University of Southern Queensland
Faculty of Engineering and Surveying

OPC Cycle Time Analyser

A dissertation submitted by

Clement Bollaart

In the fulfilment of requirements of

Courses ENG4111 and 4112 Research Project

towards a degree of

Bachelor of Electronics and Computing Engineering

Submitted: October 2007

Abstract

Variations in equipment cycle times can have a significant effect on the output of
modern assembly lines. In an effort to identify and act accordingly when these
variations occur, the development of a software application to analyse equipment

cycle time via OPC is investigated in this project.

Manufacturing organisations continuously seek improvements in equipment
performance and output. A common improvement made is the reduction of
equipment cycle time, this provides an increase in output for a relatively small
capital outlay. These improvements remain relatively unchecked and variations in

cycle time due to numerous factors continue to influence equipment performance.

An equipment cycle time analyser can be used to monitor and report variations in
cycle time. The resulting information can be used to predict equipment failures and
allow maintenance departments to plan corrective actions. This analyser tool can
also be used by engineering departments for analysing equipment cycle time during

cycle time improvement projects and new equipment installation.

Currently the development of the cycle time analyser system is at a stage where the
cycle time of equipment can be monitored using OPC as a means of communication.
Additionally a Microsoft Excel application is available which can import the data
recorded by the cycle time analyser software and display a step time diagram of a

complete equipment cycle.

ii

University of Southern Queensland

Faculty of Engineering and Surveving

ENG4111 Research Project Part 1 &
ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Scuthem OQueensland. its Faculty of Engineering and
Surveving, and the staff of the Umversity of Southem Quesnsland. do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with flus dissertation.

Persons using all or any part of thiz material do o at their own risk, and not at the risk of the
Council of the University of Southermn Queensland, its Faculty of Engmeering and Surveying
or the staff of the University of Southern Cueensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercize. The sole purpose of the course "Project and Dissertation” is to contribute to the
overall education within the student’s chosen degree programme. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the
nisk of the user.

Professor Frank Bullen
Dean
Faculty of Engmesring and Surveving

iii

v
Certification

I certify that the ideas, designs and experimental work, results, analyses and
conclusions set out in this dissertation are entirely my own effort, except where
otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course or institution, except where specifically stated.

Clement Christiaan Bollaart

Student Number: 0050029162

L B

Signature

11" October 2007

Date

Acknowledgements
I would like to thank the following people for their assistance and support which
have contributed greatly to the success of this project.

Dr. Peng (Paul) Wen (supervisor) for his guidance and constructive criticism given
during this project.

My colleagues and managers from Robert Bosch (Australia) for their support,

understanding and assistance during the project term.

Finally a special thank you to my wife Susan and daughters Jessica and Megan for
supporting my pursuit for knowledge.

Table of Contents
Abstract ii
Limitations of Use il
Certification iv
Acknowledgements v
Table of Contents vi
List of Figures viii
List of Tables viii
Definitions ix
Chapter 1 Introductionccoovcieeiriiieiniiieeeiee e 11
) o (0 LT AN § 1 o PR UTPPRPRR 11
1.2 Project ODJECHIVES .eeiviiiiriiiiiiiieeeeeeiiiiieeeeeeee ittt eeeeeeesinbeeeeeeeesssannbeeeeaessennns 12
1.3 Chapter OVEIVIBWeeeiiiiiiiiiiiiiieeeiieee ettt ettt ettt e e et ee e st ae e e e 13
1.4 Chapter SUMMATYcc.uviiiiiiiiiiiieteee et e e ettt e e e e ettt e e e e e s 14
Chapter 2 Backgroundccoooieiiiiiiiiniiiieeiieeeiee e 15
2.1 History of Lean Manufacturingccoovueeiemiiieiinniiieeniieeeeiiee e 15
2.2 1ine BalanCingc.ueeeeeiiiiie ettt ettt e 15
2.3 Trends in Current Manufacturingcccceeeveiieeeeiiieeeniiiee et 17
2.4 Current Cycle Time Data..........ccueeeiiiiiiiiiiiiiiniieeneeeeieee e 19
2.5 Real Time Data via OPCcocoiiiiiiiiiiiiiiiiieece e 20
2.6 TPM and Predictive Maintenance...........co.c.eeeernieeeenniieeenniieeeniieeeniee e 21
2.7 BeNChMATKiNgccciiiiiiiiiiiiie ettt te e e e s st e e e e e s e 22
2.8 SUIMIMATYteieiiiiiie ettt ettt e ettt e sttt e e saitaeeesbbeeeesaataeeeeanaae 23
Chapter 3 Methodologyc.eeeveiiiiiiiiiiiieiieeeeeeee e 25
BT OVEIVIBW ettt ettt ettt e ettt e st e e st ee e e saiaeees 25
3.2 Design Process MOdelcoooiuiiiiriiiiiiiiiieeiiieeeeeee e 25
3.3 Communication with OPC Server...........ccccccoviiiiiimiiiiiiniiieieieee e 26
3.4 Development of User INterface...........ooovveeiiiiiiiiieiiiiiiiiiiee e 26
3.5 Design and Implementation of RepOrts...........cccceeevvriiiieeeeeeiiniiiieeeee e, 27
3.6 Programming Language Selectioncccceevriiieieiiiieiiiiiee et 27
3.7 Analysis Of Cycle TIMESccccuieiiriiiiiiiiiieeiiiieee et 28
3.7.1 Machine Capabilitycccccerriiiiiiniiiiiiiiiiee it 28
3.7.2 Simplified Machine Capabilityccccoovieeiiniiiiriiiiiiiniieceieee e, 29
3.7.2 Example Tolerance Calculation.oocueeiiniiiiinniieiiiniiiecenieee e, 30
3.8 Chapter SUMMATYuvvviiieeeiieiiiiiieeeeeeeiiiiteeeeeessritrrreeeeessssnreraeeesssssnnnseees 31
Chapter 4 System Development and Implementation.............. 32
4.1 Overall DeSCIIPLIONeeiiiiiieiiiiitiee ettt ettt ettt eerae e e 32
4.2 OPC COMMUNICALION ...eteuitieeeriiteeeiiiieeeniitteeeeiieeeestbeeeesitteeesnibeeeesaaraeeesnnee 32
4.3 OPC OPCDAAUTO.DLLoootitiiiieiiiee ettt et 33
4.4 User Permission ConsSiderationsceeeruveeternirerenniiteeenniieeeeniieeeenieeee s 34
4.5 DCOM Setting ReqUITEcccevveiiiiiiiieeeieiiiiieie ettt e e e eeee e s e 35
4.6 Recording FOrMALtccuvviiiiieeiiiiiiiieee ettt e e e e e e s e 35
4.7 Operation of Cycle Time Analyser Softwarec.cccceeevviieeiiniieiinniieeenne. 36
4.7.1 Connection to OPC SETVET......ccccueiiriiiiiiiiiiiiiiiiiee et 37
4.77.2 Create OPC GrOUP ..c.c.uveeiiiiiieiiiiiee ettt ettt ettt e e 38
4.7.3 Add OPC Items tO GIOUPeeeerruvreieriiiieieiiiieeeeiiieee ettt ee st e et e e 38
4.77.4 Start RECOTAING.....cccovuiiiiiiiiieiiiee ettt et e 39

4.77.5 Cycle Time DisSplayccocueeeiiiiiiiniiieieiiieeeeiieee et 40

vi

4.77.6 USEr INSIIUCHIONS ..eeeviiiieeiiiiiieiiitie ettt ettt st et e e saeee s 41
4.8 TESTIMEZ ..eeeeeeeeeiiiiieeeeeee ettt et e e e e e esatrteeeeeesessnttaeaeees e sansnbeteeeaessasnnssneaeaeessnnnns 41
4.9 Visualisation of Recorded Dataccooiuiiiiniiiiiniiiiiiiieiiec e 42
4.10 Visual Basic LIMItationscceeeviieeiniiiiiiniiieieniitee et 43
4.11 Problems Encountered.............c.eeeiiiiiiiniiiiiiniiieieieieeeieee e 44
4.11.1 OPC TIMESTAMP...ceeeieeeriiiiiieeeeeereiiiiieeeeeeeessirrteeeessessasrreeesessssnsnreeeeeas 44
4.11.2 DCOM Security SEttNGSccccuveeeeriuirreeeiiieeeiiieeeereeeeeeeeeeeeeeiieeeeeeneeeas 45
4.11.3 SyncRead does not Return Timestamp Data as Arrayccccccueeeeenneee. 46
4.11.4 OPC Server Capabilityccceeeereiiiiiiiieeeriiiiiieeeeeeesiieeeeeeeeesvneeeeeees 47
4.12 Chapter SUMIMATYccuvvrreteeeeeresiiiirteeeeesessterreeeeesessasnrereeeeesssssssseeeesssssnnns 47
Chapter 5 ConclusiONScc.eeeeeiiieeiriiieeeieeeeieee e 48
5.1 Achievement of ODJECHIVESceeevuiiiiiiiiiieeiiiiiee ittt 48
S22 FUtUIE WOTKeieiiiiiiiiiiiicee ettt 49
5.2.1 Statistical Evaluation of Tolerance Times...........ccceevvuverienniieirniieeeennnnnee. 49
5.2.2 Monitor Multiple Machinesccccceeiiriiieiiniiiinniiiie e 49
5.3 FINAl SUMMATY ...eiiiiiiiiiiiiiie ettt ettt e e e e et e e e e e e s s eaneeees 50
RETEIENCES ...couviiiiiiiiiiiiee e 51
APPENAIX A Lo 52
Project SpecifiCationcccueeeeiiiiiiiiiiiieeiiee e 52
APPendix B ..o 54
OPC Input Items Examplecccceeeviiiiiniiiiiniieeeiee e 54
APPENIX C .o 55
Cycle Time Analyser Instruction Manualcccccceeeeenneenn. 55
APPENdixX D oo 76
DCOM Setting for windows XP.......cccccceevviiiiiiniiiieinieeeeiieenns 76
Appendix E ... 86
OPC Tunneller QUOtationcooevvvveiieiiiiiiiiiiieeeeeeeeeeeeeeeeee 86
APpPendix F.....ocooiiiiiii e 88
Visual Basic Code........cooueiiiiiniiiiiiiniiiiieereceeeeee e 88

F.1 Code Developed..........ceiiiiiieiiiiiiieiiiiieeeetec ettt e 88

vii

viii

List of Figures

FIGURE 1: HENRY FORD (1919) 15
FIGURE 2: FORD ASSEMBLY LINE 15
FIGURE 3: LINE BALANCING WORKSHEET 16
FIGURE 4: HIGH FLEXIBILITY PRODUCTION LINE 18
FIGURE 5: CYCLE TIME STATISTICS — TYPICAL MANUFACTURING DATA 19
FIGURE 6: PDCA CYCLE 22
FIGURE 7: TYPICAL “ACL” ENTRY 26
FIGURE 8: NORMAL DISTRIBUTION 29
FIGURE 9: MACHINE CAPABILITY PROCESS FLOW 30
FIGURE 10: ARCHITECTURE OF THE CODESYS OPC SERVER 33
FIGURE 11: INTERFACING TO OPC SERVERS 34
FIGURE 12: VISUAL BASIC DATA ARRAY 35
FIGURE 13: TEXT FILE FORMAT 36
FIGURE 14: OPC VISUALISATION 36
FIGURE 15: SERVER CONNECT 37
FIGURE 16: GROUP CONNECT 38
FIGURE 17: ADD ITEMS 39
FIGURE 18: FUNCTION BUTTONS 40
FIGURE 19: RESULTS DISPLAY 40
FIGURE 20: EXCEL REPORT 43
FIGURE 21: CODE FOR MILLISECOND CONVERSION 45
List of Tables

TABLE 1: 50 MACHINE MOVEMENT SAMPLES ...t e et e e e eeeeeeeani s 30

TABLE 2: OVERALL CYCLE TIME VARIATIONcccciiiiiiiiiiiiieieiieneeiecee e 42

Definitions

Client — Computers or applications that employ the services of Servers.

Cm, Cmk — Machine capability index

COM - Component Object Model, which supports communication among
objects on different computers.

DCOM - Distributed COM

LSL — Lower Stability Limit

MUDA - Waste (non value added)

OLE - Object Linking and Embedding

OPC - OLE for Process Control

PPM - Parts Per Million

RAD - Rapid Application Development, an incremental software process
model that emphasizes a short development cycle.

Server — Device which centrally provides certain services within a network.

TCP/IP — Transmission Control Protocol / Internet Protocol, the set of rules
which controls virtually the entire communications over the internet and also
applies to most separate networks.

TPM - Total Productive Maintenance

TPS — Toyota Production Systems

UTC - Coordinated Universal Time, UTC-based time is loosely defined as the
current date and time of day in Greenwich, England

USL — Upper Stability Limit

LSL — Lower Stability Limit

VLAN - Virtual Local Area Network

S - Standard deviation is a measure of the spread of data in relation to the mean. It is
the most common measure of the variability of a set of data. If the standard

deviation is based on a sampling, it is referred to as 's".

Chapter 1 Introduction

1.1 Project Aim

This project aims to design an equipment cycle time analyser which enables
equipment to be continuously monitored for deviations from a base cycle time value.
The cycle time analyser will be capable of monitoring equipment sub-cycle steps and

report which segments have caused the base cycle time to be exceeded.

In order to achieve this, real time data will be collected from equipment using TCPIP
based communication and this will be compared against predetermined values for

different process steps and functions.

When deviations occur the user is to be notified that the cycle time has been
exceeded and they will then have the ability to drill deeper into the cycle time results
to determine exactly which step or function of the equipment caused the cycle time

exception.

11

12

1.2 Project Objectives

To achieve the aim of the project a system design was developed based on
developing a number of objectives, the sum of which satisfy the project aim.
The objectives identified are:
e Research possible methods to collect real time data from industrial
devices.
e Analyse complete equipment cycle and divide operations into logical
steps to be monitored by cycle time analyser.
e Design a software program to record step times from online equipment.
= Record and store best case example.
e Investigate and define tolerance times allowed for various steps
(cylinder movements, barcode reading, screwing operations, vision
inspection etc).
e Extend software to check real time data collected from a machine cycle
with pre-defined times allowed for steps.
= User to be notified when current equipment cycle
deviates + or - from desired best case example.
= Step which caused cycle time deviation + or - to be
identified.
e Evaluate deviations from best case example, and use data collected to
maintain and improve equipment reliability.
e Investigate the potential use of such a monitoring device as a predictive
maintenance tool. To continually improve the effectiveness and

efficiency of production equipment, as required by ISO/TS16949,

“Particular requirements for the application of ISO 9001:2000 for
automotive production and relevant service part organizations”.
These objectives provide the basis for this project and make up the project
specification.
In addressing the objectives above, the focus is to develop a software application that
is not specific to a particular control system. The software should have the flexibility
to be used on any system which provides access to real time variables via an OPC

communication interface.

