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Abstract

We discuss ways to effectively parallelize the sub-
set construction algorithm, which is used to con-
vert non-deterministic finite automata (NFAs) to
deterministic finite automata (DFAs). This con-
version is at the heart of string pattern match-
ing based on regular expressions and thus has
many applications in text processing, compilers,
scripting languages and web browsers, security and
more recently also with DNA sequence analysis.
We discuss sources of parallelism in the sequen-
tial algorithm and their profitability on shared-
memory multicore architectures. Our NFA and
DFA data-structures are designed to improve scal-
ability and keep communication and synchroniza-
tion overhead to a minimum. We present three dif-
ferent ways for synchronization; the performance
of our non-blocking synchronization based on a
compare-and-swap (CAS) primitive compares fa-
vorably to a lock-based approach. We consider
structural NFA properties and their relationship
to scalability on highly-parallel multicore architec-
tures. We demonstrate the efficiency of our paral-
lel subset construction algorithm through several
benchmarks run on a 4-CPU (40 cores) node of the
Intel Manycore Testing Lab. Achieved speedups
are up to a factor of 32x with 40 cores.

Keywords: Subset construction, shared-memory
multicore architectures, non-blocking synchroniza-
tion, concurrent data-structures

1 Introduction

The subset construction algorithm converts an
NFA to the corresponding DFA. Subset construc-
tion is frequently applied with string pattern
matching based on regular expressions. A stan-
dard technique to match a regular expression on
an input text is to convert the regular expression to
an NFA using Thompson’s construction, perform
subset construction to derive a DFA, and minimize
the DFA. The DFA is then run on the input text.
If the DFA accepts its input, the input is known
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to be matched by the regular expression. This
method has been described by Aho et al. (1986).

With multicores becoming the predominant
computer architecture, it is desirable to parallelize
the subset construction algorithm. Although al-
gorithms for DFA state minimization and DFA
matching (discussed in Section 7) exist, to the best
of our knowledge this is the first attempt to par-
allelize subset construction.

We parallelize subset construction for shared-
memory multicore architectures. We analyze the
different potential sources of parallelism contained
in the sequential subset construction algorithm
and compare their profitabilities. We devise an
efficient parallel version of the subset construc-
tion algorithm, which guarantees load-balance and
provides good scalability. We state the data-
structures devised for the parallelization, which
help improve the efficiency of the operations per-
formed on shared-memory multicore architectures.
To ensure correctness of the algorithm while not
compromising on parallelism, we developed effi-
cient synchronization methods. The performance
of our non-blocking synchronization based on a
CAS primitive compares favorably to a lock-based
approach. We consider structural NFA proper-
ties and their relationship to scalability on highly-
parallel multicore architectures. We demonstrate
the efficiency of our parallel subset construction
algorithm through several benchmarks run on a 4-
CPU (40 cores) node of the Intel Manycore Testing
Lab (accessed Aug. 2012).

This paper is organized as follows. In Sec-
tion 2, we present sequential subset construction
and related background material. In Section 3,
we identify potential sources of parallelism and
their profitability in the sequential subset con-
struction algorithm. In Section 4 we introduce the
algorithm’s data-structures for supporting scala-
bility on shared-memory multicore architectures.
Section 5 discusses synchronization and the algo-
rithm’s termination condition. Section 6 provides
our experimental results. We discuss the related
work in Section 7 and draw our conclusions in Sec-
tion 8.

2 Background

Let Σ denote a finite alphabet of characters and Σ∗

denote the set of all strings over Σ. Cardinality |Σ|
denotes the number of characters in Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes
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Figure 1: An example NFA (above), and its DFA converted through subset construction (below). DFA
state q0 represents NFA states s0 and s1, while DFA state q1 represents NFA states s0, s1 and s2.

the empty language and the symbol ǫ denotes the
null string. A finite automaton A is specified by
a tuple (Q,Σ, δ, q0, F ), where Q is a finite set of
states, Σ is an input alphabet, δ : Q × Σ → 2Q is
a transition function, q0 ∈ Q is the start state and
F ⊆ Q is a set of final states. We define A to be
a DFA if δ is a transition function of Q × Σ → Q
and δ(q, a) is a singleton set for any q ∈ Q and
a ∈ Σ. Otherwise, it is classified as an NFA. Let
|Q| be the number of states in Q. By the density of
an automaton, we denote the ratio of the number
of transitions in a given NFA to the number of
transitions of a fully connected DFA of the same
number of states and symbols (Leslie 1995). For
a comprehensive background on automata theory
we refer to (Hopcroft & Ullman 1979, Wood 1987).

