitation stage, various
techniques such as interviewing, scenarios analysis, soft
systems methods, prototyping and participant observation
can be used to collect requirements (Kotonya and
Sommerville 1998). Through those techniques, the
analyst will come up with some raw requirement
information such as business goals, process models, KPIs,
standards and regulation constraints.

At the business analysis phase the focus is to identify the
high-level functional requirements that are essential to
achieve the business goals. On the other hand, it is also
equally important to identify the major risks that may
undermine those business goals. The risks stem from the
business constraints, which manifest in various operating
conditions in which the business process has context. The
non-functional requirements describe the controls
required to manage the risks. Thus a business model
presented in BPMN notation provides a suitable starting
point to identify the major operating conditions and the
high-level control cases for managing the identified risks.

The high-level operating conditions and control cases can
be added to the BPMN model through the proposed new
artifacts, thus the business constraints are captured in the
process model and communicated across various
stakeholders. At this stage, only the key operating
conditions and high-level control cases need to be
highlighted in the process model, as the objective is not to
compromise the readability of the BPMN model.

There are several benefits in using the proposed artifacts,
in comparison to annotated text in BPMN. The analyst is
guided to consider the constraints in a more structured
and rigorous manner. This is in terms of the operating
conditions associated with the process and the related
risks, rather than drawing non-functional requirements
based on tacit knowledge from past experience or ad-hoc
estimates. Annotated text is unstructured meaning that
arbitrary information may be captured at the discretion of
the analyst, and this may vary considerably or be
excluded. The formal artifacts can be machine interpreted
for conversion into code fragments (see 5.4 and 6.1); such
a task may not be possible with free form annotated text.
In addition, the operating condition and control case
artifacts provide a vehicle for business analysts to discuss
and commence capture of non-functional requirements,
which would otherwise be left to later phases such as the
architecture, design, or construction stage.

Once again, it is important to note that only the high-level
control cases are identified at this phase. This constitutes
a small sub-set of the total control cases that will be

defined in the next phase, detailed requirements
definition. This also ensures that an original objective of
BPM is preserved; to model organisation business
processes while hiding implementation detail.
Additionally, the identified operating conditions serve as
the primary mechanism for identifying the complete set
of control cases during the detailed requirements
definition. In the next phase, the analyst would review
each identified operating condition and determine what
are all the controls required to manage the business risk.

5.2 Detailed Requirements Definition
During the detailed requirements definition stage, both
the functional and non-functional requirements are
refined and captured in a precise form. In the case of
functional requirements, the common practice is to use a
use case model to capture the requirements. For non-
functional requirements, the high-level control cases
identified in the business analysis stage can be further
elaborated to a detailed control case model (Zou and
Pavlovski 2006). The fundamental approach involves
reviewing each identified operating condition from the
business process model and determining all possible
associated control cases. Some of the key control cases
have been already identified by the business process
model, and these serve as starting points to identify the
complete set of control cases required to manage the
business risks. During this process new operating
conditions may also be revealed.

The elaboration process adopts a risk-based decision-
making (Haimes 1998) approach to set realistic targets.
The detailed control case model provides a formal
structure that incorporates detailed operating conditions,
risk ranking, quantifiable targets for operational NFRs
such as availability, response time and throughput, policy
or procedure for non-operational NFRs and finally the
residue risk. The control case can be associated with use
case through the operating condition of the use case. It
can also capture cross system non-functional
requirements, which are not specific to a particular use
case. Thus the combination of the use case model and the
control case model provides a complete picture on the
system requirements.

5.3 Architecture and Design
At the architecture and design phase, the NFRs captured
in control cases will be evolved from “what” to “how”.
Control mechanisms and required technology for
achieving the targets will be defined by the control case.
For example, security access control technology will be
used to achieve security requirements. Clustering, load
balancing and caching technology will be used to achieve
availability and performance targets. The control
mechanism provides indicative costing, which allows the
analyst to conduct risk/cost trade-off and re-examine the
defined NFRs.