1.3 Chapter Overview

Chapter 2. Background.

This chapter examines the desire of manufacturing organisations to continually make
improvements to increase their efficiency. Current manufacturing trends are outlined
and the availability of plant floor data collection is established. Finally the need and

potential benefits of an OPC cycle time analyser are outlined.

Chapter 3. Methodology.
In this chapter the design methodology is detailed. This includes the selection of a
software design model, use of existing infrastructure for communication, user

interface requirements, report requirements and analysis potential of data collected.

Chapter 4. System Development and Implementation.
Chapter 4 details the system design, operation and implementation of the developed
software. The steps taken to test the software application are detailed and the

resolution of problems encountered are also discussed. Additionally how the design

13

meets the objectives and it’s potential to be used as a predictive maintenance tool are

outlined.

Chapter 5. Conclusions.
Chapter 6 provides a concluding discussion on the project work completed so far and

identifies ideas for future development.

1.4 Chapter Summary

This chapter has outlined the project topic to be discussed in this dissertation. The
reasons for undertaking this project have been highlighted and the content of the

remaining chapters have been outlined.

14

Chapter 2 Background

2.1 History of Lean Manufacturing

The concept of lean manufacturing has been a topic of
much discussion since Henry Ford conceived the concept
of an assembly line for the production of the Model T

Ford back in 1913.

Figure 1: Henry Ford (1919)

The assembly line that was developed by Ford and his team at the Michigan
Automobile Factory was a simple one. A motor-drawn rope pulled the chassis pass a
number of workstations where workmen performed various operations resulting in a
completed automobile at the end of the assembly line.

This simple concept along with
other improvements over an 8 year
period such as, the introduction of
the conveyor belt, reduced the
assembly time of a Model T car
from 14 hours to 1 hour 33

minutes and enabled a reduction in

the selling price from $1000 in

Figure 2: Ford Assembly line

1908 to $360 in 1916.

2.2 Line Balancing

Line balancing is the assignment of operator tasks at workstations to balance

operator loops in such a way that the assembly lines output is optimized.

15

Ever since the introduction of the assembly line by Henry Ford in 1913, line

balancing has been an optimization problem of significant industrial importance: the

efficiency difference between the optimal and sub-optimal assignment can yield

economies (or waste) reaching millions of dollars (Falkenauer 2007).

Warkhop

Standard Work Sheet (StAB) 24

Tine 7 Work Gzl

Fartno. 7 Fame
HU Flexline

ESPa

() BOSCH

(Operators total / Sequence
4 Op's (Loop 1 Operator 1)

Superizor

S.Gachele

Planner

Cate

S Frejser

16 072008

Planned Cysle Time [z¢]
340

Process

time

Description e

aut. |mand walk

Process Timein sec.

kil

Lnload 5t. 2 dxture &load
irto 5. 6. Load new PH
™ [imo 5.3

262 LEL

Lnioad &, 14, Load PH
fom shutle o nest, Load
PH1o R Fre assembly
S1oad bearings into fxture

2

Cycle

Fachine 62 Botlenack.
Cyele time 30 45 secs
(FORCED WAIT 225
SECS)

3

0.5 F—hssdnbni

Lnload 5t 62 WPC,
Lnload 5t. 63, Load new
PHinto St. 62 Mest & puzh
NPT onto chue.

4

18.3 —t g s

“feual haped, ECU
Frotection couer, Lhload

h

5t. 74 and Load new PH
irto 5t. 4.

"dzual check packaging
and pack into Fi3 pallet.
©

kyt:la Time 224

oo (oo | 21 08

manusl

— GO aiC

....... WEIKING seeeans

Page 142

Figure 3: line balancing worksheet

The above worksheet is an example of a typical line balancing exercise. It clearly

shows that the quickest operator loop that can be achieved is determined by the

bottleneck station. In the example, the actual cycle time of the bottleneck station is

30.5 seconds and is shown as the red dashed horizontal line. If the cycle time of the

bottleneck station was to increase for any reason the output of the assembly line

would be immediately effected. Cycle time data is one of the most important items

for any line balancing project (optimal design).

16

Assembly line blancing has become a major focus in modern manufacturing
processes, the aim of which is to optimize machine and worker patterns to provide

maximum output with minimal waste.

2.3 Trends in Current Manufacturing

Manufacturing companies have 2 ways to make a profit.
1. To increase the selling price.
2. To reduce the cost of production.
As the selling price is generally determined by market conditions most companies

turn to reducing the cost of production to maximize profit.

To reduce the cost of production, companies aim to achieve the following goals;
Reduce Cost — By eliminating waste, anything which does not add value to
the product. This can relate to motion (time looking and walking)
overproduction, inventory (excess stock on hand), waiting time or double
handling.

Create a flexible system that can quickly respond to change —

The Vehicle Manufacturing Industry has an ever changing working
environment due to, production levels changing with customer demands,
absenteeism changes per day and continuous improvements in the

manufacturing process.

17

H —— Looks produgt A

o

Start

&Qﬂ II_D?

| ht’g
:h-mar
T -!:IE’E
!Iqa'

nd

[t

i

Figure 4: High flexibility production line

Figure 4 above shows a typical high flexibility production line designed to meet the
cost and flexibility targets set by most manufacturers. This production line consists
of 17 workstations which are shared between 3 operators and produces 2 different
product combinations.

Manufacturing companies dedicate large amounts of resources and funds to optimize

work place layouts and increase worker efficiency.

This optimization process is based on workstations performing their expected
functions within a predetermined cycle time. Any deviation from the expected cycle

time will have a large impact on the assembly line output.

The simple example below shows what effect a variation of 1 second in one worker
loop can have on the lines output.

Assuming the line has a cycle time of 30 seconds and all loops have a balanced
operator loading. Under normal conditions 120 parts would be produced in one hour.
If the bottle neck station in loop 3 has an increase in its cycle time by 1 second the

whole line output would drop to 116 parts, resulting in a reduction of output by 3%.

18

19

As all 3 loops would be affected by the increase in cycle time, worker efficiency and
utilization are also reduced by 3%.
This reduction in output is a perfect example of MUDA (waste) according to TPS

(Toyota Production Systems).

2.4 Current Cycle Time Data
The cycle time data provided by most manufacturing information system is usually
an average value over a certain period of time per product type as shown in the

Figure 5 below.

0285234483-00

Lead time [s] Processing time [s] Numb. of Current target data
Mo |Cell 2 Min Max -] Min Max @ values Cycle Tolerance
£2_ [TesiPz) 35,21 4336 2845 2587 714 26,64 B 4140 400
026523483200
Lead time [s] Processing time [s] Numb. of Current target data
Ne | Cell H Min Max "] Min Max e values Cycle Tolerance
B2 |TesiFz m 79,82 3354 3112 25,62 28,31 26,75 25 30.00 400
Grouping: Cell
[52) TestFz
Lead time [s] Processing time [s] Numb. of Current target data
Type part number-] Min Max @ values Cycle Tolerance
100500 20 29,62 23,82 26,05 3z20 400
i) FE 20,57 26,14 4 400
m 25,38 24,63 23,15 B 400
i) 3.8 [ZES 3 200
B 42,4 26,07 € 400
B 45,67 27,13 B 400
] 4317 27,12 400
o0 35, 4338 26,84 E 200
i) 15,62 3554 26,75 5 400

Figure 5: Cycle time statistics — typical manufacturing data

The data provided in such reports is historical in nature and not sufficient for a real
time analysis of an equipments performance. Additionally the data provided is
insufficient to enable analysis of sub cycles of the equipment. The processing time in
the above statistics varies from a minimum of 22.19 seconds to a maximum of 26.77
seconds for the part number 026523 1xxx product family, a variation of 4.58 seconds.
Analysis of equipment sub-cycles is not possible from the currently available data

and the variation of 4.5 seconds remains unexplained.

2.5 Real Time Data via OPC

In recent years automation technology has developed to a level that allows seamless
exchange of information across plant and enterprise networks, (Shimanuki 1999)

allowing access to real time data from Automation devices.

OPC stands for OLE for Process Control (Matrikon 2005). OPC is one of the
technologies that allows the exchange of data between automation devices and it
significantly reduces the time, cost and effort required to write custom interfaces to
different intelligent devices in use today. OPC provides a standard scalable way to
collect and archive critical IT asset data and deliver it to decision makers so that it

can be acted on in a timely manner (Murphy 2006).

OPC Data Access or OPC — DA is the OPC specification that is used to read and
write real time data exclusively (Kondor 2007). It is a published specification that is
being adopted by an increasing number of manufacturers in the automation industry.
It sets out how data should be structured and allows devices from different vendors
to communicate. OPC is based on Microsoft’s COM and DCOM technologies. The
OPC foundation, a non-profit international organization made up of hardware and
software companies, is responsible for establishing and maintaining the
specifications. The specification states that each data point shall include three
attributes: a value, a quality and a time stamp. The time stamp reflects the time at
which the server knew the corresponding value was accurate (OPC Interface

Standard).

20

OPC performance is more than adequate for most dedicated and distributed
applications running on commonly available hardware (Liu, J 2005). Studies have
reported OPC servers supplying 20,000 values per second to 4 clients with only 10

percent CPU load. (Chisholm, A, 1998)

2.6 TPM and Predictive Maintenance

Total Productive Maintenance (TPM) is a maintenance philosophy that is associated
with the lean manufacturing model (Carreira 2004). Lean production models are
based on reducing work in progress (WIP) which requires a balance of operations,
continuous material flow and minimal variation; some would call this predictability
(Carreira 2004). Predictability would imply that equipment cycle time is stable and
consistent over a extended period of time.

As maintenance departments move towards a predictive maintenance strategy,
accurate and timely information on the state of assets can be used to detect and

correct impending problems before they become catastrophic failures.

The ISO/TS 16949 defines predictive maintenance as: activities based on process
data aimed at the avoidance of maintenance problems by the prediction of likely

failure modes.

Section 7.5.1.4 “Preventive and predictive maintenance stipulates that the
organization shall utilize predictive maintenance methods to continually

improve the effectiveness and efficiency of production equipment”.

The aim of any data collection exercise is to get the right data, to the right people, at

the right time. Invariably this should have the desired impact on the bottom line.

21

2.7 Benchmarking

Benchmarking is the process of determining who is the very best, who sets the

standard, and what that standard is (Reh 2007).

Benchmarking is another tool which is used by organizations to improve their quality
and or output. It follows a similar approach to the PDCA (Plan Do Check Act)

continuous improvement cycle.

ACTION PLAN

CHECK DO

Figure 6: PDCA Cycle

The steps involved in a benchmarking project are:
1. Determine who is the Best. (Plan)
2. Determine how good they are. (Do)
3. How do we get that good. (Check)

4. Implement improvements based on results. (Act)

22

Any cycle time reduction project can also be considered a benchmarking activity
with the following steps.

1. Determine the optimum cycle time. (Plan)

2. Design processes and workflow to optimize cycle time. (Do)

3. Continually monitor cycle time. (Check)

4. Implement improvements based cycle time results. (Act)

Step 3 of the above project requires some form of continual monitoring so that the
cycle time achieved by the project is maintained. This is an Ideal application for

some form of cycle time analyser.

Equipment processing time (cycle time) or sometimes referred to as throughput is a
major factor that can effect the output of an assembly line. Equipment cycle time
remains largely unchecked in a lot of manufacturing organizations and can have
variations of up to a couple of seconds before the effects are noticed as a reduction
in output. Each year companies spend large amounts of money to improve and
increase the productivity of their equipment but spend little to monitor and

“benchmark” their gains.

2.8 Summary

History has shown that manufacturing organizations are continually working to
improve assembly line quality and output. Line balancing, TPM, Predictive
maintenance and benchmarking are some of the methods used to achieve

improvements within these organizations.

23

Once improvements have been made some form of monitoring should be
implemented to ensure that the gains achieved are maintained well into the future.
An equipment cycle time analyser would provide a means to monitor improvements

that have had a positive effect on equipment cycle time.

An equipment cycle time analyser should be capable of recording the overall and sub
- cycle processing times from automated assembly equipment and report any
deviations to the user. This data can then be used to investigate the cause of the error

and assist with a fast resolution of the problem.

24

25

Chapter 3 Methodology

3.1 Overview

A number of key elements need to be addressed in the design of the cycle time

analyser software. These elements are:

1.

2.

Design process model
Communication with OPC server
Development of user interface
Design and implementation of reports
Programming language selection

Analysis of cycle times

The Methodology adopted for these elements are discussed in this chapter.

3.2 Design Process Model

Due to the tight timelines and need for concurrent development, required by this

project, a RAD (Rapid Application Development) model was chosen for the project.

The RAD model allows for concurrent modelling, development and construction

phases to occur during the life cycle of the project.

The Development activities will be split into the following concurrent tasks:

1.

2.

Communication with OPC server
Development of User interface
Design and implementation of reports

Analysis of equipment cycle times

3.3 Communication with OPC Server

This task involves the investigation and set up of client and server devices to enable

the exchange of OPC data using existing Ethernet infrastructure.

The existing network structure has been designed to operate sensible control systems
and test equipment for real time measurements without any interference or
disturbance coming from local area networks and other data traffic. The system is
implemented with a separate VLAN / subnet utilising a dedicated 3 layer switch.
This provides a better split in subnets and a more secure separation from the core-
layer 3 switches of the network. Figure 7 is an example of an access control list
entry.

partial
10.23.79.0-127 subnet <---> 10.23.27.29 Peacy C.Bollaart

Figure 7: Typical “ACL” Entry

The production network is also protected with access control lists to limit incoming

and outgoing traffic only to authorised users.

3.4 Development of User Interface

The user interface to be provided should be easy to use. The choice of programming
language to be used for the project was also based on the need for a graphical user
interface. The user interface should provide an intuitive means to connect and
monitoring points to the application. Results should be displayed as a numerical

value in addition to a go, no-go indication.

26

3.5 Design and Implementation of Reports

To be able to analyse the results collected during the monitoring process some
method is required to visualise and compare the results obtained. As Microsoft Excel
has extensive built in functions to display graphs and manipulate the associated data,
it was decided that the implementation of the cycle time analyser should incorporate
an excel component for reporting. The reporting function must have the ability to
display all 16 recorded signals on one graph so the relationship between the signals
can be identified. Additionally there should be the possibility to overlay a reference
curve over the last recorded curve so that variations in signal times can be compared.
Excel’s standard functionality will provide useful functions such as the ability to

zoom into a section of the chart by changing the axis scale.