2.1 Sequential Subset Construction

Algorithm 1 depicts the sequential subset con-
struction algorithm from Hopcroft & Ullman
(1979). Figure 1 depicts a sample NFA and
the DFA computed by the subset construction
algorithm. To begin with, we get the start
state derived from s0 of the NFA. i.e., we take
S0 = ǫ-closure(s0) first. Then we compute
ǫ-closure(Move(s0, σ)) for each σ ∈ Σ. If we get
several states at once as a result of the computa-
tion, we make a set with them and treat it as a
single DFA state. For a single DFA state T , we
find all the states which can be reached by each
σ ∈ Σ from all the elements of T . Then we com-
pute ǫ-closures for the results, and this creates a
new DFA state. If this DFA state has not been
appeared before, we add it to the DFA table. This
process is iterated until no more DFA states are
added.

To determine the time complexity for this al-
gorithm, we consider the complexity of comput-
ing ǫ-closure(s0) first. Because s0 may have
(|Q| − 1) ǫ-transitions, we conclude that comput-
ing ǫ-closure(s0) takes O(|Q| − 1). Then the pro-
cess without set equality test is computed with an

O(|Σ| × |Q| × (|Q| − 1)× (2|Q| − 1))

time complexity. Now what we have to do is find-
ing the factors which can be parallelized to reduce
the complexity. We discuss the details in the fol-
lowing section.

Algorithm 1: Sequential Subset Construc-
tion
Input : NFA
Output: DFA states Dstates,

DFA transition function δ
Dstates← {};1

Add ǫ-closure(s0) as an unmarked DFA2

state to Dstates;
while there is an unmarked state T in3

Dstates do
mark T ;4

for each σ ∈ Σ do5

U ← ǫ-closure(Move(T, σ));6

if U /∈ Dstates then7

add T as an unmarked DFA state8

to Dstates;

δ[T, σ]← U ;9

3 Potential Sources of Parallelism With
Sequential Subset Construction

In this section we identify sources of parallelism
and their profitability with the sequential subset
construction algorithm.

Source 1: The first opportunity for paral-
lelization is on symbols σ ∈ Σ (line 5 in Algo-
rithm 1). Hence, this method is a task paralleliza-
tion. After checking if there exists an unmarked
state T in Dstates , what we have to do is taking its
ǫ-closure(Move(T, σ)) for each σ ∈ Σ, which is de-
scribed in line 6 to line 9 of Algorithm 1. With the
sequential version, this part must be computed |Σ|
times, i.e., for each σ ∈ Σ. However, because there
is no dependency upon symbols, we may partition
the symbols in Σ among the available processors
to be processed in parallel. Thus, the time com-
plexity becomes

O(

⌈

|Σ|

p

⌉

× |Q| × (|Q| − 1)× (2|Q| − 1)).

Source 2: The second opportunity is parallelizing
the outer while-loop (line 3) of the sequential algo-
rithm. Until the algorithm terminates, Dstates has
at least one DFA state at the beginning of every
iteration. Thus, for every iteration we partition
the states in Dstates among processors to paral-
lelize the algorithm. This requires each processor
to deal with the steps from line 4 to 9. A step for
counting the number of unmarked states in Dstates
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must be added right after entering the while loop.
The result is used for determining the number of
to-be-processed DFA states for each processor. For
marking that follows after distribution, we should
allow all processors to access Dstates . Time com-
plexity for this algorithm becomes

O(|Σ| × |Q| × (|Q| − 1)×

⌈

2|Q| − 1

p

⌉

).

Source 3: To exploit the final source of paral-
lelism, we split a DFA state across its contained
NFA states right after marking. The processors
take the work described in line 5 through 9 in Al-
gorithm 1. It should be noted that now processors
work with the elements of a single DFA state (i.e.,
NFA states), not several DFA states. The granu-
larity of concurrent computations is thus smaller
than with Source 2. The partitioning of NFA
states of an unmarked DFA state is conducted af-
ter we mark the unmarked DFA state. The work
from line 5 to 8 is done in exactly the same way
than the sequential version. Adding the result to
a DFA state however, can be done in two different
ways: we may let each worker thread add its NFA
states to the DFA state, or have a dedicated mas-
ter collect NFA states found by the workers and
add them to the DFA state. Now it follows that
the time complexity becomes

O(|Σ| ×
|Q|

p
× (|Q| − 1)× (2|Q| − 1)).

