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Abstract
Quantitative PET studies usually require invasive blood
sampling from a peripheral artery to obtain an input function for
accurate modelling.  However, blood sampling is impractical in
clinical PET studies. We recently proposed a non-invasive
modelling approach that can simultaneously estimate
parameters which describe both the input and output functions
using two or more regions of interest (ROIs). However, this
approach is still limited by manual delineation of ROIs which is
subjective and time-consuming. In this work, we present an
extension to our method where ROI delineation is performed
automatically by cluster analysis so that subjectivity is reduced
while at the same time ensuring that the extracted time-activity
curves have distinct kinetics. Our aim was to investigate the
feasibility of using the kinetics extracted by cluster analysis for
non-invasive quantification of physiological parameters. The
estimates and the fitted curves obtained by simultaneous
estimation are in good agreement with those obtained by model
fitting with the measured input function (gold standard
method). We conclude that cluster analysis is able to identify
distinct kinetics and hence can be used for the non-invasive
quantification of physiological parameters. 1
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1 Introduction

Quantitative PET studies usually require invasive blood
sampling at the peripheral artery to form a input function
(IF) for accurate modelling. However, blood sampling is
impractical in routine studies due to various reasons.  A
number of approaches have been proposed to reduce the
need for blood sampling. We recently proposed a
simultaneous estimation (SIME) approach to estimate the
IF and the kinetic model parameters from two or more
ROIs, making use of one or more late venous blood
samples for calibration (Feng et al., 1997). We modified
the method to improve the reliability of parameter
estimation (SIMEP) and our results with in vivo PET data
are promising (Wong et al., 1999). However, the method
is still limited by the requirement to select ROIs whose
time-activity curves (TACs) must have distinct kinetics
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so that the physiological parameters in the impulse
response functions (IRFs) obtained by SIME are
numerically identifiable.  The ROIs are usually drawn
manually on the PET images but they may not be
reproducible due to subjectivity and the process of ROI
delineation is time-consuming.  This work presents a
further extension to the method whereby the tissue TACs
are extracted automatically from dynamic PET data by
cluster analysis which is used to segment tissues of
different kinetics based on the time-activity behaviour.
Our aim is to investigate the feasibility of using the
kinetics extracted by cluster analysis for non-invasive
quantification of physiological parameters.

2 Materials and Methods

2.1 Simultaneous Estimation of Physiological
Parameters and Input Function

We have previously reported the Monte-Carlo
simulations (Feng et al., 1997) and the in vivo
[18F]fluorodeoxy-D-glucose (FDG) PET studies that
validate our method (Wong et al., 1999). Only a brief
summary of the method is presented here. Multiple tissue
TACs can be obtained by defining different ROIs on the
dynamic PET images. These TACs are the convolution of
the IF with the physiological IRFs corresponding to the
ROIs.  The IRF parameters and the IF may thus be
estimated simultaneously from two or more tissue TACs.
In order to improve the numerical identifiability of the
parameters to be estimated, two late venous blood
samples are taken to calibrate the estimated IF. Nonlinear
least squares (NLLS) is used to optimise the IF and the
IRF parameters.

Although precise parameter estimates can be obtained
theoretically with SIME, we found that the estimation of
the standard deviations for the parameter estimates are
usually very poor even though the values of the parameter
estimates are accurate (Wong et al., 1999). This may be
because a large number of noisy data are fitted
simultaneously and the information matrix may be
poorly-conditioned since the stability of its Jacobian
matrix is disrupted by noise. Another possibility could be
the high nonlinearity of the parameter space.  We have
developed a technique that is applied after SIME for the
above situations and we refer to this method as post-
estimation (SIMEP) (Wong et al., 1999) in which the
parameters in the IRFs are estimated separately by using
the estimated IF from SIME and the individual tissue



TACs as input-output pairs.  The standard deviations of
the parameters can be greatly improved due to the
reduction in dimensionality of parameter space.