3.6 Programming Language Selection

Visual Basic was selected for the software implementation of this project. This
language was chosen due to the large amount of supporting documentation and
programming examples identified during the literature review. Numerous examples
and a wide selection of reference material is available to assist in the development of
a software program with respect to OPC connectivity. Additionally the OPC
foundation provides an Automation wrapper DLL suitable for use with Visual Basic.
Visual Basic also provides an efficient environment for developing software

applications requiring a graphical user interface (GUI).

27

3.7 Analysis of Cycle Times
3.7.1 Machine Capability

A machine capability study refers to a short term study with the sole aim of
discovering the machine specific effects on the production process. These principles
can be extended to determine the allowable limits that should be applied to the
recorded values of cycle time to ensure stable monitoring results.

The aim of a machine capability study is to reach a conclusion about the behaviour of
machine (in control or not?). The following formula is used for the calculation of
capability.

T
m 6.S

total\
Where Cp, = Capability index
T = Tolerance = USL-LSL

Siola1 = total standard deviation

The capability formula above can be transformed to derive the allowable tolerance

times based on a required capability index,

T =C, e6ey5

total
The Tolerance value needs to be divided by 2 as the cycle time analyser uses a +/-

tolerance value.

Figure 8 shows the relationship between a calculated Cmk value and a fraction
nonconforming, a Cmk = 1.33 corresponds to 32ppm non-conforming and a Cmk =

1.67 corresponds to 0.03ppm non-conforming.

28

0.3 ppm |<assmman

32 ppm

1350 ppm

2.275%

15.865 %

il =

1 -
95.73 %

99.99994 am
k]

aman
99,9937 %

95.45 %

6B.27 4

15.865 %

2.275%

hesmsmn -

32 ppm

0.3 ppm

r: 5 4

Figure 8: Normal Distribution

-3 -2 -1

3.7.2 Simplified Machine Capability

As capability studies can be very time consuming when considering the large number
of values to record, a simplified approach can be adopted to derive tolerance times.

Using this approach a reduced number of samples can be used to calculate tolerance

times provided a capability index of 2 is applied.

If this approach is used the resulting tolerance time should be subject to a reality

check to confirm it’s suitability to detecting variations in cycle time.

The simplified approach should only be used on sub cycles with minimal variation

otherwise the assumed capability of 2 will result in unrealistically large tolerance

times.

29

The simplified approach is based on the flow chart shown in Figure 9.

Implernent cormaclive
actions and
repaal capability study

L 4

Manulaciure 50 pans in

Sequence and mumiber

tham in the arder they
wane manufactured

¥

Measure every 2nd parn

1.8

parts

Mo, 2,4, 6, ... 50

L

Document the measu-
TEmEnls and
calculate Cmk

yES

Measure parls numbe-
red 1,35 ...49
and add the measured
valuis 1o the &asting
dacuménted results
(Mo. 2 4.6, ..., 50)

Cmk

Figure 9: Machine capability process flow

3.7.2 Example Tolerance Calculation.

167

The machine is capabla

The machine is capable

Table 1 contains 50 Samples taken for a machine press movement.

1 2 3 4 5 6 7 8 9 10
2.353 2.353 2.353 2.353 2.353 2.353 2.353 2.353 2.353 2.353
2400 | 2.400 | 2.400 2400 | 2400 | 2400 | 2400 | 2400 | 2400 | 2.400
2.268 2.268 2.268 2.268 2.268 2.268 2.268 2.268 2.268 2.268
2400 | 2400 | 2400 2400 | 2400 | 2400 2400| 2400| 2400 | 2400
2.268 2400 | 2268 2400 | 2268 2.400 | 2.268 2400 | 2.268 2.400

Table 1: 50 Machine movement samples

30

31

Calculated siora = 0.058
Now, T=Cy+ 6+ S = 1.67+6-0.058 =0.58
This value describes the total tolerance and needs to be divided by 2 to specify an

upper and lower limit values.

Tolerance = 0.58 / 2 = 0.29 seconds

In this example 0.29 seconds should be entered into the tolerance field and the

average of the 50 measurements, 2.351 seconds should be entered as the base value.

3.8 Chapter Summary

The main issues in the design of the cycle time analyser system will be addressed by
the selection of programming language and appropriate communication to provided a
cost effective and functional application. Issues that arise due to unforseen
circumstances will need to be reviewed as they occur and appropriate actions put in

place to resolve these issues.

Chapter 4 System Development and Implementation

4.1 Overall Description

The development and implementation of the cycle time analyser application involved
the following main activities:
Connection of the equipments OPC server to Visual Basic client application.
DCOM settings to allow data exchange between server and client.
Programming of client software application.

These activities and associated tasks are discussed in this chapter.

4.2 OPC Communication

OPC is a standardised interface that allows access to process data. It is based on
Microsoft’s COM/DCOM which has been extended to meet the needs of data access
in the automation process where it is mostly used to read and write data from
computer based control systems. Typical OPC clients are visualisations and
programs for recording operational data.

Due to the features of DCOM it is possible to gain access to an OPC server that is
installed on a remote PC. Another advantage of the adoption of COM technology by
OPC is programming language independence.

OPC was chosen as the communication medium for this project due to it’s ability to
support multiple clients and it’s focus on providing process data to client programs.
Figure 10 shows the system architecture for typical OPC systems highlighting the

ability of the OPC server to communicate with multiple clients.

CoDeSys wizuglisation 1 wizualization 2
programming
system
QPC-Client CPC-Client
COMS D?/

—— | hem list
CoDeSys —— | generated

OPC-Server — |froma
symbol file

I
TORIP or Shared Memory (local)

gimultaneous
TCH"IP Serial, P-'Pﬁ' el connection to several

i i cortrollers possible

Figure 10: Architecture of the CoDeSys OPC server

4.3 OPC OPCDAAUTO.DLL

A common way is needed for automation applications to access data from field
devices or databases. The OPC Data Access Automation defines a standard way by
which automation applications can access process data.

Figure 11 shows an OPC client utilising the “wrapper” DLL to call into an OPC
Server. The wrapper translates between the custom interface provided by the server

and the automation interface desired by the client.

33

Automation Client

OPC Automation Wrapper
A

COM / DCOM

¥
OPC Custom Interface Server

Figure 11: Interfacing to OPC servers

The OPC foundation provides a sample of the Data Access Automation interface for
the foundation members use in providing an Automation interface to OPC data
access custom interfaces. The sample provided has been used in the implementation

of this client application.

4.4 User Permission Considerations

To allow communication between two computers each machine needs to be set up so
that they have permission to access each other. This is a two way street. The client
must have permissions to access the machine with the OPC server and visa versa. If
you do not have permissions set to allow communication in both ways, then all
attempts to establish communication will be unsuccessful. For the purposes of this
project user permissions for DCOM have been opened up to allow access to all users.

For security purposes it is recommended that once communication has been

34

established and testing completed that user permissions should be reviewed to only

allow the necessary users access.

4.5 DCOM Setting Required

See Appendix C for necessary DCOM settings.

4.6 Recording Format

The cycle time application allows for 16 discrete signals to be monitored.

Each signal is sampled at a 50ms interval with a set number of 670 samples per
signal. This resolution will allow for an overall equipment cycle time of
approximately 33.5 seconds to be recorded. The individual samples are temporarily
stored an array as shown in Figure 12 before being transferred to a text file in a tab

delimited format.

Type
™ RecTimsStamp(10) "0a:1 29" . IString
Gd RecWalues(10) "o YariantiString

Simy Yy yoleTime
SimpleCPCinterface AnalyseCycleTime

Figure 12: Visual Basic data array

The text file is used to upload the recorded data into Microsoft Excel for the

generation of displacement/time diagrams.

35

Figure 13 shows the format used for the tab delimited text file.

&} data.txt - Notepad - 10| x|

File Edit Format Help

14:08:05.017 -
14:02:05.017
14:0%:05.017
14:08:05.017
14:08:05.017
14:08:05.017
14:08:05. 017
14:08:05.017
14:02:05.017
14:02:05.017
14:0%:05.017
14:0%:05.017
14:08:05.017
14:08:05.017
14:08:05.017
14:08:05.017
14:08:05,07C
14:08:05,07C
14:0%:05.075
14:0%:05.075
14:0%:05.07G
14:0%:05.07G

I_‘ Lo e N e e O e e e]

1l

Figure 13: Text file format

4.7 Operation of Cycle Time Analyser Software

Figure 14 shows the main screen developed for the cycle time analyser application.

=lolx|
- List Available OPC Servers dd Group to OFC Server———————————
List OPE Servers GrowNams [Eot Quit J&G miseconds _ Cycle Times
Cick on List OPC Servers' o starl UpdsteRaiems) [l —
Deadband (%] ’“— Load 170 W SyncRead —I
R Save Reference [s —IBESE vaues
[Cick on st above to select. AIEoUp. | Femovetiog |
ModeMame [| [End
Disconniect Fiorm Seiver I I Seconds
OPC Cycle T
AR s Ferioye 0P s ‘
Enter OPC ltem Names Valie Timestamp Bually Trigger End
[Charner Devicel.usert [[[& ¢ | —
[Charner Devicet.user2 [o e e 1 1 1 &b
[Cranneit Device vserd [o I WO 1 0 b
[Cranneit Device.userd [o I RO =1 1 '
[Channeit Device .users [0 I RO T
[Cranneit Devicel userd [0 I RO T
[CranneDevicet vser [[0 I RO T
[CrarneDevicet.vserd [[0 I RO T
[Cherneit Devics1.userd [o . s 0T 0 & 1T
[Cherneit Devics1. userlD [o ¢ & | —
[Charner.Devicet.ueen T [[[mCa .
[Cranneit.Devicel vser2 [o e e 1 1 ¥ & &
[Cranneit Devicet vsert3 [o I WO 1 0 b
[Cranneit Device vsert4 [o I RO =1 1 '
[Erarnel Devicel. userls [0 I RO T 1 &
[Eharnel Devicel. userls [0 I RO T

Figure 14: OPC visualisation

It consists of a number of sections:
1. Connection to OPC server
2. Create OPC Group
3. Add OPC items to group
4. Start recording
5. Cycle time display

These sections are described in more detail below.

4.7.1 Connection to OPC Server

The first step in the operation of the cycle time analyser software is to establish
connection to the selected automation controller and select the required OPC server.
This is achieved by entering the required node name (IP address or computer name)
and then pressing the “List OPC Servers” button. A list of available OPC servers will
then be displayed. Select the required OPC server and click the “Connect button”
Once Connection to the OPC server has been established the “Add group” button
will become active. Figure 15 shows the server connect section of the cycle time

analyser application.

— List &vailable OPC Servers
List OPC Servers |

K.EPware.Linkh aster W1 ;I
CoDeSys OPC.0Z2
Tunneller:BHS4826C: ColeSee OPC.I
Tunneller: BHS48260C: Studio. Scada.0

(CoDeSy: OPC. O

Cannect | [CoDeSys OPC.01

Nede Name |10,2379.23

Disconnect From Server |

Figure 15: Server connect

37

38

4.7.2 Create OPC group

Type the name of the OPC group to be added and click the “Add Group” button.

Figure 16 shows the Add Group to OPC Server section.

—Add Group to OPC Server
Group M ame IGrDup'I

Update Rate [ms.] |1|:|
Deadband [%] |[|

Group Active v

Add Group | BHemove Group |

Figure 16: Group connect

4.7.3 Add OPC Items to Group

OPC items can now be added, these represent the input, output or internal memory
locations that should be monitored. These can be typed directly into the 16 fields

provided or uploaded from a text file using the “Load I/O” button.

Appendix B shows an extract from the target equipments OPC variables list. OPC
items need to be entered in the item fields using the same naming convention as

displayed in this extract.

Trigger points can also be selected:
Trigger - determines the signal which will start the recording process,
positive edge trigger.
End - determines which signal is to be used to calculate the overall

cycle time.

Figure 17 shows the OPC Items section.

— OPC [tems

Ldd OPCIterms | Remove OPC Items |
Enter OFC Itern M ames YWalue Time stamp Cuality UDERE] (3
JCharnel Devicel userl o |H11:52:43.078 | 192 o .
JCharnel Devicel user2 1 f11:52:43.078 | |192 L I
JCharnel Devicel user3 {1 J11:52:43.078 [1]192 L I
JCharnel Devicel userd o [|11:5243.078 | 192 L I
JCharnel Device user {1 J11:52:43.078 [1]192 L I
JCharnel Devicel userf 1 f11:52:43.078 | |192 L I
JCharnel Devicel user? {1 J11:52:43.078 [1]192 L I
JCharnel Devicel userd o [|11:5243.078 | 192 L I
JCharnel Devicel userd o |H11:52:43.078 | 192 L I
JCharnel Devicel userl(o [|11:5243.078 | 192 ® 90
JCharnel Devicel user!1 o |H11:52:43.078 | 192 L I
JCharnel Devicel userl2 o [|11:5243.078 | 192 L I
JCharnel Devicel user! 3 o |H11:52:43.078 | 192 L I
JCharnel Devicel userl4 o [|11:5243.078 | 192 L I
JCharnel Devicel userls o |H11:52:43.078 | 192 L I
JCharnel Devicel userlf o [|11:5243.078 | 192 L I
Figure 17: Add Items
4.7.4 Start Recording

After connection is established and OPC items have been added, the start recording
button can be pressed to begin the recording process. When the signal marked with
the ‘Trigger’ changes to a high state recording will begin.
Once recording has finished indicated by the progress bar the fields Start, End and
Seconds will contain data from the recording process.

Start — Time of Trigger. (start Trigger)

End — Time of end signal.

Seconds — Time elapsed from Trigger to End signal.

39

Figure 18 shows the function buttons.

Quit |5|:| milizeconds Cycle Times

Tolerances
Load 140 ¥ Spnc Read

Baze walues

il

Save Reference 11-5204.307 Start

Start Recording [115236703 End
W |32.395 Seconds

Figure 18: Function buttons

e

4.7.5 Cycle Time Display

Additionally at the end of recording all signals that have undergone a low — high -
low transition will have their sub-cycle times presented in Cycle times section of the

display as shown in Figure 19.

Il

r— Cycle Tims

C D E F G H J K L L] N

[[| | | | |
[7se] [iim8 | [is8 s [iim | [im | s LA

@ L o~ m ;s W o =

=

@ o = W =

Figure 19: Results display
Times that are displayed in green represent times that fall within the base time +/- the

tolerance time.

Times that are displayed in red represent times that fall outside the tolerance times.

40

Times that are shown in red and have a zero (0) value represent, times that had a high

state at the end of the recording cycle.

4.7.6 User Instructions

A comprehensive instruction manual was developed for the cycle time analyser

software which can be found in appendix C.