The control case model will provide the basis for the
architect to choose the technology standards, platforms
and existing components. This also provides input when
designing the security architecture, application

deployment, and physical hardware architecture. In
particular, the non-functional requirements enable the
designer to address the operational aspects of the
architecture such as scalability, load balancing,
redundancy and fail-over.

5.4 Construction
During the construction phase, the software developer
builds the components based upon the design
specifications developed from use case requirements.
Where available, the control cases defined from BPMN
models can be machine interpreted for conversion into
comments, code fragments, or XML policies for inclusion
to generated code (also an area of further work; see
section 6.1). This also applies to detailed control cases
defined during the requirements definition phase using
suitable control case modelling tools.

The associated control case will remind the developer that
there are acceptance criteria to be met in terms of non-
functional requirements. For example, this will clearly
assist in coding decisions where key performance criteria,
such as response time, must be met. Thus the non-
functional requirements will not be overlooked by
developers.

5.5 Testing
Often the quality of the software has a direct relationship
to the quality of the test case prepared. This may be true
no matter which software development approach is taken,
whether it is test-driven development or traditional test
cycle during a waterfall SDLC. Traditionally, the
functional test case is developed based on a use case.
However, there is a gap in developing the test cases such
as performance and security. The gap can be addressed by
the control case model developed during the requirement
definition stage. The test case and acceptance criteria may
be based upon the defined control cases and provide a
consistent mechanism for communicating the non-
functional requirements during systems testing.

5.6 Operation, Maintenance, and Monitoring
During operation and maintenance, the service level
agreement is an important issue for all the stakeholders.
The control case can be used as an input to various parties
to negotiate the service level agreement. In order to
observe and record the system behaviour in production,
additional tools are deployed to monitor the launched
system. The intent is to observe certain operating
conditions and measure the real performance of the
system. Operating conditions and control cases prepared
during the requirement analysis and definition stage can
be used as input when formulating the monitoring
solution. For instance, the proposed artefacts help to
identify the key areas that require reporting and
measurement.

5.7 Summary of Expected Benefits
In summary, we note that the notion of operating
condition and control case provides input to each stage of
a software development lifecycle. In addition, the

artefacts may be used to contribute to project estimation,
preparation of work task break downs, and assist in risk
management. Muehlen and Ho (2005) identify various
risks in each stage as well as during stage transition of the
BPM lifecycle. The identified risks that are associated
with non-functional requirements are mainly in categories
of communication, information and system/technology:

• Lack of communication between stakeholders,
• Inadequate information,
• Lack of technology flexibility,
• Lack of technology compatibility, and
• Lack of technology scalability.

The control case approach can improve the
communication of NFRs between stakeholders. It also
captures the important NFR information both in
operational and non-operational categories. As such we
suggest that by adding the operating condition and control
case artifacts to the BPMN model, risk can be mitigated
in BPM, as well as facilitating NFR discovery during the
software development lifecycle.

Furthermore, there are several advantages using the
proposed artifacts over annotated text. Annotated text is
free from and may not be directly useful to machine
interpretation for code generation. While NFRs captured
as annotated text may be converted to documentation
elements, the proposed new artifacts also provide a
structure that supports a more formal conversion to
policies and code fragments for use during software
construction. In addition, these may be used in decisions
steps during detailed requirements, architecture, testing
and operation and maintenance.

6 Conclusions and Discussion
At the top-level business process model it is appropriate
to depict the operating condition. As the business
processes are decomposed further, the control case may
be introduced to increase the granularity of information.
The addition of the operating condition and high-level
control case to the business process model provides a
framework for capturing business constraints and
operational qualities. The use of an operating condition
within BPMN allows business users to express and
discuss these requirements. This facilitates the capture of
non-functional requirements, providing early visibility to
all business stakeholders.

