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Abstract

Accurate determination of the input function is essential for absolute quan-
tification of physiological parameters in PET and SPECT imaging but it re-
quires an invasive and tedious procedure of blood sampling that is imprac-
tical in clinical studies. We previously proposed a technique that simulta-
neously estimates kinetic parameters and the input function from the tissue
impulse response functions and which, requires only two blood samples.
A nonlinear least squares method was used to estimate all the parameters
in the impulse response functions and the input function but it fails occa-
sionally due to high noise levels in the data causing an ill-conditioned cost
function. This study investigates the feasibility of applying a Monte Carlo
method called simulated annealing to estimate kinetic parameters in the
impulse response functions and the input function. Time-activity curves
of teboroxime, which is very sensitive to changes in the input function,
were simulated based on published data obtained from a canine model.
The equations describing the tracer kinetics in different regions were min-
imised simultaneously by simulated annealing and nonlinear least squares.
We found that the physiological parameters obtained with simulated an-
nealing are more accurate and the estimated input function more closely
resembled the simulated curve. We conclude that simulated annealing re-
duces bias in the estimation of physiological parameters and determination
of the input function.

Keywords: Monte Carlo method, simulated annealing, input
function, impulse response function, teboroxime, dynamic
cardiac perfusion SPECT.

1 Introduction

Quantification of dynamic SPECT data requires an invasive
procedure where a series of blood samples are taken to form
an input function for kinetic modelling (Huang & Phelps
1986). The input function is generally obtained by sam-
pling blood at the radial artery or from an arterialised vein in
a hand. Although arterialised-venous (a-v) blood sampling
has been accepted as an alternative to arterial blood sam-
pling, which is regarded as the gold standard, the procedure
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is invasive and there is a potential risk of irreversible tissue
ischaemia or arterial thrombosis. A number of methods for
the estimation (or elimination) of input function have been
proposed (Weinberg et al. 1988, Nelson et al. 1993, On-
ishi et al. 1996, Eberl et al. 1997, Feng et al. 1997, Chen
et al. 1998, Wong et al. 2001). The population-based in-
put function approach (Onishi et al. 1996, Eberl et al. 1997)
that is used routinely at our institution, calibrates a stan-
dardised input function obtained from a large population
by one or two arterial or a-v blood samples for an indi-
vidual by assuming that the area under an individual input
function can be closely approximated by the scaled popu-
lation input function even if the shape of the individual in-
put function differs from the scaled population input func-
tion. This method has been validated in tracers with slow
kinetics such as [ ��
 F]fluorodeoxyglucose (FDG) in PET
and [ ����� I]iomazenil in SPECT (Onishi et al. 1996, Eberl
et al. 1997). For tracers with fast kinetics (e.g. ��� O-water
in PET and 99mTc-teboroxime in SPECT), however, the
population-based input function approach is unlikely to be
applicable as the approximation to the actual input func-
tion by the calibrated input function is no longer valid. The
shape discrepancies and time-delay can cause erroneous es-
timation of physiological parameters. Moreover, repeated
measurements in a group of patients or volunteers are re-
quired for constructing a new input function template when-
ever a new tracer or different infusion rate is used. Deriv-
ing input function by putting region-of-interest (ROI) over
a vascular structure in the images has also been investi-
gated (Weinberg et al. 1988, Chen et al. 1998). Frequent
blood sampling can be completely obviated but the noise
levels in the derived input function are very high and can-
not be assumed to be negligible for kinetic modelling. In
addition, the spillover from extravascular activity needs to
be carefully considered. Further, the input function may not
be available in some cases if the vascular structure is not
covered by the field of view of the gantry.

The simultaneous estimation (SIME) method estimates
parameters in the tissue’s impulse response functions (IRFs)
and the input function simultaneously and requires one or
two blood samples for scaling (Feng et al. 1997, Wong
et al. 2001). The nonlinear least squares method that has
usually been regarded as the standard for kinetic modelling,
has been used in SIME to estimate all the parameters in



the IRFs and recover the input function. However, the non-
linear least squares method fails occasionally due to ill-
conditioning of the cost function caused by the high noise
levels in the measurements and highly nonlinear parameter
space (Wong et al. 2001). Thus it will be easily trapped
into local minima and the physiological parameters may be
biased due to poor estimation of the input function.