4.8 Testing

Testing involved a number of stages.

1. Testing connection between client and server.

2. Verifying data recording.

3. Report
The first stage was to test the OPC connection and establish that the required
information could be accessed by the Visual Basic client program. Initially an
attempt was made to establish communication using the corporate network. This
involved a number of challenges due to the existing network configuration. With the
mixture of domains, workgroups, password rules, access control lists and different
subnets, standard DCOM settings could not be adopted to allow communication
between the client and server computers. An alternative solution is discussed in
section 4.11.2 but as this was not the main focus of this project it was decided to use
a computer connected to the same subnet and using the same username / password

combination as the server computer for testing purposes.

The next stage of testing involved running the cycle time analyser application and

recording the timestamp values for the OPC items selected. This test was first

performed on a piece of equipment that had no moving components to reduce the
risk of equipment damage that may have occurred from potential software issues.
The test was performed initially by changing the machine operating mode from
automatic to manual and recording the associated OPC items. This test proved that
accessing the OPC server with a second client had no adverse effects on the systems
operation.

The final stage of testing involved taking a number of recordings at different cycle
times and comparing the results. A test was conducted by adjusting the robot speed
from 100% to 30% and recording the results of the overall cycle time. The results in

table 1 show the variation in overall cycle time as the robot speed was varied.

% Speed Cycle time Difference
100 36.511 0
75 36.719 0.208
50 38.550 1.831
30 44.428 5.878

Table 2: Overall cycle time variation

4.9 Visualisation of Recorded Data

Microsoft Excel was chosen for the visualisation of the recorded data due to it’s
ability to easily manipulate and format data. Both data and reference files are stored

as tab delimited files and are read into excel using Visual Basic macro’s.

42

Once the data is read into the respective excel sheets Data and Reference, it is

formatted to show the data for each of the 16 bits monitored as single step time traces

on a displacement diagram as shown in Figure 20.

B3 Microsoft Excel - OPC Cycle time with reference trace v.04 6400 samples.xls . [l |
@j File ~Edit V“ew Insert Format Tools Data Window Help Typeaguestionforhelp » _ & X
DEHSSRIVEI SLBR-F9-0- 8= 43 @ -af
e S ¢ & B ga weply with Changes... End Review. ..]

frial -10 - B I U|E % v b 5%
C6 - Fe Gripper
Al B | c [o] E] F [G [H I I |] \ K T L W=
1 =
2|
3 Gt Data Get Ref ShowRetrence
| 4 | Bit 0| Shuttle in 1
[E55 Eit 1]Shuttle out 2
| B | Bit 2(Gripper g
% S:: j E?;SU; g Cell 26 Cycle time (Ctempldatata)
|£9E Bit 5|Pcu end B 5
| 10| Bit & |Part Exit 7 L —— Shuttle in
| 11| Bit 7 |Bit 7 g . 1 —— Shuttle out
12 Bit & [Bil 8 E] I T —— Gripper
|13 Bit 9|Bit 9 10 . g rnnn M Iy —— Robat
| 14| | Bit 10/Bit 10 1 I W | —Press
[18| Bit11|Bit 11 12 : ——Pouend
16| Bit12|Bit 12 13 n —— Part Exit
|17 | Bit13Bit 13 14 . —FEit 7
| 18] Bit 14|Bit 14 15 —FEitd
118 Bit 15|BEit 15 1B i —hbt9
20 —Bit10 il
T G —
22 —FEit 12
23 —FEit 13
24 —FEiit 14
25 —FEit 15
25| 0 3 10 15 20 25 30 3% 40
7]
|26 |
29|
|30
Tl 35 (el tima -
W 4 » W[Diagraml 4 Tahlel)Data ¢ Refersnce 4] | LUJ
Diaw= g |duoshapes- N N OO E H 4 S B E S-2-A-==2 @ aFg
Ready UM

Figure 20: Excel report

The excel report performs the following functions
e Import data and reference files
e Show reference
¢ Input text description for signals

e Diagram 1, format suitable for printing

4.10 Visual Basic Limitations

The interval property associated with Timer controls in Visual Basic have some

inherit limitations.

43

e [f an application is making heavy demands on the system such as long
loops, intensive calculations, drive, network, or port access, the cycle
time program may not receive timer events as often as the Interval
property specifies.

e The system generates 18 clock ticks per second — so even though the
Interval property is measured in milliseconds, the true precision of an
interval is no more than one-eighteenth of a second.

Considering these limitations it is recommended that this application be run in

isolation to reduce the load on the system.

4.11 Problems Encountered

4.11.1 OPC TimeStamp

The majority of OPC servers provide Item timestamp information in UTC format
which provides a time resolution down to milliseconds. However Microsoft Visual
Basic does not provide any formatting instructions for retrieving milliseconds from
the UTC format.

After much investigation and a recommendation from the OPC Foundation Forum
the VariantTimeToSystem function was perceived as a solution to this issue.

The VariantTimeToSystemTime function was tested and was also not able to return

the millisecond component of the timestamp.

After further investigation, a Microsoft knowledge base 297463 was discovered that
supported the conclusion that the VariantTimeToSystemTime was incapable of

returning millisecond information.

44

Finally the decision was made to write a small subroutine to calculate the millisecond
value from the timestamp. The milliseconds are then concatenated on to the
“hh:mm:ss” format to provide a timestamp with millisecond resolution
“hh:mm:ss.000”

Figure 21 shows the code used for the millisecond conversion.

' This function converts.UTC based timestamp and extracts milliseconds
* Calculate total milliseconds in time stamp

' Convert date time format to double

Dummy1 = CDbl(varDateTime)

" Remove fractional part of number

Dummy2 = Fix(varDateTime)

Dummy3 = varDateTime - Dummy2

Dummy3 = Dummy3 * 100000000

Dummy3 = Int(Dummy3)

TotalmSec = Dummy3

" Extract hours from time stamp

Hours = Fix(Int(Dummy3 / 3600000))

Dummy3 = TotalImSec

' Extract Minutes from time stamp

Minutes = Fix(((TotalmSec - (Hours * 3600000)) / 60000))

Dummy3 = TotalImSec

" Extract seconds from time stamp

Seconds = Fix(((TotalmSec - (Hours * 3600000) - (Minutes * 60000)) /
1000))

" Extract milliseconds from time stamp

Milliseconds = Fix((TotalmSec - (Hours * 3600000) - (Minutes * 60000) -
(Seconds * 1000)))

" Format time output into “00:00:00.000”

GetMilliseconds = Format$(Hours, "00") & ":" & Format$(Minutes, "00") _
& ":" & Format$(Seconds, "00") & "." & Format$(Milliseconds, "000")

Figure 21: Code for Millisecond conversion

4.11.2 DCOM Security Settings

Initially an attempt was made to connect to the OPC server from an office computer
that was a member of a domain whilst the computer with the OPC server was
situated in a workgroup. The configuration required to enable communication using

DCOM proved increasingly difficult and was abandoned as it was not the primary

45

focus of this project. Other alternatives were investigated resulting in the discovery
of an OPC tunneller software from a company called Matrikon which effectively
connects OPC client and servers independent of DCOM settings. The cost of the
OPC tunneller software provided by Matrikon prohibited its use in this project, see
Appendix E. Use was made of the 30 day trial period offered by Matikon for
evaluation purposes. This software made connection to OPC servers on different
subnets remarkably easy and would be considered as a permanent solution to resolve

DCOM issues if the cycle time analyser concept is implemented.

4.11.3 SyncRead does not Return Timestamp Data as Array

The SyncRead function has two optional variables, Qualities and Timestamps.

In the OPC Data Access Automation Interface Standard these are defined as
“Variants containing a Date array of UTC time stamps for the Timestamps variable
and a Variant containing an Integer array of Qualities for the Qualities variable”.
Upon further investigation a similar query had already been posted on the OPC
foundation’s forum page on 14™ March 2003, suggesting that the following special

logic be used to convert the variants to arrays before the data can be accessed.

/I Convert Variant containing Date array to Array
Dim TimeStamps() As Double
ReDim TimeStamps(ItemCount)

If VarType(TimeStamp) = vbArray + vbDate Then
Dim Buffer1() As Date
Bufferl = TimeStamp

For ii = 1 To ItemCount
TimeStamps(ii) = CDbl(Buffer1(ii))
Next ii
End If

46

4.11.4 OPC Server Capability

The basic update rate of the OPC-Servers used for communication is specified as
milliseconds = cycle time with which all item data are read from the controller. This
data is then written into the cache with which the client communicates with a

separately defined update rate.

In comparison to direct access to the controller, reading and writing of variables via
this cache list leads to an increase in access time (max. approx. lms per item).
The user needs to be aware that using an OPC server with an excessive number of

items can reduce the accuracy of the information received from the server.

4.12 Chapter Summary

The Cycle Time Analyser application that has been developed is based on a
Windows based application that performs synchronous read requests from the
connected OPC server. The collected data represents the 16 OPC items entered in the
GUI and is compared to preset values entered into the base times screen and
tolerance time screens. The data recorded can be imported into an Excel spread sheet

for printing and reporting purposes.

47

Chapter 5 Conclusions
5.1 Achievement of Objectives

The aim of this project was to develop a software application that was capable of
monitoring equipment cycle time utilising the existing infrastructure. The system was
developed to the stage where equipment sub cycle times could be extracted from the
recorded data and compared with preset values determined by statistical analysis.
The software has proven to meet the requirements of a flexible and scalable system

suitable for implementation.

The objectives defined in Chapter 1 have been addressed and research into the
suitability of OPC and Visual Basic as components of the cycle time analyser have

proven to be effective.

The use of existing infrastructure caused a number of authorisation issues which
were solved by the use of a third party software application which allows PC

connectivity across conflicting network configurations.

The cycle time software was designed and implemented. The system allows real time
data to be recorded from equipment and stored in a local file for further analysis. A
comparison of recorded data is also performed with pre recorded limits to give an

immediate status of equipment cycle time.

48

5.2 Future Work

The evolution of the cycle time analyser software to it’s current level has proven the
underlying principles and indicated that the continuation of the development of
application would provide an effective monitoring tool. The following tasks are

currently seen as enhancements that could be added to the existing solution.

5.2.1 Statistical Evaluation of Tolerance Times

The stability of equipment cycle times is a necessary prerequisite to allow for
informed decisions to be made about equipment capability. The calculation of
stability and capability were performed by manual calculations as the timing of this
project did not allow for this function to be fully integrated into the software
application. The implementation of the following functions would greatly increase
the speed at which the software could be adapted to different equipment.

e Record 100 samples

e (alculate Capability index

e Calculate lower and upper tolerance limits

5.2.2 Monitor Multiple Machines

The current application only allows for one machine to be monitored at a time. The
ability to monitor multiple equipment simultaneously would greatly increase the
usability of this application. Processor loading and communication bandwidth will

need to be verified to ensure a realistic sampling time is maintained.

49

5.3 Final Summary

As a result of undertaking this project it has become clear that monitoring equipment
cycle time and comparing the values obtained with previously recorded values can be
used to determine equipment stability. The software application presented in this
project can be used as part of a lean system of operation and used to predict
equipment failures. It is anticipated that the cycle time analyser software identified in
this project will, after further development and testing, be adopted as a permanent

monitoring tool.

50

References

ISO/TS16949 Technical Specification, Quality Management Systems — Particular
requirements for the application of ISO 9001 :2000 for automotive production and
relevant service part organizations

Hobbs, Dennis P, Lean Manufacturing Implementation: A Complete Execution
Manual for Any Size Manufacturer, J. Ross Publishing

Bill Carreira, 2004, Lean Manufacturing That Works: Powerful Tools for
Dramatically Reducing Waste and maximizing Profits, Amacom, New York

Toyota Production System Manual, June 1992, Toyota

Murphy E, 2006 ‘Time for a health check’, Focus: Open connectivity, 24" December
2006.

Chisholm, A, 1998, ‘DCOM, OPC and performance issues’, OPC Foundation white
paper, 1998.

Liu, J, Wee Lim,K, Khuen Ho, W, Chen Tan, K, Tay, A, Srinivasan, R 2005 ‘Using
the OPC Standard for Real-Time Process Monitoring and Control’,
IEEE Software, November/December 2005, page 54.

Yoh Shimanuki, 1999, ‘OLE for Process Control (OPC) for New Industrial
Automation Systems’, IEEE

Robert Bosch gmbh
Machine and Process Capability, 3" edition 2004

Kondor, R, 2007, Matrikon, ‘Understanding OPC: Basics for New Users’
http://ethernet.industrial-networking.com/articles/article

How to cycle time
http://www.optimaldesign.com/OLHelp/HowTo/HowToCycleTime.htm

Line Balancing in the Real World, Emanuel Falkenauer, 2007 viewed on 6" May
2007.
http://optimaldsign/Download/OptiLineFalkenauerPLMOS.pdf

Birth of the Assembly line, 2007 viewed on 6™ May 2007.
http://autopopuli.blogspot.com/2006/10/birth-of-assembly-line.html

Wikipedia, 2007, viewed on 6™ May 2007.
http://en.wikipedia.org/wiki/Henry Ford

Reh, J, 2007 ‘Benchmarking’, viewed on 16th May 2007,
http://management.about.com/cs/benchmarking/a/Benchmarking.htm

51

Appendix A

Project Specification

52

A.1Issue A, 20" March 2007.

Univarsity of Southern Gueensland
Facuty of Engineesing and Surveying

ENG 4111/411 search Project

PROJECT SPECIFICATION
For: Clameant Bollaart
T i Equipmeant cyecle time analyser
Suparvisor: Or Paul Wen
Enralrmest: EMG4a111 - 51, X, 2007
EMGA112 - 52, ¥, 2007
Froject Aim: To produce & software package that nolifies the user when

equipment cycle time deviabes from a predefined best case exampla,
PROGRAMME: igsue A, 20 March 2007.
1. Research possitle melhods to collect real time data from |ndustrial devices.

&, Analysa complete squipment cycle and divide operations 1o logical steps 1o be
maonitared by eyele lime anakysar.

3. Design software programme to recond step times. fram anline equipment.
= Record and store best case exampla.

4, Investigate and defing tolerance times allewsad for various sleps | evlindar movements,
barcoda reading. screwing operations, wision spection eic)

5. Extend software to check real time data collacted from a maching cycle with pra-
defined times allowed for steps.
= LUser to be notified when current equipment cycle devietes + or - form desined
beet case axamphs,
» Step which caused cycle time deviation + or - 10 ba identified,

6. Ewvaluale deviationa from beat case axample. and use data collected to maintain and
improve equigment reliability

7. Investigate the potential use of such & monitoring device ae a predictive maintenance
1oed to continually Imprave the effectivansss and afficiency o pradusdion equipment,
a5 required by IS0IT516249 Panicular requirsments for the application of IS0
S001:2000 for automaotive production and relevant service part organizations,

Ag Hma perils
& Extend application o monitor multiple equipment simultaneously.