A key preliminary step in determining non-functional
requirements is to identify the type and categories of
NFRs. The operating condition is the first (high-level)
step to identify such business requirements.
Incorporating this construct within BPMN blends well
with the overall approach of iterative decomposition of
requirements, providing a fundamental and preliminary
step to identify and communicate these characteristics of
business activity. Subsequent methods, such as
requirements design by use case, are then able to extend
the process models in a natural way to further refine the
detailed requirements.

The control case may also be introduced at a high-level to
further define the relevant business control to mitigate
risk. As a pre-cursor, the high-level control case provides

a framework for further definition as a more fully
developed control case is developed in later life cycle
phases. A key step to be able to describe adequate control
cases is an identified catalogue of operating conditions.

As suggested in BPMN, additional standard artifacts may
be added to the BPMN specification (OMG 2006). Taken
together, the modeled business process provides early
visibility of the complete set of requirements to end users,
business stakeholders, business analysts and system
implementers. This provides an approach to model NFRs
in early phase requirement engineering as argued by Yu
(1997); the control case addresses ‘why’ the requirement
is captured, by defining the risks, and the operating
condition expresses ‘what’ is to be modeled. It is hoped
that the operating condition and control case are suitable
candidates for addressing the key task of discovering
business constraints during process modeling, laying the
foundation for defining detailed non-functional
requirements in subsequent phases.

6.1 Further Work
The mapping of the proposed artifacts to both
documentation elements and source code is an area of
further work. In the straightforward case, constraints and
operating conditions can be converted and included as
comments in generated source code as well as source
code stubs to assist in ensuring performance is addressed
by the developer. For example, a response time constraint
associated with an activity may be transformed to a
policy that controls how invocation of external partners
may be achieved, forcing a synchronous only call to
guarantee a certain response time.

There are also several additional areas where more
intelligent conversion may be applied. A security policy
constraint may be converted to a WS-SecurityPolicy
(OASIS 2005) for use in runtime security policy
enforcement. A further area involves using the artifacts
to create QoS policy assertions, under the policy assertion
guidelines (W3C 2007), which can then be used in
runtime monitoring and performance control. For
instance, during peak loads additional processes may be
spawned to cater for increasing transaction conditions.
These and other artefact conversions are suggested areas
of further work.

As a further area of work, the control case and operating
condition may be used as a vehicle to integrate non-
functional requirements as context information
(Rosemann, Recker, et al. 2006) within BPMN. For
instance, the operating condition is a category of
environmental context, whereas the control case can fall
into either external context or internal context. These two
artifacts add clarity to the context-awareness process
model as they reveal the rationale and motivation of the
risk mitigation in process modeling.

Finally, empirical studies which provide evidence of the
efficacy of the extensions are suggested as further work.
An appropriate form may be case studies of actual IT
projects. In addition, surveys may be conducted with
PBMN modelers to understand their perceptions towards
these proposed techniques.

6.2 Acknowledgements
We thank Kylie Skeahan for her feedback and discussion
on the modeling techniques presented in this paper. We
also thank the anonymous reviewers for their feedback
and suggested changes to the paper, in particular the
related work and motivations.

7 References
Boehm, B. (1988): A Spiral Model of Software

Development and Enhancement. In Computer, 21(5):61
– 72, IEEE Computer Society Press.

Bresciani, P. and Giorgini, P. (2002): The TROPOS
Analysis Process as Graph Transformation System.
Proc. of the OOPSLA Workshop on Agent-Oriented
Methodologies (AOM-2002), Seattle, USA, 1-12.

Chung, L. and Nixon, B. (1995): Dealing with Non-
Functional Requirements: Three Experimental Studies
of a Process-Oriented Approach. Proc. of IEEE 17th
International Conference on Software Engineering,
Seattle, USA, 25-37.

Cysneiros, L.M. and Yu, E. (2004): Addressing Agent
Autonomy in Business Process Management - with
Case Studies on the Patient Discharge Process. Proc. of
the Information Resources Management Association
Conference, New Orleans, USA.