Although simulated annealing (Kirkpatrick et al. 1983)
is not an efficient optimisation technique in computational
terms, it is usually more reliable than other minimisation
methods, because it is able to find the global optimum or
a point very close to the global optimum in cases where
others fail. To our knowledge, there are few reports that ap-
ply simulated annealing to emission tomography and most
are devoted to image processing rather than to kinetic pa-
rameter estimation (Smith et al. 1985, Webb 1989, Giro-
dias et al. 1991). The goal of this study was to investi-
gate the feasibility of applying simulated annealing in SIME
to deconvolve the input function and the IRFs. The com-
bined method was evaluated with simulated cardiac dy-
namic SPECT 99mTc-teboroxime data.

2 Materials and Methods

2.1 Dynamic SPECT with 99mTc-teboroxime

Recent advances in attenuation and scatter correction
methodologies in SPECT offer the possibility of quan-
tifying the physiological functions in vivo by perform-
ing SPECT imaging dynamically, similar to what can be
achieved with PET. One of the major applications of dy-
namic SPECT is to quantify myocardial perfusion, which
is important for diagnosis and clinical management of coro-
nary artery disease as the presence of perfusion defects after
therapeutic intervention may indicate incomplete reperfu-
sion or persistent coronary occlusion. Similar to dynamic
PET, compartmental modelling is used in dynamic SPECT
to quantify physiological parameters of interest. It has been
demonstrated that myocardial perfusion can be studied by
dynamic SPECT imaging of 99mTc-teboroxime using multi-
headed SPECT systems (Smith et al. 1994). 99mTc-tebo-
roxime is a neutral lipophilic compound with high myocar-
dial extraction (80–90%) in the first pass and rapid clear-
ance. Its kinetics can be modelled by a two-compartment
model as shown in Figure 1, where ������� is the measured
activity in the blood compartment at time � , ���	��� is the ac-
tivity in the extravascular compartment at time � , 
 � � (in
min � � ) and 
 ��� (in min � � ) are the wash-in and wash-out
rate constants of teboroxime, respectively. The kinetics of
teboroxime in the extravascular compartment is given by���	���
������������
 � ��� ��������� (1)

where � denotes the convolution integral operator. The my-
ocardial tissue activity, however, cannot be solely modelled
by equation (1) because a fraction of the measured activity
is contributed by the blood activity owing to the presence of
capillaries within or nearby the tissue and the partial volume
effect due to the finite resolution of SPECT. Therefore, the
myocardial tissue TAC, ������� , acquired between the time���! "� and � is modelled by���	���#�$��%��'&)(*� + ��,�.-/� ����01�3240657&)( + ��,��-/� ����01�3240 (2)

where &)( represents the fraction of blood in the myocardial
tissue. The parameters 
 � � , 
 ��� and &8( can be estimated by
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Figure 1: Two-compartment model for 99mTc-teboroxime.

nonlinear least squares fitting the measured tissue TAC to
equation (2).

2.2 Simultaneous Estimation

Different from other methods (Nelson et al. 1993, Onishi
et al. 1996, Eberl et al. 1997) that estimated or eliminated
the input function based on certain properties or assump-
tions of the radiotracer under consideration, SIME makes
use of multiple tissue TACs that can be obtained by defin-
ing ROIs on the dynamic images to recover the input func-
tion embedded in the tissue TACs (Feng et al. 1997, Wong
et al. 2001). SIME can be applied to different radiotrac-
ers or ligands, provided that the radiolabelled metabolites
in blood and tissue are appropriately corrected. Since the
tissue TAC is the convolution integration of the input func-
tion with the IRF of the corresponding region, the IRF pa-
rameters in multiple regions and the input function can be
estimated by minimising the residual sum of square errors
between the model predicted tissue response and the mea-
surements in the corresponding ROIs simultaneously (Feng
et al. 1997, Wong et al. 2001). Mathematically, the follow-
ing cost function is to be minimised:9 �;:<�=� >? @BA

�
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where : denotes the vector of parameters to be estimated,
including the wash-in and wash-out parameters in multiple
tissue TACs and the parameters in the input function; O is
the total number of ROIs incorporated into the model fitting
procedure; P is the number of frames for each tissue TAC;G�
@ �	� D � and � @ �	� D � represent the measured and model pre-

dicted tissue activity concentrations at the Q th frame in theR
th ROI; N�S����� is the estimated input function; T is the num-

ber of arterial blood samples taken late in the course of the
study for calibration; G����� � � is the activity concentration in
blood measured at time � � �	
U�V%4WYXZW\[\[][�W�T^� ; and L � is cho-
sen to be 100 (or any other reasonably large value) so that
the blood samples are given more weight to discourage any
discrepancy between the measured blood samples and their
predictions.