3.1 Profitability of Each Parallelism
Source

Unfortunately, not all the suggested methods are
equally profitable. Throughout our evaluated
benchmarks (see also Section 6), we have found
that the second and third opportunities are less
effective than the first one (parallelizing on sym-
bols). This phenomenon is caused by the following
drawbacks of those two methods. To get a notice-
able performance improvement by parallelizing the
Dstates , it should be guaranteed that the number
of DFA states at a certain moment is large enough.
However, this number changes dynamically and
cannot be known in advance. Even worse, larger
automata sizes do not guarantee a larger number
of Dstates at each point in time. Thus, even for
large NFAs, a substantial performance gain cannot
be expected: this observation implies that this al-
gorithm would not be very useful in real situations.

In the case of parallelizing the NFA states of
a DFA state, we need to collect the results from
all the worker threads to construct a complete
DFA state. For this work, the amount of syn-
chronization is too high (e.g., from using barrier-
synchronization) which eventually caused severe
performance degradation with our evaluations.

On the contrary, parallelizing the algorithm on
symbols is advantageous for load balance: because
the number of symbols is constant and known a-
priori, a static partitioning of work among worker
threads can be computed.

3 1 4 5 ...
2 0 3 ...
4 0 1 2 4 8 ...

Table 1: Thread-local store of DFA states. The
union of all workers’ DFA states constitutes the
Dstates set (see line 1 of Algorithm 1).

4 Data Structures for Parallel Subset Con-
struction

We attempted to minimize overhead due to com-
munication and synchronization between worker
threads. In general, we kept data thread-local as
much as possible, except for the Dstates set, which
must be updated by all worker threads to collect
DFA states.

Each worker thread maintains a thread-local
array of DFA states as depicted in Table 1. The
union over all thread-local DFA states constitutes
the elements of the Dstates set. Similar to the se-
quential, deterministic state ADT by Leslie (1995),
we store DFA states as linear arrays of NFA state
members. The first array element of a DFA state
contains the number of NFA states contained in
a DFA state. Subsequent array elements repre-
sent NFA states. This representation facilitates
efficient comparison of two DFA states, which is
required for the set membership test (line 7 of Al-
gorithm 1). The comparison of two DFA states is
depicted in Algorithm 2.

To create new DFA states, each worker thread
maintains a one-element DFA state scratch-space.
Potentially new DFA states are computed by
the ǫ-closure(Move(T, σ))-term in line 6 of Algo-
rithm 1. NFA states are stored in the order of
their appearance during this step. Before perform-
ing the set membership test in line 7, we sort the
potentially new DFA state’s NFA states in ascend-
ing order and copy the DFA state to the worker’s
thread-local DFA state array.

The Dstates set is a shared data-structure rep-
resented as an array of pointers to thread-local
DFA states. Adding a DFA state to the Dstates
set reduces to a single pointer update, i.e., the
first (lowest-index) empty entry of Dstates is set to
point to the new DFA state. Pointers are padded
up to the CPU’s cache-line size to avoid false shar-
ing of cache-lines (see, e.g., (Lin & Snyder 2008))
that would otherwise occur if worker threads up-
date adjacent array elements.

Algorithm 2: DFA State Equality Test

Input : 1D-array Dstate1, Dstate2
Output: True (if identical), False otherwise
for i = 0 to Dstate1[0] do1

if Dstate1[i]! = Dstate2[i] then2

return False;3

return True;4

The Dstates set needs to maintain the following
properties:

• The whole Dstates array is accessible by all
worker threads.

• For the DFA states pointed by an entry
of Dstates , duplication (entering a duplicate
DFA state into Dstates) is not allowed.
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After computing a potentially new DFA state in
its thread-local store, a worker needs to deter-
mine whether the DFA state is allowed to be
added to Dstates . As the first step of this deci-
sion, the thread performs the set membership test.
Once it confirms that no identical DFA state has
been added yet, it updates the next empty slot in
Dstates .

Because Dstates allows access from any worker
at any time, the set membership test followed by
the subsequent pointer update is subject to poten-
tial race conditions. We will discuss three synchro-
nization methods in the following section.

5 Synchronization and Termination

We are facing two synchronization problems: how
to avoid race conditions with workers entering
DFA states in the Dstates array, and when to ter-
minate workers.