9. Extend application to notify user via omai if equipment cycle continuously fals aul
side pradalined limits,

wanceo LL ol _summs BN [l

Dated 24303/2007 Dated 4 4/2007

(1
- ‘-’{.Iflﬂ{f A(G?

53

Appendix B

OPC Input Items Example

YaR_CONFIG
[* Aduthor: PlcConfigurator (V3.7 fromw 12.05,2005)
ConfDate: Z22.08.2006
Revizion: =xFev
Mhoz?: wxWho
Date: wxDate]

[* A3Z80: Robot (STAEUELITCPIF) *)
LRobot0l.RobdxisFeady AT 2IXEZ.0 :BOOL ;
Robot0l,RobHighPower AT IXZZ.1 :BOOL ;

[* M940Z: Gripper [(WValwe)] ¥)
LMOA0Z ATnitPosition AT %IXI0S.5 :BOOL ;
L9402, AllorkPosition :BOOL == FALLIE;
LMOA0Z BInitPosition :BOOL == FALLIE;
LMOA0Z EWorkPosition :BOOL == FALLIE;

LMO40Z.Coild AT %0K20.1 :EOOL ;
LM940Z.CoilE AT sQ¥E0. 2 :EOOL ;
[* E&P: GripperToolCheck (SensorCheck)] *)
LE3P.5enzorToCheck AT %(IX105.7 :EOOL;
(¥ A387: Press (PCUl000) *)

.Press0l.ReadyTollork AT %IX50.0 :EBOOL;
LPress0l. ProglutEito AT %IX50.1 :EBOOL;
LPress0l. ProglutBEitl AT %IX50.2 :EBOOL;
LPress0l. ProglutBits AT %IX50.3 :EBOOL;
LPress0l. ProglutBits AT %Ix50.4 :EBOOL;
LPress0l. ProglutBicd AT %IX50.5 :EBOOL;
.Press0l.ReadyToStart AT %IX50.6 <EBOOL;

.Pres=z0l.
.Pres=z0l.

GenError AT %Ix50.7 <BOOL;
CycleFin AT %IxEL.N0 tEOOL ;

.Presz0l.NetworkError AT 5IX51.1 :BOOL ;
L Presz01. ShutdownlE AT 5IX51.2 :EOOL;
.Press0l.Eneritop AT %Qx50.0 <BOOL;
LPresz0l. ProgInBitl AT %0x50.1 :EOOL;
.Presz0l.ProgInBitl AT %0k50.2 :EOOL;
.Presz0l.ProgInBit2 AT %0Kk50.3 :EOOL;
LPresz0l. ProgInBits AT %0x50.4 :EOOL;
LPresz0l. ProgInBitd AT %0xE0.5 :EOOL ;

54

Appendix C

Cycle Time Analyser Instruction Manual

55

Control 2000 xsau

Cycle Time Analyser

System for Analysis of Cycle Time
of Production Equipment
with
OPC

Instruction Manual

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

56

57

Control 2000 xsau

Cycle Time Analyser

BOSCH

1. Table of Contents

1. Table of Contents.......cccoviiiiiiiiic e 57
2. Purpose and Aim of Cycle Time AnalysiS............ccceeveeeee.e 58
2.1.Extension of cycle time monitoring...........cceiieeei e 58
3. System Configuration...........coeeviiiiiiiiiiiiiiei e 59
71U 0] = 2R 59
5. PrerequUISItEScooevuieiii i e 59
6. Program Installation ... 60
7. NEetWOIrK SEIUP ...ooeeeeeiece e 60
8. DCOM SettiNgS . .cieeeieeeeieeeeeeeeeeeeeet e 60
9. Cycle Time Analyser Operationcccceeeeeeeeiiiiiiiiiieeneeee. 61
9.1 Loading Items from File.........cooo e 62
9.2 ConNecCt t0 OPC SEIVENccoiiiiiiiiee e 63
9.3 Add Group 10 OPC SErVeruvviiiiieiiiie e 64
9.4 Adding and Displaying HemS.........couiiiiiiiiiie e 64
9.5 Sart reCOMMING ..eeeeiiiiiiie et 66
9.6 CyCle tiMe reSUIS ... 67
9.7 BASE HIMES ... 68
9.8 TOleranCe tiMESooceiiieiee e 69
9.9 Displaying results in @XCel........cccocuuuiiiiiiiiiieieiee e 70
9.9.1 Input sheet data ..o 72
LS IR 2 4 o T | o o P 73
9.9.3 Excel Diagram 1 ... 74
10. Change iNAEXcoo i 75

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

Control 2000 xsau

Cycle Time Analyser

2. Purpose and Aim of Cycle Time Analysis

Frequently the requirement exists to optimise the cycle time of existing production,
assembly or test equipment.

In the case of complex control systems, the chronological reference to the state of
sensors and other components are not directly obvious from the machine program.

Deviations from the designed cycle time are difficult to locate.
The method applied so far is to record signals using a multi-channel recorder.
This method has a number of disadvantages:

- Only possible to monitor sensors or hard signals.

- Recording of a very limited number of signals.

- Considerable effort is required to connect individual signals.

The aim is to generate an analyser diagram from the control system of the
equipment.

With this system of cycle time analysis it is possible to chronologically record all
signal changes of the selected inputs / outputs of a complete machine cycle.

The system is connected to the automation controller.

2.1. Extension of cycle time monitoring

By specifying a base value and allowable tolerance limit the complete sequence can
be monitored.

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

Control 2000 xsau

Cycle Time Analyser

3. System Configuration

Existing Visualisation

/ Integrated in Controller

Cycle time Visualisation
4= Desktop PC — Windows 2000

vizualization 2

CoDeSys
programmming

=ystem

OPC-Client OPC-Cliert
commy/

— | tem list

CoDeSys — | uenerated

OPC-Server — |froma

symbal file

I
TCRIR ar Shared Memory flocal)

for projects
an PLEA
anciiar
PLC2

! . i \ simultaneous
TCRIF, Serial, Pipe el connection to zeveral

controllers possible
Automation controller
o e ¢ Industrial PC — Windows XP

Prior to recording, the machine specific inputs and outputs are allocated to items and
entered in the item allocation table. There is a facility to read the input items from a
file.

After recording, data is stored in a text file “data.text" and can be imported to the
cycle time analyser Excel sheet for visualisation and analysis.

4. Summary

5. Prerequisites

Microsoft Excel
Access to Equipment subnet
PC with required DCOM and network configuration.

BOSCH

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

59

Control 2000 xsau

Cycle Time Analyser

6. Program Installation

The PC program is available on disk as “OPC Cycle Time Analyser.exe” and may be
copied to any directory.

The recording sample is stored in the temp directory on C drive: “C:\temp\data.text
A reference sample can also be saved on C drive “C:\temp\ref.

7. Network setup

This section describes how to adapt the network configuration to allow your PC to

connect using TCPIP with the equipment to be analyzed.

- Change DCOM settings on your PC and equipment to those recommended in
section 8

- Connect your PC to same subnet as the installed equipment.

- Change your IP address to one that is located in the same subnet as your
equipment

- Create a user with the same login details “user name and password” as the target
equipment.

- Map a network drive to the target equipment to be monitored.

8. DCOM settings

See “Windows XP SP1 DCOM Configuration” for details on how to change your
computers DCOM settings to allow the cycle time analyser software to communicate
with your machine.

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

Control 2000 xsau

Cycle Time Analyser

9. Cycle Time Analyser Operation

OPC Server Connection:
Connection is established to required
OPC server by listing all servers
available and selecting required server

OPC Group:
Enter name of OPC server
group.

Function Buttons:
Operator button for starting
, loading Items and saving
reference diagram.

Screens:

These buttons open the
cycle times, Tolerance

and base values screens

. OPC Cycle Time Analyser

KEPuware LinkMaster 1

CoDeSys OPC.02

Tunneller, BHRAAZEC: CoDeSps. OPL.E
Tunneler; BHEAAZEC:SludiD.Scada.Dﬂ

Cannest I KEPware KEPServerE x4

Add Group to OPC Server
Group Marne

- Update Rate [ms.] Im
Deadband [%] IU

Group Active [V
Add Group |

Guuit |

Load 140 |
Save Reference |

Remave Group |

Start Recording |

Made Name [10.23 79 23

=10l x]

miliseconds

Cpcle Times
Tolerances

Base values |

50

[w Sync Read

| Start

l— End

Disconnect From Senver I

I Seconds

- OFC ltem:
Add OPC ltems |

Femove OPC teme [

| r Cycle Tim

Enter OPC Item Mames Walue Time stamp

Quality

m
=
a

Trigger

|- MOBOZisu Cailt

[o

o

[W30 isu AlnitPosition

[o

[M3402isu Coilt

[o

[Robotisu Robituto

i

=

I.PrEssDWVisu PeuStemlilnput.Start

=

I.PrEssDWVisu FeuEndCycle

=

I.BDBBVisu.SensorToCheck

0 e e i i i |

|-Rebetisu PO

=

|.F|obotmVisu.HobiPosStartCT 5

=

|.F|obotmVisu.HobiPosStartHT 5

=

I.HobotUWisu.HobiS etSignalCT S

=

=

I.HobotUWisu.HobiS etSignalRTS

|-Robetisu FiobdwisReady

=

|- RebetTvisu ES

=

|- Robetisu ShowBtruts

=

e @ e e e e e e e e e e e

I T T T

bl L LLLLY

|.Hobot01Visu.ShowB trPosSbart

=

OPC Items:

16 items can be monitored by the OPC
Analyser and are entered into these
fields. Alternatively Items can be
loaded from a pre written text file with
the Load I/O function.

Triggers:

Triggers provide a means to start and
end measuring on individual Items. The
total time lapsed from start to end is
displayed top left of screen.

Cycle times:
Measured cycle times are displayed
after the measurement time is complete.

BOSCH

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

61

Control 2000 xsau

Cycle Time Analyser

9.1. Loading Items from File

The list of OPC ltems to be monitored can also be loaded from a text file. This makes
the adaptation for another machine much quicker than entering individual items.

The file must contain the proper OPC item descriptions, similar to those in the
example below.

& cell26.txt - Notepad -0 x|

File Edit Format Help

LMOE0EVisu.Coila N

MEd0EV sULAIRTCROST1E1 00 . . '
SM240Zisu.CollA Enter a maximum of 16 items to be copies to
LRobotolvisu.RabiAuto

-Pressolvisu.Poustemli Input. Start OPC !tems. . . .
Sl AISTO (ENSE e This file can be created in a text editor like
LBO&3WisU. SensarToCheck .

.ROBOTOLViSU. PO Notepad or Ultraedit.

{Robotolvisu.RobiPoOsSStartcTs
.Robotolvisu.RobiFPoOsSStartRTS
LRobotolvisu.RobisetsignalcTs
Robotolyisu.RobisSetsignalrRTs
{Robotolyisu.RobfxisReady
{Robotolvisu.ES

LRobotolvisu. ShowBtHALLO
{Robot0lvisu.ShowBtnPosStart

4] H 4

Quit

Load /0

v

e

Click on the Load I/O to open the I/O text file

) . . Save Reference
Select the appropriate file. Then click Open
Start Becarding

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

Control 2000 xsau

Cycle Time Analyser

open 21|

Look in: I 7 cycletime cell 26

j@'.ﬁ QX._JE'TDDI_S'

| Sizel Type

I |Nam|31f
3 [om

My Recent cellog,

Dacurnents data bt
7 data_16_05_07_1.txt
hﬂ] data_16_08_ 07 _z.txt
Deskiop =] dataln.txt

My Documents datadata change bxt

g datasystem time. txt

1KB TextDox
1KE TextDox
166 KB Text Do
91KE TextDoc
S1KE TextDoc
119KE Text Do
120 KB Text Dog
119 KE Text Dox
119 KE Texk Dox
119 KE Texk Dox
91 KB TextDoc
119 KB Texk Do
91 KB TextDoc

| |

=l open |

£] ref bxt
My Computer
4]
o File name: I
Iy Metwork.
Places Files of type: IData file: *, bt (*.baet)

j Cancel |‘

OPC Items are now copied from the /O file to the OPC Items in the cycle time

analyser screen.

9.2. Connect to OPC Server

This section describes how to list and connect to an OPC server:
- Input Node Name IP address

- Click List OPC Servers

- Select the required OPC server

- Click Connect

available OPC servers will be
displayed.

Click “List OPC Servers after you
have entered the IP address. A list of

—— Lizt Available OPC Servers
—

click connect.

Select the required OPC Server and

Lizt OPC Servers I
K.E Puware. LinkM agter i1 -
CoDeSys. OPC.0Z

Tunneller:BHRAA 260 ColieSpe OPC.(

\ Tunneller:BH 58260 5tudio. S cada. 0
& CoDeSvs OPC.OM

Enter the IP address of the equipment
that has the OPC server you wish to
connect to. If no IP address is entered
OPC servers on the local machine will
be listed.

Connect | [CaDeSys OPC.01

Node Mame |10.23.79.29

Dizzonnect From Server |

BOSCH

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

63

Control 2000 xsau

Cycle Time Analyser

9.3. Add Group to OPC Server

This section describes how to add a group to the OPC server
- Type the Group Name

- Click Add Group —Add Group to OPC Server
Group MHame ICE" 26

Lpdate Rate [mz.] |1|:|
Deadhand (%] [o

Group Active [

Add Group | Femaove Group |

9.4. Adding and Displaying ltems
This section describes how to add OPC items.

- Select the required Trigger and End signals.
- Click Add OPC ltems.

BOSCH

- Type the OPC ltems or load OPC ltems as described in Section 9.1.

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

64

Control 2000 xsau

Cycle Time Analyser

Enter the required OPC Items required
to be monitored.

Note: Names used here must match
those loaded into OPC server.

Click Add OPC Items to add entered
items to OPC server.

Select the required trigger points.
Trigger — on the low to high transition
of this signal recording of time stamp
values will commence.