2.3 Nonlinear Least Squares

Nonlinear least squares method has been a widely adopted
standard for kinetic modelling. The principle of the non-
linear least squares method is to iteratively minimise a cost
function based on a least squares criterion. Rapid conver-
gence can be achieved if the shape of the isocontours of the
cost function is approximately a concentric circle and can
be well approximated by a quadratic around the minimum.



Table 1: Model parameters used to simulate 99mTc-teboroxime kinetics. Nominal initial values which were randomised
during simulations and the physiological constraints imposed on the parameters are also shown.

Region Initial Bound
Parameter 1 2 3 4 5 6 value lower upper�����

(min � � ) 0.590 1.109 0.482 0.760 0.856 0.652 0.5 0 10� ���
(min � � ) 0.229 0.295 0.236 0.255 0.272 0.236 0.5 0 10���

(unitless) 0.166 0.606 0.184 0.276 0.441 0.207 0.2 0 1

In this study, the Marquardt algorithm (Marquardt 1963)
was used as it usually performs well in locating the min-
imum and is reasonably insensitive to an initial estimate.
However, there is no guarantee that the located minimum
corresponds to the global minimum unless it is unique. Fur-
thermore, in optimisation problems with a large number of
parameters or with noisy data, the cost function is usually
ill-conditioned because it has multiple minima, causing the
algorithm to get stuck in the local minimum nearest to the
initial estimate, or in the worst case, the algorithm does not
converge if the cost function is nonsmooth or discontinuous
in its domain.

2.4 Simulated Annealing

Simulated annealing is a generalisation of a Monte
Carlo method based on the theory of statistical mechan-
ics (Kirkpatrick et al. 1983). In condensed matter physics,
annealing is a physical process of heating up a solid material
by increasing the temperature to a maximum at which all
molecules arrange themselves randomly in the liquid phase
followed by a slow cooling process that results in the forma-
tion of a perfect crystal. Application of simulated annealing
to optimisation problems is based on the analogy between
the state of each molecule and the state of each parame-
ter that affects the energy function (analogous to the cost
function in the optimisation problem) to be minimised. The
parameter values are randomly perturbed and if the pertur-
bation reduces the cost function then it is accepted; other-

wise it is accepted with probability � � 	�
��
��
where  9 is the

change in the cost function, ��� is the Boltzmann constant
and � is the current system temperature which is a control
parameter (Kirkpatrick et al. 1983). This is referred to as
the Metropolis criterion (Kirkpatrick et al. 1983) and the
scheme for reducing the temperature is called the cooling
schedule. Providing that the starting maximum tempera-
ture is sufficiently high and the temperature � is lowered
slowly, the algorithm is guaranteed to reach the global min-
imum or a point close to the global minimum of the cost
function (Kirkpatrick et al. 1983).

2.5 Computer Simulations

To simulate 99mTc-teboroxime kinetics, a sum of two ex-
ponential decaying functions was used to generate an input
function:�������
� X������ � ����� �,����� ��� 5! "��� � ����� �#��� �,����� ��� (4)

where � represents the time abscissa in minutes. From two
to six tissue TACs of teboroxime were simulated with a two-
compartment model and the parameter values were based
on a baseline study obtained from a canine model (Smith
et al. 1994), and a 70 $ 10 sec scanning protocol was as-
sumed. Table 1 lists the values of the rate constants that

were used for the simulations. Possion noise typical of the
observed TAC was added to the generated TACs and 100
different noise realisations were generated. Initial estimates
were randomised above a set of nominal initial values (see
Table 1) and were used by both nonlinear least squares and
simulated annealing for the same realisation. Note that sim-
ulated annealing is independent of the initial values, which
influence the optimality of the parameter estimates and the
convergence for iterative gradient-based optimisation tech-
niques.

For each region, the kinetic parameters were estimated
by SIME in combination with nonlinear least squares or
simulated annealing, in addition to the estimation of the
input function scaled with two ‘blood’ samples (8 and
11 min) by minimising equation (3) and were constrained
to within their physiological ranges by the SUMT tech-
niques (McCormick 1983). The mean absolute difference
(MAD) between an estimated parameter N%

@
and its true

value %
@

in each of the O tissue TACs was used as a mea-
sure of bias (Welch et al. 1995):%O >? @BA

�

& N%
@ � % @ & (5)

and was computed over 100 realisations with different num-
ber of regions and initial estimates.