5.1 Synchronizing Dstates Updates

The first synchronization issue is due to the adding
of DFA states to Dstates. We suggest three ways
to synchronize access to the Dstates array: us-
ing a coarse-grained lock, a fine-grained lock, and
making the algorithm non-blocking by guarding
access to the Dstates array through a CAS instruc-
tion. CAS compares a data item in memory with
a previous value A and replaces it with a newly
provided value B , only iff the data item has not
been updated by another thread. I.e., the data
item’s value in memory is identical with A (Her-
lihy & Shavit 2008). We use mutexes from the
Pthread library for all lock-based synchronization
and GCC’s intrinsics for CAS operations.

Using a coarse-grained lock is a naive way to
protect Dstates . Once a worker finds a new DFA
state, it tries to acquire the mutex which is pro-
tecting Dstates . If successful, it performs the set
membership test to confirm that its DFA state is
not a duplicate of an existing DFA state inDstates .
During the whole set membership test, no other
worker is allowed to update Dstates . After the set
membership test, no matter the addition has been
allowed or rejected, the worker thread releases the
mutex.

A fine-grained lock, compared to the coarse-
grained one, helps reducing the waiting time for
worker threads waiting for acquiring the Dstates
lock. The major factor which distinguishes this
method from the previous one is that this time,
during the set membership test, the lock for
Dstates needs not be held by a worker thread. In-
stead, right after the worker thread finishes the
set membership test and determines that no iden-
tical state exists in Dstates so far, it acquires the
Dstates lock, and begins the set membership test
again, from the point where it has stopped the
test before locking Dstates until the newest el-
ement in Dstates. This second set membership
test is for compensating a potential race condi-
tion that workers face after finishing the set mem-
bership test and before locking Dstates . Within
this short time period, another thread might add a
DFA state to Dstates . If this happens, the empty
entry found by the previous thread is taken and
the set membership test must be continued.

The final synchronization method does not lock
Dstates : instead, it makes Dstates a concurrent
data structure (Shavit 2011) by employing a CAS
instruction. First, this method goes through the
set membership test without locking Dstates as
done when using a fine-grained lock. This time,
however, we do not protect Dstates even after the
worker thread has finished the set membership
test. Instead, after finding the first empty entry
in the Dstates array, it attempts to add the DFA
state by executing a CAS instruction.

Algorithm 3: Access to Dstates guarded by
CAS instruction
while ! CAS (Dstates entry[i], NULL, DFA1

state) do
if DFA State Equality Test (Dstates2

entry[i], DFA state) then
return False;3

++i;4

// At this point:5

// Dstates entry[i] = DFA state6

return True;7

Algorithm 3 shows the basic concept of the non-
blocking implementation using CAS. This form of
execution confirms that only if the Dstates entry
is empty, then the DFA state will be added there.
It should be noted that after a failed CAS instruc-
tion, the set membership test must be continued,
similar to our fine-grained locking method. Be-
cause we never delete entries in the Dstates set, the
ABA-problem (see, e.g., (Herlihy & Shavit 2008))
does not apply.

5.2 Terminating Condition

The second problem is to decide when to make
worker threads terminate. As stated in Algo-
rithm 1, subset construction is supposed to termi-
nate when no more new DFA states are added to
Dstates . This implies that we need to enable the
worker threads to determine when it is guaranteed
that no new DFA state will appear anymore. If a
worker thread cannot find any new DFA state, it
needs to observe other threads if any of them is
still processing DFA states. If it turns out that all
workers have processed all DFA states, then it is
safe for a worker to terminate.

To maintain the status of each worker thread
wrt. processing of DFA states in Dstates , we use
one status array per worker. In a worker’s status
array L, a worker keeps track how far it progressed
in processing the DFA states in Dstates . The nth
entry of status array L represents a worker’s status
wrt. the nth DFA state in Dstates .

Entries in the status array can have three
vales: Not accessed , Processing and Finished .
Not accessed denotes the status that the worker
thread has not begun to process the DFA state:
Following the expression used in Algorithm 1, this
DFA state has not been marked by this worker
thread yet. Right after a worker begins process-
ing within the while loop stated in line 3 of Algo-
rithm 1 with the nth DFA state, it marks L[n] as
Processing: if it finishes the work, it sets L[n] to
Finished .

Now let us assume that a worker thread finds
there is no new DFA state in Dstates after pro-
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cessing the nth DFA state, i.e., the (n+1)th entry
in the Dstates array is empty. Then it observes
the L[n] status values of the other workers: if any
of the workers has not set its L[n] status value as
finished yet, then the idle worker needs to wait
for a new DFA state to appear in the n+1 slot of
Dstates . However, once all workers have set L[n]
to finished and no DFA state appeared in slot n+1
of Dstates , it is safe for all workers to terminate.
It should be noted that workers write the Finished
flag to the status array after they have entered a
new DFA state to the Dstates array.