End - the low to high transition of this
signal will be used to determined the
overall cycle time

—OPC tems
Hemave OPC ltems |

Enter OPC Itern Mames Walue Time stamp Cuality Uz
| MOBIZVisu Coils, | |0 | =
| MB40ZVisu AlritPosition | Io | . .
| M340Zvisu. Coild, | Jo | . .
|- Fiobat0 Visu Robiduto | Jo | . .
I.F'lessﬂWisu.F'cuStem'l ilnput. Start I ID I - -
| Press01visu PeuEndCycle | [|))

N BOEisu SensorT aCheck | |0 | . .
|- Riobatdvisu PO | Io | . .
| Fiobatt Visu RobiPosStartCTS | Jo | . .
| Fiobat0Visu R obiPosStartA TS | Jo | ® ©
|-Robotd1¥isu R obiS etSignalCTS | [i | ®
| FobattVisu RobiSetSignalR TS | [| O
|- Frobat01Visu R obésisF eady | Io | . .
| Fiobat0visu ES | Io | . .
|- Fobat0Visu. ShowBtnduto | Jo | . .
|-Robot01¥isu Show tnPosStart | A i N | ®

Value: Time Stamp:

During recording the actual Value During recording the actual timestamp
received for this Item from the OPC value received is shown here.

server is shown here.

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

Control 2000 xsau

Cycle Time Analyser

9.5. Start recording

Click start recording button.

This section describes how the analyzer is started and some other related functions.

Time stamp values should now be changing as items are read from the server
Once the selected trigger item has a 0 to 1 transition the recording progress bar

will be active.

The progress bar will show when the recording process is finished.
Once recording is finished the fields Start, End and Seconds will display values:
Start - is the time the trigger 0 to 1 transition.
End is the time of the end trigger 0 to 1 transition

Seconds is the calculated difference

Start recording — starts real
time recording from OPC
server.

Start displays the value of
the start trigger.

End displays the value of
the end trigger after
recording.

—&dd Group to OPC Server
Group Marne |I3n:|up1

Update Rate [ms.] |'|D
Deadband [%] ||:|

Group &ctive W

Add Group | Eemaove Group

Quit |

Load |/0 |
Save Reference |

[N

Start Recording |

lllllIIIIIIIITIIIIIIIIIIIIII TR

|5|:| milligecands

v SpncRead

2532:26.575 Start

25:32:58.972 | End

Seconds

Progress bar, shows recording
process starts when trigger
activated.

Seconds the time difference
between trigger start and
trigger end signals.

BOSCH

il

Cycle Times
Tolerances

Baze values

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

66

Control 2000 xsav

Cycle Time Analyser

9.6. Cycle time results

This section shows the Cycle times results screen.

- Items highlighted in green identify items within the tolerance time.

- Items highlighted in red identify items outside the tolerance time.

- Items highlighted in red and with zero (0) value identify items that were still in a
high state at the end of recording.

Il

r— Cycle Time:

E F G H J K L I M

I | I I
I | I I
I | I I
| | | |
| | | | | | | | | |

fiase g fies - [as [ass [fazm o [am | I

I I | I

(7=~ T SR~ CI ™, B S U SR

o

11|
12|
13|

=

II I n
II I ;

15|
‘IB|

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

67

Control 2000 xsav

Cycle Time Analyser

9.7. Base times

This section shows the Base times screen.
- Base times obtained by statistical analysis of process cycles are entered on this
screen. The mean value should be used.

=loix|
— Baze time

& B C D E F G H I J L M M
1 [11m |1.153 Ji Ji 1 1 1 Ji Ji J1 1 1 1 Ji
2[5z 1 i [[1 [1 [1 i [I [1 I h h
3 i f i [[[h I 1l I I 1 i
4 [1.153 f1 Ji Ji 1 1 1 Ji Ji 1 1 1 f1 Ji
5 1159 1 J Ji 1 1 [1 J Ji Jh 1 1 1 J
6 1159 11159 [1.159 [1.159 [1.159 [1.159 |1.159 [1.159 [1.159 [1.159 [1.159 [1.159 i i
7w v fi [[1 [1 [1 i [I 1 I h h
8 [1.1853 |1.153 |4.057 |2.837 |2.833 |2897 [1.153 Ji Ji 1 Jn J1 1 J1
8 [oras [ad4vs Jasrr foms fi fi [1 [1 J1 1 1 1 [h
101,733 1 J Ji 1 1 [1 J Ji Jh 1 1 1 J
i i [i [i fi fi f1 fi i [[1 [1 1 I
12]1 1 i i I I 1 i i I I I 1 i
13 1 i i I I 1 i i i I I 1 i
14058 [os53 i [[1 [1 [1 [1 J1 I 1 I h h
1 h h I It It h h I I It It h h
18] h h I I I i h I il I I h h

BOSCH

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

68

Control 2000 xsav

Cycle Time Analyser

9.8. Tolerance times
This section describes the Tolerances screen.

this screen.

- Tolerance times obtained by statistical analysis of process cycles are entered on

- Tolerance value should be determined by statistical analysis +/- 3s.

=lol x|
File
i~ Tolerance:

A B C D E F G H | J K L M N
1 o1 Jo1 i 1 J i J1 Jn J 1 1 J i J1
2 o2] 1 J1] 1 |1 Jn] J1 J1] 1 |1
3 o5 Jn Jn 1 Jn Jn [1 Jn Jn [1 1 Jn Jn [1
4 foos J1 J1 1 J1 J1 J1 1 J1 J1 1 J1 J1 J1
5 o1 i 1 1 i 1 J1 1 i |1 1 i 1 J1
& o1 Jo1 Jo.1 Jo.1 Jo1 Jo1 Jo.1 j01 Jo1 Jo.1 Jo.1 Jo1 1 J1
7 Jozs Jn Jn J1 Jn Jn |1 Jn Jn 1 J1 Jn Jn |1
8 o095 Jo.095 |0.095 J0.0%5 Jo.095 |0.095 |0.095 Jn J 1 1 J i J1
9 o1 Jont Jom Jont] 1 |1 Jn] J1 J1] 1 |1
10002 Jn Jn 1 Jn Jn [1 Jn Jn [1 1 Jn Jn [1
" h I h h I I h h I h h I I
12 It [I It [1 It It I I It [1
13015 Jo.15 1 1 i 1 J1 1 i |1 1 i 1 J1
4 I [I I [1 I I I I I [1
15 Ii Ii I Ii Ii 1 I Ii I I Ii Ii 1
il Ii I I Ii I 1 I Ii I I Ii I I

BOSCH

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

69

Control 2000 xsau

Cycle Time Analyser

9.9. Displaying results in Excel

This section describes how to view recorded results in Excel.

- Using the Excel spread sheet file provided with the software named “OPC Cycle
time” you can view the recorded data as a displacement / time diagram as shown
below.

- The spread contains macros which must be enabled for proper operation.

- The spread sheet contains 4 pages Table1, Diagram1, Data and Reference.

- Click on the Get Data button and search for your recorded data file. Default
location is C:\temp\data.txt.

The data loaded into excel is stored and additional values calculated in Table1 sheet.
The reference curve data is stored and additional values calculated in the Reference
sheet.

Diagram1 is a printable version of the actual cycle time diagram.
See section 9.9.3 for further details.

The most important sheet is the Data sheet described below.

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

70

Control 2000 xsav

Cycle Time Analyser

Microsoft Excel - OPC Cycle time with reference trace v.03 Increase samples.xls = IEllil
EI_] File Edit Wew Insert Format Tools Data wWindow Help Type aquestionforhelp = - & X
DEHSSRAITHISRA- S I-0 8= -4 BE -]

P A te a ™ M5 % [S g | ¥ Reply with Changes... End Review... !

: arial -0 -|B I U| B8 % s %R 5% '&'A'!

AB25 - 13
al B | © | D] E [F | G | H [| | J | K | I [Mn[e —
1 L

| 2 | 1
3 Gat Oata Get Ref Show Rekrnce
4 Bit 0410 1
5 Bit 1 5112 2
5] Bit 2/|B0&0 3 3 4 s

i B!‘t Elb 4 Cell 26 Cycle time [CAternpldata tat |
g Bit (4 (K100 5
9 Bit|S |Spare 5] " S | mr
10 Biti 6 | Gripper T — 1 i —— S0 1
11 Bil 7 |Rohot ready g . i — o (I — stz 2
12 Bit{ 5 |Press ready a \\ - —B0&0 3

13| | Eit|a|Ets o | » 1 — | — B8 3

14 Bit 10 |Bit 10 1 P |7 K0 =5

15 Bit 17, |Bit 11 12 ' I 1 1 1 1 I f — Sp.are B

16 Bit 12\Bit 12 13 i —— Gripper 7

17 | | Bt13[8t13 /] 14 . I I : —— Riabiot read 8| |

18| |Bit14|Bk 14 /|15 ! 3 —— Pressread]

19| | Bit15[BiN 16 f : =i 10

a0 . —Bit10 '

21 Tife [Cell 26 Cycle time Tl 12

B3) —Bit®2 =

B] X —Bit13 o

o4 | o) — Bt T

=] : : —Eit1s

25 16

26 o B 10 15 20 28 a0 35 40 45

27

28

29 =

14 4 » M\ Diagraml & Tablel hData { Reference | LIJ_‘

iDrawr Ly | Autoshapess N N OO A [A 2 @8] & | & - Z- A -

Ready UM e

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

71

Control 2000 xsau

Cycle Time Analyser

9.9.1. Input sheet data

The switches 3 and 4 are used to load cycle time and reference data. They open the
following Dialog.

data.txt — last recorded ref.txt — Last data saved as
cycle time data a reference diagram

rd bl
@ - A Q 2 T £ - Tools ~
& Marne | Sizel Type
C" al.bxt 1KE Text Do
ghr RBCBIE'Z E] data.txt 166 KE Text Doo
HEUMETEs pci.txt ISKE Text Dot
- j ref bxt 168KE Text Dac
Deskiop
"
My Docurments
=
My Computet
% 1| | i
== File name: hd Dpen |
MMy Metwork I J =
Flaces Files of type: IData file *. bk (* bt} j Cancel l,

Select the appropriate file data.txt or ref.txt, other files names will cause an error
message.

In area 1 of the excel sheet you can enter a symbolic name. The name entered is
transposed to the right of the cycle time diagram to identify the individual signals.

In area 2 of the cycle time diagram you can enter a name for the diagram. This name
also appears as a heading for the cycle time diagram.

OPC Cycle time analyser3.doc

BOSCH RBAU/MFAL, 09/2007

72

Control 2000 xsau

Cycle Time Analyser

9.9.2. Zoom

For a better resolution of the cycle time diagram use the Excel function to change the
axis scale.

With the right mouse button, click on the numbers of the X axis, then select Axis
Format, then change the axis scale appropriately.

The minimum and maximum values can be changed to view new start and end points
of the cycle time diagram.

Microsoft Excel - OPC Cycle time with reference trace ¥.03 Increase samples.xls . = |EI|1|

Patterns | Font I Mumber I Alignment I
© Malue (%) axis scale
A
Auko

i -
— v Minimumy
L I [J [K [L MnTol —
il ¥ Maimum 1=
| 2 : .

3 v Major unit: M
—g ¥ Minar uniit: |1
|6 [value (v} axis
—; Crosses ak: ID htempidata.tst |
E S| M
% Display urits: INone vI ¥ shove displfy units label on chart ; :::g 12
=) — B60 3
113 [~ Logarithmic scale : —5100801 1
14 T 5
5 [values in reverse order | I | — Spare G
kG el —— Gripper
% [~ walue (¥} axis crosses at maximum walue _HO';L 5l ;
E : — P.ress read; g]
19 | . _— B!t q 10
|20 Dk Cancel . —Eit10 11
|21 : —Eitfi 2
2) — Btz =
B — B3
|22 : ' —Eiti4 it
24 —Eit5 15
23 16
26 o 5 10 15 20 25 a0 5 40 | S Format Asxis... |

27

28 Clear

29

z|m
o
=
=
=
e

¥ M| Diagraml £ Tablel 3 Data { Reference

Draw= L |Autoshapes= N N [O A 8 Al 2]|g @& | - Z- A-== =@ jla

Ready UM 4
Minimum and maximum values for Right click number on x-
the axis scale can be changed to axis and select Format Axis
zoom into the diagram

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

Control 2000 xsau

Cycle Time Analyser

9.9.3. Excel Diagram 1

in a format which is better for printing.

Cell 26 Cycle time (Citempidata.td)

The Excel sheet Diagram 1 is provided for documentation purposes, it is presented

BOSCH

| || — 510
I —— T — s
[1 — BOED
] — BOE1
|_| |' — K100
8y T T N I Yy I N o U — soare
,—| | —— Gripper
R o Wy B | 1 — 1 r e
| | | | | |—| — Pressready
,_| — Bit3
— Bitin
— Bit 11
— Bit12
ml |_|. — Eit 12
— Bt
— Eit18
0 5.3‘613 10.?‘223 16.0‘839 21.4‘452 26.3‘065 32.1‘8?3 3?.5‘231 428004

OPC Cycle time analyser3.doc

RBAU/MFAL, 09/2007

74

Control 2000 xsau

Cycle Time Analyser

10. Change index

Version |Date Completed by Changes

1.0 27.09.07 | MFA1 Bollaart First issue

OPC Cycle time analyser3.doc

BOSCH

RBAU/MFAL, 09/2007

75

Appendix D

DCOM Setting for windows XP

76

Control 2000 xsau

DCOM Configuration

Windows XP DCOM Confiquration
For
OPC Cycle time Analyser

Notes: These directions will open up DCOM to all users.

After these steps have been completed and communication has been established it is
recommended that DCOM permissions be tightened to only allow the necessary users access.
These setting apply to Windows XP SP1

1. From the start menu go to run and type dcomcnfg

Run 21 x|

= Type the name of a program, Folder, document, or
Intermet resource, and Windows will open it Far you.

Open j
2. Select component services ok | cencel | mrowse.. |
:i:'::-::-f;"l:omponent Services = |E||i|
@ Fle Action view ‘window Help |_|ﬁ'|5|
= mB 2
Console Rook
% Component Services Mame
i Event Viewer (Local) @Component Services
[E)-*glp Services (Lacal) Event Wiewer (Local)
%Services {Local)
DCOM Configuration.doc

BOSCH

RBAU/MFAL, 09/2007

77

Control 2000 xsav

DCOM Configuration

78

Under component services right click on My Computer

3.
omponent Services = | Ellll
(@ File Action Miew ‘Window Help | 1=
& = [Em| X @ D[
Computers 1 objecks)

M-

D Console Root
E@ Component Services .

a Compukers

% Event Yiewer {Local) [y Commninnd
Stop M3 DTC

Services (Local)
Refresh all components

igw

Properties

4.

Go to the “Default COM Security” tab.