2.2 Automatic Extraction of Tissue TACs

Cluster analysis is used to extract the different kinetics
present in dynamic PET data (Wong et al., 2000).  The
method is similar to the one proposed by Ashburner et al.
(1996) in that there is a finite number of kinetics present
in the dynamic PET data. The difference is that the latter
algorithm maximises the probability of an arbitrary
selected TAC from the data belonging to a specified
cluster while the method used in this work minimises the
weighted sum of squared residuals for an arbitrary
selected TAC to its cluster centroid (Wong et al., 2000).

2.3 Computer Simulations

A slice of numerical Hoffman brain phantom (Hoffman et
al., 1990) was modified using a template consisting of
five different kinetics (grey matter, white matter,
thalamus, tumour in white matter and an adjacent
hypometabolic region in right middle temporal gyrus).
The activities in grey matter and white matter were
generated using a 5-parameter 3-compartment FDG
model (Hawkins et al., 1986) with a measured arterial IF
obtained from a patient, and the kinetics present in the
hypometabolic region, thalamus and tumour were set to
0.7, 1.1 and 2.0 times the activity in grey matter,
respectively. The kinetics were then assigned to each
brain region and a dynamic sequence of sinograms was
obtained by forward projecting the images. Appropriate
Poisson noise and blurring were also added to simulate
realistic sinograms acquired on an ECAT 951R whole
body tomograph (CTI/Siemens, Knoxville, TN). Dynamic
images were reconstructed using filtered back-projection.
Five cluster images were generated by applying cluster
analysis to the noisy dynamic images and their associated
TACs were extracted.  Three (grey matter, white matter
and tumour) out of five TACs were selected as they have
very different kinetics.  The selected TACs were then
used by SIME and SIMEP for non-invasive estimation of
the physiological parameters. Model fitting to the three
TACs with the measured IF was also performed in order
to compare the agreement between the parameter
estimates obtained from different methods.

3 Results and Discussion

The three TACs and the corresponding fitted curves by
SIME are shown in Figure 1, while the estimated
physiological parameters, K = k1k3/(k2+k3), in the three
TACs using different methods are shown in Table 1. It is
seen that the fitted curves and the estimates are in good
agreement with the corresponding kinetic curves
extracted by cluster analysis.  The coefficients of
variation (CVs) obtained by SIMEP are reasonable and
are much better than those obtained from using SIME
despite the fact that they are relatively larger than those
obtained from model fitting. It is as expected because the
only information available are the tissue kinetics and the
two late venous blood samples which is in contrary to the
model fitting approach in which the whole measured IF is

available in addition to the tissue kinetics. Given the very
limited information the CVs obtained by SIMEP are
acceptable.

Since the tissue TACs are extracted by cluster analysis
automatically, the subjectivity of manual ROI delineation
can be reduced and thus it is feasible that cluster analysis
can be used to segment tissues of different kinetics in
PET data and that it can be used as an alternative to
manual ROI delineation for the non-invasive
quantification of physiological parameters as in our
previous work (Wong et al., 1999).

Table 1: Estimates for the physiological parameter, K, in
the three TACs using different methods. Values are
estimates ± %CV.

Gold standard SIME SIMEP

Grey Matter 0.0109±3.2 0.0102±1001.9 0.0113±8.7

White Matter 0.0075±10.6 0.0076±1223.5 0.0075±29.6

Tumour 0.0219±19.5 0.0203±1228.8 0.0201±15.3

Figure 1: Extracted tissue TACs corresponding to grey
matter, white matter and tumour bycluster analysis and
the fitted curves obtained by SIME

.

4 Conclusions

Our results show that it is feasible to estimate the
physiological parameters with SIME (and SIMEP) using
the TACs extracted automatically by cluster analysis. The
physiological parameters in different TACs estimated by
SIME and SIMEP are comparable to those obtained from
model fitting to the TACs with the measured input
function (gold standard).  The results have encouraged us
to investigate the applicability of the combined approach
to clinical PET study.  Although this work used FDG-
PET as an example for illustration, it is expected that the
methodologies can be applied to PET studies with other
tracers.
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