6 Experimental Results

We demonstrate that our implementation of the
sequential subset construction shows reasonable
performance, compared to related tools. We chose
the Grail tool by Raymond & Wood (1995) as
our yardstick. Grail is a formal language toolbox
which already provides a sequential version of the
subset construction algorithm.

To determine the scalability of our parallel sub-
set construction algorithm, we have conducted ex-
periments on a 4-CPU (40 cores) shared mem-
ory node of the Intel Manycore Testing Lab. The
POSIX thread library (see, e.g., Butenhof (1997))
has been used for worker threads and mutexes. We
compared the scalability of two groups of NFAs
that differ in their density, to show that density
affects scalability.

Finally, we conducted experiments for all three
Dstates synchronization mechanisms: using a
coarse-grained lock, a fine-grained lock, and the
non-blocking method. We compare the efficiency
of each method and we discuss the obtained re-
sults.

All execution times have been determined by
reading the elapsed clock ticks from the x86 time-
stamp counter register (Paoloni 2010).

6.1 Performance Comparison with Grail

To confirm that our data-structures are efficient
even for the sequential case, we compared our
subset construction implementation to Grail. We
used version 3.0 of the Grail code from the Grail+
Project Web Site (retrieved Aug. 2012), and we
revised it to compile with g++ version 4.1.2. The
performance comparison of a sequential version of
our subset construction implementation with Grail
is depicted in Figure 2.

The y axis represents relative time spent: we
set the spent time for computing a 20-symbol au-
tomaton as 1. Thus, if the time spent for com-
puting automata with x symbols takes five times
longer than that of the 20-symbol automaton, the
spent time for computing x is noted as 5. The
number of states has been fixed to 20. This exper-
iment has been conducted on an Intel Xeon E5405
CPU running Linux. As the NFA size increases,
the performance gap increases remarkably: this
implies that our NFA and DFA representations are
efficient even with large NFAs.

6.2 Automata Density vs. Scalability

For this experiment, we have classified the NFA
samples based on their density. In particular, we
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Figure 2: Performance comparison of proposed
subset construction using custom NFA and DFA
representations vs. the Grail tool.

considered two groups of density 0.3 and 0.4, re-
spectively. We observed the speedups gained with
both groups. As depicted in Figure 3, there is a
clear gap in scalability between those two groups.
We conjectured that this is related to properties of
the DFAs converted from NFAs through our algo-
rithm. In particular, we investigated the number
and sizes of DFA states, as shown in Figure 5.
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Figure 3: Scalability test with NFAs of density 0.3
and 0.4. NFAs from both groups have 20 states
and 100 symbols.

To generate NFA samples, we have used an
NFA random generator from Almeida et al. (2007).
In this program, an automaton’s density is used
as a factor which determines the number of tran-
sitions. Let density be denoted by d , the num-
ber of states denoted by n, k denote the number
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of symbols and t denote the temporary number of
transitions. The NFA random generator computes
the temporary number of transitions as

t = dn2k − (n− 1).

The final number of transitions is determined by
adding a small random factor to t. This formula
suggests that if the number of states and sym-
bols are not changed, as the density increases, the
number of transitions also increases. As a result,
each state gets more reachable states on average.
From Algorithm 1, we can infer that if such an
automaton undergoes subset construction, the av-
erage DFA state size would increase. Now we will
show that this increment leads to a decrease in the
number of DFA states. For an NFA, let Q denote
the set of states. Then DFA states are subsets of
Q. Let n = |Q| and m the average DFA state size.
Then we may approximate the number of possible
DFA states by

(

n

m

)

.
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for a 20-state NFA and 0 ≤ x ≤ 20 NFA states per
DFA state.

Figure 4 shows this tendency for n set to 20,
and m ranging from 0 to n. As we may consider
the x axis as the average size of the DFA states, we
can infer that within a certain range of the DFA
size, the number of DFA states would increase as
the size increases, while the tendency could be re-
versed in some other range.

The DFAs from our experiment clearly follow
this trend, as Figure 5 shows. To mitigate the ef-
fect of a few outliers, we have taken the median
of the sample data instead of an arithmetic mean.
The sizes and the number of DFA states collected
from our NFA samples clearly match the approach
suggested in Figure 4, which claims that between
the average DFA state size of 14 to 16, the num-
ber of DFA states will decrease. This eventually
reduces the amount of computation in the subset
construction, which negatively affects the scalabil-
ity as observed in Figure 3: compared to Figure
3(a), Figure 3(b) shows a clear performance degra-
dation.