I My Computer Properties il_
I Default Froperties

General I Options |
Default Priotocols | MSDTC Default COM Securiy

—Access Permission
“V'ou may edit who iz allowed to access applications that do not

provide their own settings.
Edit Default...

r— Launch Permission:
“Y'ou may edit who iz allowed to launch applications that do not

provide their own settings.
Edit Default... |

5. Ensure that both Access and Launch Permissions have “Everyone
“Network”, and System set to Allow.

BOSCH

”, “Interactive”,

’

DCOM Configuration.doc

RBAU/MFAL, 09/2007

Control 2000 xsau

DCOM Configuration

Default Security |

Group of user names:

Adrmitistrato “Administrators)

ﬂz Ewveryone

€7 INTERACTIVE

€7 HETWORK

€5 SvaTEM

Add.. | Remove |
Permizzions for Administrators Allow Deny
Launch Permiszion O
ak. I Cancel |

Default Security |

GI’DUD O USer names:

‘ Eweryone
€7 INTERACTIVE
€7 HETWORK
€7 SvaTEM
Add... | Remaowe |
Permizsions for Everyone Allaw Deny
Access Permission O

ak. I Catcel

BOSCH

DCOM Configuration.doc

RBAU/MFAL, 09/2007

Control 2000 xsau

DCOM Configuration

6. Now go back to the “My Computer Properties” dialog. Click on the “Default Properties”
tab. Ensure that the settings on the machine match those in the screenshot below.

My Computer Properties 2 =]

Default Protocals | MSDTC | Default COM Secuity |
General I Options Default Properties

W Enable Distributed COM on this computer

[~ Enable COM Intemet Services an this computer

— Default Distributed COM Communication Properties

The Authentication Level specifies secunty at the packet level.

Default Authentication Lewvel:

Connect j

The imperzonation level specifiez whether applications can determine
wha iz calling them, and whether the application can do operations
uzing the client's identity,

Drefault Imperzonation Lewvel:

{1 dentify =

Security far reference tracking can be provided if authentication iz used
and that the default imperzonation level is nat anonymas.

[™ Provide additional security for reference tracking

(] I Cancel Apply

7. Click OK. You should now be looking at the “Component Services” panel.

8. Open the “My Computer” tree and then the “DCOM Config” Folder. Inside this folder are
all the DCOM Applications installed on the local machine. We need to ensure that all of
our OPC servers are using the appropriate permissions.

9.

Note: Due to a limitation in the windows XP DCOM Configuration tool, not all OPC servers may be

listed as their Application name, but instead as their class ID number. If the OPC server is being

listed by it’s class ID.

DCOM Configuration.doc

BOSCH

RBAU/MFAL, 09/2007

80

Control 2000 xsau

DCOM Configuration

mponent Services ;|Q|5|
@ File Ackion Yiew Window Help |;|i|i|
e B[R @0 % E]
|3 consale Roat «| | DCOM Config
i EI@ Camponent Services Mame | application ID | -
=0 Computers BycUExternal Class {71604130-73DA-4CEA-05E9-373564 785884}

E@ My Computer

' (] COb+ Applications @F\ccStore Class 4DESDBCDC-104A-4cbe-A405-0C2 1044 142C5})

o @ adobe Acrobat D... {BBO1CAGS-ALFC-11D0-65AD-444553540000}
CUTExtemal Clae |G AULOMatic Lipdates {653C5145-4DCE-4905-9CFD-1623662D3D9E}
I ———— @Background Tntelii.. {69ADAEE-516E-439b-A92C-B6AE490EREI}
% sdobe Acrobat De | Blocked Drivers {7E3C030F-E945-487D-B350-94FCFOFOCL 72}
By fubomatic Updste | |CRCOM Event Syst... {4E14FBAZ-2E22-11D1-3984-D0C04FBBE345)
Background Inteli |@ComEvents. Com... {ECABBOC3-7F19-1102-07BE-D000FETSTERA)
Blocked Drivers @ ComEvents, Com... {ECABBOCE-7F19-11D2-976E-0000FG7STERA}
% COM+ Event Syst |@Command line Tri... {797EF3B3-1276-4263-6096-1 EG0G4BF67A6}
% ComEvents.Coms |@Custheq Class {B4D586C4-A423-11D2-BI43-00C04F7I0D22F
ComEvents.Com5 |@DefragFAT engine {BOEE4902-3348-11d1-A213-0080C88593A5
 Command line Tric #Defrag NTFS engine {B0EE4901-3348-11d1-4213-0080C08593A5}
CustReg Class #Diagservices Class {0EFI1ABE-03D5-11D3-B995-00A0COADS4ES}H
® Defrag FAT engint |y evert Object Cha.., {D0S65000-9DF4-11D1-A281-00CO4FCADAAT}
B DefragNTFS engll | 8ye et Object Cha... {BBO7BACD-CDS6-4E63-A8FF-CEFI3SSFEOF4)

DiagServices Clas: | dy - {FC7DOENL -3F9E- 1 1D3-93C0-00C04F72DAFT}
:Z:E EE;ZEE E:Z @MU Application. {3050F4dE-9885-11CF-BBS2-D0AA0EDCEDR}
P o | |&igixcrg {3062E9A1-D243-11D2-B561 -D0AICIZEES4E}
1] | _>|J & Internet Explorer... {0002DF01-0000-0000-C000-000000000046} hd

10. Find your OPC Server in the list. Right Click on the OPC Server and select Properties.

mponent Services . = |EI|1|
@ File Action Wiew ‘Window Help | 18] =
= B[X @] % E

[Mobsync ;I OPC Server for CoDeSys W20 0 objectis)
-8 MSDAINITIALIZE Hame [

-8 MEM

[nietman

[MetMeeting

OpcEnurm Wiew 3
Paintbrush Mew Window from Here

% RDSessMagr
RDSHost Properties
Remoate Storage Recal
RemoteProxyFackory =
Removable Storage Manager J

Help

Removable Storage Sink Layer
Remaovable Storage UI Layer
RstrUL

SENS Logon Events

% SEMS Logon2 Events

SENS MNetwork Events

SENS Onhow Events

SENS Subscriber for EventSysten

SetuplogServices Class
., chavadicrace i
| i »

O o O 0 O o O O O O O e O e e O o O O O e
L R R R R R R B R K R B B e R K R B

DCOM Configuration.doc

RBAU/MFAL, 09/2007

Control 2000 xsau

DCOM Configuration

11.

OPC Server for CoDeSys ¥2.0 Properties 2 x|

Ensure that your Authentication level is set to “Connect”.

General |Lu:u:atiu:un| Securit_l,ll Endpu:uintsl Identit_l,ll

— General properties of this DCOM application
Application Mame: OFC Server for ColeSys W2.0

& pplication |0 {C9377421-3357-1142-8135-0050084 34D 4C}
Application Type: Local Server

Authentication Level:

Loc:al Path: CAHPROGRA™ARexmthsMDRAL™1SCODESY

(] I Cancel Apply

12.
13.
14.

15.

BOSCH

If you have successfully set up the defaults for the system, select the server to use the
default settings.

Under the “Identity” tab, ensure that the OPC server is running as “The Interactive User”.

Now that customise has been selected, please edit the default launch and access

permissions to contain the following users, “Everyone, “Network”, “Interactive”, “System”.

Make sure that all of these users are set to allow.

DCOM Configuration.doc

RBAU/MFAL, 09/2007

82

83

Control 2000 xsav

DCOM Configuration

OPC Server for CoDeSys ¥2.0 Propetties e |

Generall Location Security I Endpointsl Identit_l,ll

r— Launch Permissions

" Use Default

& Customize Edi... |

—Access Pemission

" Use Default

& Customize Edit... |

— Caonfiguration Permizsians

" Use Default

& Cugtomize Edi... |

ak I Cancel | Apply |

Security |

G[DUD Or WSl Mnanmes:

Administratars [EHS \drninistrators)
m Eweryone
€7 INTERACTIVE
€7 NETWIORK
7SS TEM

Add.. | Remove |

Permizzions for Administrators Allow Deny

Launch Permiszion O

ak. I Cancel

B S H I DCOM Configuration.doc

RBAU/MFAL, 09/2007

Control 2000 xsau

DCOM Configuration

Security |
GTDUIZI ar LIZer hames:
‘ Everyone
€7 INTERACTIVE
€7 NET\WORK
€7 SYSTEM
Add... | Rermnove |
Permizzions for Everone Al Deny
Accezs Permizsion O
] I Cancel
16. Under the Identity tab, please ensure that your OPC Server is running as “The Interactive
User”.

DCOM Configuration.doc

BOSCH

RBAU/MFAL, 09/2007

Control 2000 xsav

DCOM Configuration

OPC Server for CoDeSys ¥2.0 Properties el B

Generall Lu:u:atiu:unl Seu:urit_l,ll Endpoints Idemntiby |

Wwhich uger account do pou want bo uge to run thiz application?

% The interactive uzer.
™ The launching ser.

™ This uzer.

[Hzer: I

Browse,.. |

Fazsword: I

Confirm password: I

£ The system account [services only)!

o]

Cancel Apply

BOSCH

DCOM Configuration.doc

RBAU/MFAL, 09/2007

85

Appendix E

OPC Tunneller Quotation

From: Bob Erickson

Sent: Wednesday, August 08, 2007 2:09 PM
To: 'Bollaart Clem (CC/MFA1-AU)'

Subject: RE: OPC Tunneller

Hi there Clem,

Good talking to you today about your project using Tunneller to eliminate your need for DCOM
configuration.

I'm pleased to provide you with the following quotation:
1 pc. OPC Tunneller (either Client or Server end)-- AU$ 900

*x*xx% Suggested Options *****

- Annual Maintenance special (3 additional years for the price of 2) -- AU$ 300
- OPC Troubleshooting Training
- Site Licenses are available for this software

*xxxx Implementation Services *****

As well, we offer onsite implementation services. Therefore, if you are running out of human
resources or have better things to do, we can send one of our people to complete the install for
you. This would make the entire operation turn-key, and would also ensure the success of the
project.

kxx% Annual Maintenance ***

Please note that the Annual Maintenance is included for the first year and we recommend that
it is renewed on an annual basis so that you continue to receive support and software updates.

*xxx% Delivery Options *****
Please choose one option:
- Product CD sent to you by courier -- AU$ 50 + 3 days

- Software provided on FTP site to download -- FREE + 1 day
- Please provide your shipper information

86

*x*xx* QOrdering Information *****
Please fax your purchase order or VISA/MASTERCARD information to:

Attn : Bob Erickson
fax +61 2 4960 1212

Matrikon Pty Ltd

(ABN: 21 002 695 534)
56 Kishorn Rd

Mt Pleasant WA 6153
Australia

You can also e-mail it directly to bob.erickson@matrikon.com

- Applicable Duties and Taxes are not included.
- Payments are due within 30 days of the date on the Matrikon invoice.

*¥kk% This Quotation is Valid for 30 Days *****

I am checking up on whether we still support a USB dongle for Tunneller.

if you have any other questions, thanks!

Best Regards,
Bob

Bob Erickson ssc. EE, p.Eng (AB, Canada)

MatrikonOPC Asia-Pacific

Regional Manager 56 Kishorn Road
MatrikonOPC Mount Pleasant, WA 6153
dir: +61.8.9315.0115 Perth: Australia
fax: +61.2.4960.1212 www.matrikon.com

mobile: 0408.428.498
bob.erickson@matrikon.com

Please let me know

87

Appendix F

Visual Basic Code

F.1 Code Developed

Vofe st sk sk sk sk sk sk sk sk sk sk sk st sk skesk sk sk sk sk sk sk sk sk st sk skesk sk sk sk sk skesk sk sk sk sk siesk sk sk stk stesk sk sk stk siesk sk sk sk stk skoskoskok stk skeskoskokotokoskskskok

' Cycle time Analyser using OPC

"By C. Bollaart Robert Bosch (Australia)' 02/04/07

ok sk sfe steske sfe st sfe sfe she she sk sk e sie sfe st she sfe she sk e sk sie st sfe sfe she s she sk shesie stesie sfe sfe sfe she she sk st sie sie ste she sfe sfe sk ske sk steske st sfe sfe sfe sk sfeoskeoskesiesie st sfeskeoskeoskeoiokoieoieikok
' This project has been configured to reference the'OPC Automation 2.0 object.

' When modifying this project you must first add the 'OPC Automation 2.0' object

' to the reference object list. This can be done from the VB menu ProjectlReferences.

" Once the References Dialog is displayed, scroll down to the 'OPC Automation 2.0'

" object and select it, then click the OK button. You'll know that the

"'OPC Automation 2.0’ object is being referenced when VB displays smart

' object properties for the OPC related objects as you use them.

Vo st sk sk sk sk sk sk sk skeske sk sk st sk skesk sk sk stk sk sk sk sk st sk skesk sk sk stk skesk sk sk sk sk siesk sk sk stk stesk sk sk sk sk siesk skosk skt stk skoskoskok stk skeskoskokoskok skl

' 06/06/06 - Added to refernece the OPCDAAuto.dll

Vofe st sk sk sk sk sk sk sk sk sk sk sk st sk skesk sk sk sk sk sk sk sk sk st sk skesk sk sk sk sk sk sk sk sk sk sk siesk sk sk stk stesk sk sk stk siesk sk sk skt stk skoskoskokoskok skoskoskokokok skl

Option Explicit
Option Base 1

" Server and group related data

' The OPCServer objects must be declared here due to the use of WithEvents
Dim WithEvents AnOPCServer As OPCServer

Dim WithEvents ConnectedOPCServer As OPCServer

Dim ConnectedServerGroup As OPCGroups

Dim WithEvents ConnectedGroup As OPCGroup

"OPC Item related data

Dim OPCItemCollection As OPCltems
Dim OneOPClItem As OPCltem

Dim ItemCount As Long

Dim OPClItemIDs(16) As String

Dim ItemServerHandles() As Long
Dim ItemServerErrors() As Long

Dim ClientHandles(16) As Long

Dim StartRecordingButton As Boolean
Dim Cycles As Integer

Dim Start As Boolean

Dim Delay As Boolean

Dim Trig As Integer

Dim Finish As Integer

88

&9

Dim RecValues(0 To 10720) As Variant
Dim RecTimeStamp(0 To 10720) As Variant

Private Type SYSTEMTIMEREC
wYear As Integer

wMonth As Integer
wDayOfWeek As Integer

wDay As Integer

wHour As Integer

wMinute As Integer

wSecond As Integer
wMilliseconds As Integer

End Type

Private Declare Function SystemTimeToVariantTime Lib "oleaut32.d11" _

(ByVal vtime As Date, IpSystemTime As SYSTEMTIMEREC) As Long

Private Declare Function GetSystemTime Lib "kernel32" _
(IpSystemTime As SYSTEMTIMEREC) As Long

Private Declare Function VariantTimeToSystemTime Lib "oleaut32.d11" _
(ByVal vtime As Double, IpSystemTime As SYSTEMTIMEREC) As Long