3 Results and Discussion

Figure 2 shows a typical plot of the cost function value over
the course of minimisation using simulated annealing. A
large variation of cost function value was observed initially
due to energy changes caused by random perturbation on
the parameters. There were some increases in the cost func-
tion during minimisation because uphill moves were also
accepted according to the Metropolis criterion (Kirkpatrick
et al. 1983). This is in contrast to iterative gradient-based
techniques where only downhill moves are accepted. How-
ever, as �'�(� decreases, positive changes in the cost func-
tion (i.e.  9*) � ) become less probable. After a large
number of iterations, the minimum of the cost function
was located and was almost freezing. This can be consid-
ered analogous to the perfect crystal formation where all
molecules arrange themselves into a minimum energy state
in which no further energy change takes place.

Figure 3 plots the MADs and their standard deviations
over 100 noise realisations for 
 � � , 
 ��� and &8( parameters
as a function of number of regions. Very large fluctuation in
parameter estimates obtained with nonlinear least squares is
clearly evident. On the other hand, the estimation of physio-
logical parameters using simulated annealing is very insen-
sitive to noise as the bias was much less than those obtained
with the nonlinear least squares method starting with the
same initial estimate and was almost the same with differ-
ent number of regions.



Figure 2: Variation of cost function over the course of min-
imisation.

Figure 4 shows the simulated blood curve and the esti-
mated input functions over 100 noise realisations with four
regions (Regions 1 � 4) obtained by simulated annealing and
nonlinear least squares. The estimated input function ob-
tained with simulated annealing closely resembled the sim-
ulated blood curve while there was a biased estimation of
input function in some of the noise realisations when non-
linear least squares was used. This was due to the nonlinear
least squares algorithm being trapped in local minima be-
cause of its ‘greedy’ properties in only taking the best possi-
ble downhill moves by following the gradient of descent lo-
cally. Therefore, other optimal points with lower cost func-
tion values than the current point may not be reachable. On
the contrary, simulated annealing occasionally accepts up-
hill moves, thus making it possible to escape local minima.

Choosing an appropriate set of initial estimates is very
important for kinetic modelling when an iterative gradient-
based technique is used. Any effort spent in obtaining
good initial estimates of the parameters is well rewarded
by rapid convergence of the minimisation algorithm and re-
duced chance of straying into an incorrect, local minimum.
Incorporation of a priori information about the parameter
estimates from theory or previous experimental results and
shrinking the parameter space by constraining the param-
eter estimates to within certain limits are usually helpful.
However, clinical data are always compounded by noise
which perturb the smoothness of the cost function surface
and create a number of minima. The minimum found by
any iterative gradient-based approach may not be the global
even with the use of constraints and a priori information
since it is still likely that the algorithm will be trapped to
a local minimum at which all the constraints are satisfied
and those data do not guarantee the global optimality of the
parameter estimates.

One of the major problems associated with simulated
annealing is the large number of parameters to be adjusted
in order to give optimal performance. Of particular impor-
tance is the cooling schedule which governs how the tem-
perature is decreased. It has a major impact on the speed
of convergence of the algorithm and the optimality of the
parameter estimates. If the temperature is quickly reduced,
the algorithm may be trapped at a sub-optimal point. On
the other hand, long computation times are required for the
algorithm to converge to a minimum if the temperature de-
creases too slowly.

Application of simulated annealing in parameter estima-
tion has been limited because of the intensive computational

(a)

(b)

(c)

Figure 3: MAD of (a)
�����

, (b)
�����

, and (c) �
	 as a function
of number of regions. The standard deviation is represented
by the error bar. (NLLS = nonlinear least squares; SA =
simulated annealing).

burden as a huge number of function evaluations is required.
Nonetheless, in the case of very ill-conditioned cost func-
tions with many local minima (e.g. problems with many
parameters), the expense on computation may be rewarded
by obtaining better results than the nonlinear least squares
method restarting at different points as many times as the



Figure 4: Simulated blood curve and estimated input func-
tions using simulated annealing (SA) and nonlinear least
squares (NLLS).

number of function evaluations required by simulated an-
nealing. In addition, simulated annealing can still be ap-
plicable to problems where the cost function cannot be ap-
proximated by a quadratic function near the minimum or is
nonsmooth or discontinuous in its domain. Searching for
minima with gradient-based methods may not be feasible.
Further, with recent advances in computer technology and
speed, the problem of computational burden is disappear-
ing or has virtually disappeared by running the algorithm
on parallel computers.