6.3 Comparing Scalability of the Three
Synchronizing Methods

Figure 6 compares the scalability test results from
three different versions of the parallelized algo-
rithms: using a coarse-grained lock, a fine-grained
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Figure 5: Median over all DFA sizes and over the
number of DFA states of the sample automata.

one, and the non-blocking mechanism. The graph
clearly shows that using a coarse-grained lock
causes severe serialization as the number of cores
increases. With the coarse-grained lock, the set
membership test is performed while holding the
Dstates lock. Thus, while a worker thread is do-
ing the set membership test for a newly found DFA
state, other threads who want to add their DFA
states cannot proceed, which serializes the algo-
rithm.

On the contrary, the parallelized algorithms
which used a fine-grained lock and the non-
blocking mechanism show good scalability. Both
algorithms show a similar tendency, because their
strategies to protect Dstates are fundamentally
similar to each other: they both let each worker
thread perform the set membership test without
locking Dstates , and once a worker finds an empty
entry to add its DFA state, it begins the second
test to confirm that it is safe to do the addition.
What we need to focus here is that the most time-
consuming part is the first set membership test,
not the second one. Thus, this part affects on the
whole processing time.

Both algorithms, i.e., using a fine-grained lock
and the non-blocking mechanism, show an impor-
tant phenomenon: Around 30 cores, the scalabil-
ity becomes imperfect: this is due to the non-
parallelized part of the algorithm, such as com-
puting an epsilon-closure, the set equality test per-
formed as a single step of the set membership test,
etc. As the number of cores increases, time spent
for the parallelized part decreases, but the non-
parallelized part remains. In our experiment, this
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Figure 6: Scalability test result of the paral-
lelized subset construction, with three synchroniz-
ing methods: using a coarse-grained lock, a fine
grained lock and our non-blocking mechanism

limitation appears as the number of cores reaches
around 30.

7 Related Work

Tewari et al. (2002) devised a parallel algorithm
for DFA minimization. Approaches to parallelize
DFA matching have been contributed by Luchaup
et al. (2011), Wang et al. (2010), Holub & Štekr
(2009), Jones et al. (2009), Luchaup et al. (2009),
Scarpazza et al. (2007), Misra (2003), Hillis &
Steele (1986), Ladner & Fischer (1980) and Ko
et al. (2011). However, to the best of our knowl-
edge this is the first attempt to parallelize subset
construction.

Sequential subset construction has been de-
scribed in the literature on automata theory by
Hopcroft & Ullman (1979) and Aho et al. (1986).
Leslie (1995) improves the efficiency of sequen-
tial subset construction through data structures
for hashing, heaps and bitvectors. This imple-
mentation brings two major advantages: avoiding
redundant checks for symbols, and taking the ad-
vantage of sorted transitions. Because their multi-
way merging operation takes around 30% ∼ 90%
of the overall running time, techniques have been
suggested to improve this operation. Representing
the ADT for DFA states as a hash table is pro-
posed. Leiss (1980) proposed a DFA construction
method that reduces DFA size. Johnson & Wood
(1996) discuss methods for instruction computa-
tion of DFAs. Liu et al. (2011) propose a method
to construct a combined DFA for a set of regular
expressions. They apply hierarchical merging of
DFAs for individual regular expressions.

8 Conclusions

We have parallelized the subset construction algo-
rithm, which is used to convert non-deterministic
finite automata (NFAs) to deterministic finite au-
tomata (DFAs). We have discussed sources of par-
allelism in the sequential algorithm, and critically
evaluated their profitability on shared-memory
multicore architectures. Data-structures for NFAs

and DFAs have been chosen to improve scalabil-
ity and keep communication and synchronization
overhead to a minimum. Three different ways
of synchronization have been implemented. The
performance of our non-blocking synchronization
based on a compare-and-swap (CAS) primitive
compares favorably to a lock-based approach. We
have shown that the amount of work and hence
the scalability of parallel subset construction de-
pends on the number of DFA states, which is re-
lated to automata density. We demonstrate the
efficiency of our parallel subset construction algo-
rithm through several benchmarks run on a 4-CPU
(40 cores) node of the Intel Manycore Testing Lab.
Achieved speedups are up to a factor of 32x with
40 cores.
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