Demirors, O., Gencel, C., and Tarhan, A. (2003):
Utilizing Business Process Models for Requirements
Elicitation. Proc. of 29th Euromicro Conference: New
Waves in Systems Architecture, 409-412, IEEE
Computer Society.

Gorton, S. and Reiff-Marganiec, S. (2006): Towards a
Task-Oriented, Policy-Driven Business Requirements
Specification for Web Services. Proc. of 4th
International Conference on Business Process
Management, Vienna, Austria, 465-470.

Haimes, Y. (1998): Risk Modeling, Assessment, and
Management, John Wiley & Sons Publishing.

Hepp, M. and Roman, D. (2007): An Ontology
Framework for Semantic Business Process
Management. Proc. of International Conference on
Wirtschaftsinformatik (Commercial Informatics), WI,
Karlsruhe, Germany.

Kavakli, E. and Loucopoulos, P. (2005): Goal Modeling
in Requirements Engineering: Analysis and Critique of
Current Methods. In Information Modeling Methods
and Methodologies: Advanced Topics of Database
Research, 102-124, IGI Publishing.

Kotonya, G. and Sommerville, I. (1998): Requirements
Engineering Processes and Techniques. UK, John
Wiley & Sons Publishing.

Lu, R., Sadiq, S., Padmanabhan, V., and Governatori, G.
(2006): Using a Temporal Constraint Network for

Business Process Execution. Proc. of 17th Australasian
Database Conference, Hobart, Australia, 49:157–166,
ACM Conference Series.

Muehlen, M. and Ho, D.T.Y. (2005): Risk Management
in the BPM Lifecycle. In Business Process
Management Workshops, International Workshops,
Berlin, 3812:454-466, Springer.

Mylopoulos, J., Chung, L., and Nixon, B. (1992):
Representing and Using Non-Functional Requirements:
A Process-Oriented Approach. In Software
Engineering, 18(6):483-497, University of Toronto.

OASIS (2005): Web Services Security Policy Language
(WS-SecurityPolicy). V 1.1, OASIS. http://www.oasis-
open.org/committees/download.php/16569/.

OMG (2006): Business Process Modeling Notation
Specification. OMG Final Adopted Specification,
Object Management Group (OMG).

Pesic, M. and Van Der Aalst, W.M.P. (2006): A
Declarative Approach for Flexible Business Processes.
In Workshop on Dynamic Process Management (DPM
2006), LNCS, Vienna, Austria, 4103:169-180,
Springer-Verlag.

Recker, J., Indulska, M., Rosemann, M., and Green, P.
(2006): How Good is BPMN Really? Insights from
Theory and Practice. Proc. of the 14th European
Conference on Information Systems. Goeteborg,
Sweden, pp. 1582-1593.

Rosemann, M., Recker, J., Flender, C., and Ansell, P.
(2006): Understanding Context-Awareness in Business
Process Design. Proc. of the 17th Australasian
Conference on Information Systems. Australia
Association for Information, Adelaide, Australia.

Royce, W. (1970): Managing the Development of Large
Software Systems. Proc. of IEEE WESCON, 1-9, IEEE.

Turner, K.J., Reiff-Marganiec, S., et al. (2006): Policy
support for call control. In Computer Standards and
Interfaces, 28(6):635-649, Elsevier Science.

W3C (2007): Web Services Policy 1.5 - Guidelines for
Policy Assertion Authors. W3C Working Draft 30
March 2007, http://www.w3.org/TR/ws-policy-
guidelines/#WS-SecurityPolicy.

Yu, E. (1997): Towards Modelling and Reasoning
Support for Early-Phase Requirements Engineering.
Proc. of the 3rd IEEE International Symposium on
Requirements Engineering, 226-235.

Zou, J. and Pavlovski, C.J. (2006): Modeling
Architectural Non Functional Requirements: From Use
Case to Control Case, Proc. of IEEE International
Conference on e-Business Engineering (ICEBE ’06),
Shanghai, China, 315-322, IEEE.