4 Conclusions

Our results demonstrate that it is feasible to apply simulated
annealing to simultaneously estimate the physiological pa-
rameters and the input function as it is more insensitive to
noise than the nonlinear least squares method. The physi-
ological parameters obtained with simulated annealing are
more accurate and the estimated input function more closely
resembled the simulated curve. We conclude that simulated
annealing reduces bias in the estimation of physiological
parameters and determination of the input function.

5 Acknowledgment

This work was supported by the NHMRC under Grant
980042 and by the ARC under Grant A10009011.

References

Chen, K., Bandy, D., Reiman, E., Huang, S. C., Law-
son, M., Feng, D., Yun, L. S. & Palant, A. (1998),
‘Noninvasive quantification of the cerebral metabolic
rate for glucose using positron emission tomography,���

F-fluoro-2-deoxyglucose, the Patlak method, and an
image-derived input function’, J. Cereb. Blood Flow
Metab. 18, 716–723.

Eberl, S., Anayat, A. R., Fulton, R. R., Hooper, P. K. &
Fulham, M. J. (1997), ‘Evaluation of two population-
based input functions for quantitative neurological
FDG PET studies’, Eur. J. Nucl. Med. 24(3), 299–304.

Feng, D., Wong, K. P., Wu, C. M. & Siu, W. C. (1997), ‘A
technique for extracting physiological parameters and
the required input function simultaneously from PET
image measurements: Theory and simulation study’,
IEEE Trans. Inform. Technol. Biomed. 1, 243–254.

Girodias, K. A., Barrett, H. H. & Shoemaker, R. L. (1991),
‘Parallel simulated annealing for emission tomogra-
phy’, Phys. Med. Biol. 36, 921–938.

Huang, S. C. & Phelps, M. E. (1986), Principles of tracer
kinetic modeling in positron emission tomography and
autoradiography, in M. E. Phelps, J. C. Mazziotta &
H. R. Schelbert, eds, ‘Positron Emission Tomography
and Autoradiography: Principles and Applications for
the Brain and Heart’, Raven Press, New York, USA,
pp. 287–346.

Kirkpatrick, S., Gelatt, Jr., C. D. & Vecchi, M. P.
(1983), ‘Optimization by simulated annealing’, Sci-
ence 220, 671–680.

Marquardt, D. W. (1963), ‘An algorithm for least-squares
estimation of nonlinear parameters’, J. Soc. Ind. Appl.
Math. 11, 431–441.

McCormick, G. P. (1983), Nonlinear Programming: The-
ory, Algorithms, and Applications, Wiley, New York,
USA.

Nelson, A. D., Miraldi, F., Muzic, Jr., R. F., Leisure, G. P.
& Semple, W. E. (1993), ‘Noninvasive arterial monitor
for quantitative oxygen-15-water blood flow studies’,
J. Nucl. Med. 34, 1000–1006.

Onishi, Y., Yonekura, Y., Nishizawa, S., Tanaka, F.,
Okazawa, H., Ishiza, K., Fujita, T., Konishi, J.
& Mukai, T. (1996), ‘Noninvasive quantification
of iodine-123-iomazenil SPECT’, J. Nucl. Med.
37(2), 374–378.

Smith, A. M., Gullberg, G. T., Christian, P. E. & Datz,
F. L. (1994), ‘Kinetic modeling of teboroxime using
dynamic SPECT imaging of a canine model’, J. Nucl.
Med. 35, 484–495.

Smith, W. E., Paxman, R. G. & Barrett, H. H. (1985),
‘Application of simulated annealing to coded-aperture
design and tomographic reconstruction’, IEEE Trans.
Nucl. Sci. 32, 758–761.

Webb, S. (1989), ‘SPECT reconstruction by simulated an-
nealing’, Phys. Med. Biol. 34, 259–281.

Weinberg, I. N., Huang, S. C., Hoffman, E. J., Araujo,
L., Nienaber, C., GroverMcKay, M., Dahlbom, M. &
Schelbert, H. R. (1988), ‘Validation of PET-acquired
input functions for cardiac studies’, J. Nucl. Med.
29, 241–247.

Welch, A., Smith, A. M. & Gullberg, G. T. (1995), ‘An in-
vestigation of the effect of finite system resolution and
photon noise on the bias and precision of dynamic car-
diac SPECT parameters’, Med. Phys. 22, 1829–1836.

Wong, K. P., Feng, D., Meikle, S. R. & Fulham, M. J.
(2001), ‘Simultaneous estimation of physiological pa-
rameters and the input function–in vivo PET data’,
IEEE Trans. Inform. Technol. Biomed. 5, 67–76.