'Private Declare Function VariantTimeToSystemTime Lib "kernel32" (ByVal vTime As Double,
ByRef IpSystemTime As SYSTEMTIMEITEM) As Long
Private Sub Command]1_Click()

Dimi As Integer

Dim Dummy As String

Open "c:\temp\ref.txt" For Output As #256
For i =0 To UBound(RecTimeStamp)
Dummy = RecValues(i) & vbTab & RecTimeStamp(i)
Print #256, Dummy
Next i
Close #256
End Sub

Private Sub Command2_Click()
Form1.Show
End Sub

Private Sub Command3_Click()
Form3.Show
End Sub

" General startup initialization

Private Sub Form_Load()
AvailableOPCServerList. AddItem "Click on 'List OPC Servers' to start"
Finish=9

End Sub

' Make sure things get shut down properly upon closing application
Private Sub Form_Terminate()

Call ExitExample_Click
End Sub

" This sub handles gathering a list of available OPC Servers and displays them

' The OPCServer Object provides a method called 'GetOPCServers' that will allow
" you to get a list of the OPC Servers that are installed on your machine. The
"list is retured as a string array.
Private Sub ListOPCServers_Click()
Dim AlIOPCServers As Variant
Dim i As Integer

‘Set error handling for OPC Function
On Error GoTo ShowOPCGetServersError

' Create a temporary OPCServer object and use it to get the list of

"available OPC Servers

Set AnOPCServer = New OPCServer

' Clear the list control used to display them

AvailableOPCServerList.Clear

'AlIOPCServers = AnOPCServer.GetOPCServers("10.23.79.57")

AllOPCServers = AnOPCServer.GetOPCServers(OPCNodeName.Text)

' Load the list returned into the List box for user selection

For i = LBound(AIIOPCServers) To UBound(AIIOPCServers)
AvailableOPCServerList. AddItem AIIOPCServers(i)

Next i

GoTo SkipOPCGetServersError

ShowOPCGetServersError:

Call DisplayOPC_COM_ErrorValue("Get OPC Server List", Err.Number)
SkipOPCGetServersError:

' Release the temporary OPCServer object now that we're done with it

Set AnOPCServer = Nothing

End Sub

' This sub loads the OPC Server name when selected from the list
"and places it in the OPCServerName object
Private Sub AvailableOPCServerList_Click()
' When a user selects a server from the list box its name is placed
"in the OPCServerName
OPCServerName = AvailableOPCServerList.List(AvailableOPCServerList.ListIndex)
End Sub

Private Sub Load_Click()
Dim InString As String
Dim Fname As String
Dim txt As String
Dim Meldg As Variant
Dim Names() As String
Dimi As Integer

‘MyArray As Variant
'Open file with OPC tags
Fname = Application.GetOpenFilename("Data file *.txt,*.txt,All Data *.***" "Open")

'If Fname = False Then Exit Sub
'‘Read OPC tags from text file and place in array
'Set mfile = mFileSysObj.GetFile("c:\data.txt")

90

'‘Read OPC tags from text file and place in array
'Set mTxtStream = mfile.OpenAsTextStream(ForReading)
'IblFileName.Caption = mfile.Path

'Dim InString As String, MyArray As Variant
Open Fname For Input As #1
InString = Input(LOF(1), #1)
Close #1
‘now split the string
Names = Split(InString, vbCrLf, -1)
For i = 0 To UBound(Names)
OPCItemName(i) = Names(i)
Next i

Exit Sub

ErrorHandler:
txt = "Failure when opening file " & Fname & "."
Meldg = MsgBox(txt, vbOKOnly)

"Write Array to disk
'Open "c:\temp\data.txt" For Output As #256
'For i = 0 To UBound(RecTimeStamp)
Dummy = RecValues(i) & vbTab & RecTimeStamp(i)
" Print #256, Dummy
'Next i
'Close #256
End Sub

" This sub handles connecting with the selected OPC Server

' The OPCServer Object provides a method called 'Connect' that allows you

"to 'connect' with an OPC server. The 'Connect' method can take two arguments,
"a server name and a Node name. The Node name is optional and does not have to
' be used to connect to a local server. When the 'Connect' method is called you

" should see the OPC Server application start if it is not aleady running.

'Special Note: When connecting remotely to another PC running an OPC server make
'sure that you have properly configured DCOM on both PC's.

Private Sub OPCServerConnect_Click()

Dim ConnectedServerName As String

Dim ConnectedNodeName As Variant

' Test to see if the User has entered or selected an OPC server name yet if not post a message
If InStr(OPCServerName.Text, "Click") = 0 Then

‘Set error handling for OPC Function

On Error GoTo ShowOPCConnectError

'Create a new OPC Server object

Set ConnectedOPCServer = New OPCServer

'Load the selected server name to start the interface

ConnectedServerName = OPCServerName.Text

'Load the node name of the connected server. The node name should be entered
'without the use of forward slashes \\.

ConnectedNodeName = OPCNodeName.Text

91

'ConnectedNodeName = "10.23.79.57"
'Attempt to connect with the server
ConnectedOPCServer.Connect ConnectedServerName, ConnectedNodeName

' Throughout this example you will see a lot of code that simply enables
"and disables the various controls on the form. The purpose of these
"actions is to demonstrate and insure the proper sequence of events when
"making an OPC connection.

' If we successfully connect to a server allow the user to disconnect
DisconnectFromServer.Enabled = True

"Don't allow a reconnect until the user disconnects
OPCServerConnect.Enabled = False

AvailableOPCServerList.Enabled = False

OPCServerName.Enabled = False

' Enable the group controls now that we have a server connection
OPCGroupName.Enabled = True

GroupUpdateRate.Enabled = True

GroupDeadBand.Enabled = True

GroupActiveState.Enabled = True

AddOPCGroup.Enabled = True ' Remove group isn't enable until a group has been added

GoTo SkipOPCConnectError

ShowOPCConnectError:
DisconnectFromServer.Enabled = False
Set ConnectedOPCServer = Nothing
Call DisplayOPC_COM_ErrorValue("Connect", Err.Number)
SkipOPCConnectError:
Else
" A server name has not been selected yet post an error to the user
Dim Response
Response = MsgBox("You must first select an OPC Server, Click on the 'List OPC Servers' button and
select a server”, vbOKOnly, "OPC Server Connect")
End If
End Sub

' This sub handles disconnecting from the OPC Server. The OPCServer Object
' provides the method 'Disconnect'. Calling this on an active OPCSerer

" object will release the OPC Server interface with your application. When

" this occurs you should see the OPC server application shut down if it started
"automatically on the OPC connect. This step should not occur until the group
"and items have been removed

Private Sub DisconnectFromServer_Click()

' Test to see if the OPC Server connection is currently available
If Not ConnectedOPCServer Is Nothing Then

‘Set error handling for OPC Function

On Error GoTo ShowOPCDisconnectError

'Disconnect from the server, This should only occur after the items and group
" have been removed
ConnectedOPCServer.Disconnect

' Release the old instance of the OPC Server object and allow the resources
" to be freed

92

93

Set ConnectedOPCServer = Nothing

' Allow a reconnect once the disconnect completes
OPCServerConnect.Enabled = True
AvailableOPCServerList.Enabled = True
OPCServerName.Enabled = True

' Don't alllow the Disconnect to be issued now that the connection is closed
DisconnectFromServer.Enabled = False

' Disable the group controls now that we no longer have a server connection
OPCGroupName.Enabled = False
GroupUpdateRate.Enabled = False
GroupDeadBand.Enabled = False
GroupActiveState.Enabled = False
AddOPCGroup.Enabled = False
End If

GoTo SkipDisconnectError

ShowOPCDisconnectError:

Call DisplayOPC_COM_ErrorValue("Disconnect”, Err.Number)
SkipDisconnectError:
End Sub

' This sub handles adding the group to the OPC server and establishing the
" group interface. When adding a group you can preset some of the group
' parameters using the properties '.DefaultGrouplsActive'
"and ".DefaultGroupDeadband'. Set these before adding the group. Once the
' group has been successfully added you can change these same settings
"along with the group update rate on the fly using the properties on the
' resulting OPCGroup object.
Private Sub AddOPCGroup_Click()
'Set error handling for OPC Function
On Error GoTo ShowOPCGroupAddError

'Prepare to add a group to the current OPC Server
' Get the group interface from the server object
Set ConnectedServerGroup = ConnectedOPCServer.OPCGroups

' Set the desire active state for the group
ConnectedServerGroup.DefaultGroupIsActive = GroupActiveState. Value

‘Set the desired percent deadband
ConnectedServerGroup.DefaultGroupDeadband = Val(GroupDeadBand. Text)

' Add the group and set its update rate

Set ConnectedGroup = ConnectedServerGroup. Add(OPCGroupName.Text)
' Set the update rate for the group

ConnectedGroup.UpdateRate = Val(GroupUpdateRate. Text)

1 sfesteste st sfe st st sk ste st st sk sk st sk sk st sk sk skeste stk st ste st sk skeoske st sk sk sk steoste steoskeoskeoske stk sk st steosteoskeosteostotototk sk steotokokokolokokoskokosk
' Mark this group to receive asynchronous updates via the DataChange event.

' This setting is IMPORTANT. Without setting ".IsSubcribed' to True your

' VB application will not receive DataChange notifications. This will

' make it appear that you have not properly connected to the server.

94

ConnectedGroup.IsSubscribed = True

"ok sk sk ske sk sk sk skske sk sk sk sieosk sk sk sk skt sk sk sk st sk sk sk siokosk sk skok siotosk sk sk siokoskoskoskokostoloskokoskokotokokokoskok ko

' Now that a group has been added disable the Add group Button and enable
' the Remove group Button. This demo application adds only a single group
AddOPCGroup.Enabled = False

OPCGroupName.Enabled = False

RemoveOPCGroup.Enabled = True

' Enable the OPC item controls now that a group has been added
OPCAddItems.Enabled = True
Dimi As Integer
Fori=0To 15
OPClItemName(i).Enabled = True
Next i

' Disable the Disconnect Server button since we now have a group that must be removed first
DisconnectFromServer.Enabled = False

GoTo SkipAddGroupError

ShowOPCGroupAddError:
Call DisplayOPC_COM_ErrorValue("Add Group", Err.Number)
SkipAddGroupError:

End Sub

Private Sub Optionl_Click(Index As Integer)
Trig = Index

End Sub

Private Sub Option2_Click(Index As Integer)
Finish = Index
End Sub

' This sub handles removing a group from the OPC server, this must be done after
'items have been removed. The 'Remove' method allows a group to be removed
' by name from the OPC Server. If your application will maintains more than
"one group you will need to keep a list of the group names for use in the
' 'Remove' method. In this demo there is only one group. The name is maintained
"in the OPCGroupName TextBox but it can not be changed once the group is added.
Private Sub RemoveOPCGroup_Click()
' Test to see if the OPC Group object is currently available
If Not ConnectedServerGroup Is Nothing Then

‘Set error handling for OPC Function

On Error GoTo ShowOPCGroupRemoveError

' Remove the group from the server

ConnectedServerGroup.Remove (OPCGroupName.Text)

' Release the group interface and allow the server to cleanup the resources used
Set ConnectedServerGroup = Nothing

Set ConnectedGroup = Nothing

95

' Enable the Add group Button and disable the Remove group Button
AddOPCGroup.Enabled = True
OPCGroupName.Enabled = True
RemoveOPCGroup.Enabled = False
' Disable the item controls now that a group has been removed.
' Items can't be added without a group so prevent the user from editing them.
OPCAddItems.Enabled = False
Dim i As Integer
Fori=0To 15
OPClItemName(i).Enabled = False
Next i

' Enable the Disconnect Server button since we have removed the group and can disconnect from the
server properly

DisconnectFromServer.Enabled = True
End If

GoTo SkipRemoveGroupError

ShowOPCGroupRemoveError:

Call DisplayOPC_COM_ErrorValue("Remove Group", Err.Number)
SkipRemoveGroupError:
End Sub

" This sub allows the group's active state to be changed on the fly. The
" OPCGroup object provides a number of properties that can be used to control
"a group's operation. The ".IsActive' property allows you to turn all of the
" OPC items in the group On(active) and Off(inactive).
' Changing the actvie state of a group can be useful in controlling how your
"application makes use of an OPC Servers communication bandwidth. If you don't
"need any of the data in a given group simply set it inactive, this will allow an
"OPC Server to gather only the data current required by your application.
Private Sub GroupActiveState_Click()

‘Set error handling for OPC Function

On Error GoTo ShowOPCGroupActiveError

"If the group has been added and exist then change its active state

If Not ConnectedGroup Is Nothing Then
ConnectedGroup.IsActive = GroupActiveState.Value

End If

GoTo SkipGroupActiveError

ShowOPCGroupActiveError:
Call DisplayOPC_COM_ErrorValue("Group Active State", Err.Number)
SkipGroupActiveError:

End Sub

' This sub allows the group's deadband to be changed on the fly. Like the

' 'IsActive' property, the '.DeadBand' property can be changed at any time.

' The Deadband property allows you to control how much change must occur in
"an OPC item in this group before the value will be reported in the 'DataChange’
"event. The value entered for "DeadBand' is O to 100 as a percentage of full

" scale for each OPC item data type within this group. If your OPC item is a

96

" Short(VT_I2) then your full scale is -32768 to 32767 or 65535. If you
"enter a Deadband value of 1% then all OPC Items in this goup would need
' to change by a value of 655 before the change would be returned in the
' 'DataChange' event. The .DeadBand' property is a floating point number
"allowing very small ranges of change to be filtered.
Private Sub GroupDeadBand_Change()

‘Set error handling for OPC Function

On Error GoTo ShowOPCGroupDeadBandError

" If the group has been added and exist then change its dead band
If Not ConnectedGroup Is Nothing Then

ConnectedGroup.DeadBand = Val(GroupDeadBand.Text)
End If

GoTo SkipGroupDeadBandError

ShowOPCGroupDeadBandError:

Call DisplayOPC_COM_ErrorValue("Group Dead Band", Err.Number)
SkipGroupDeadBandError:
End Sub

' This sub allows the group's update rate to be changed on the fly. The
'.UpdateRate' property allows you to control how often data from this
" group will be returned to your application in the 'DataChange’ event.
' The ".UpdateRate' property can be used to control and improve the overall
" performance of you application. In this example you can see that the update
'rate is set for maximum update speed. In a demo that's OK. In your real
" world application, forcing the OPC Server to gather all of the OPC items in
"a group at their fastest rate may not be ideal. In applications where you
" have data that needs to be acquired at different rates you can create
"multiple groups each with its own update rate. Using multiple groups would
"allow you to gather time critical data in GroupA with an update rate
" of 200 millliseconds, and gather low priority data from GroupB with an
"update rate of 7000 milliseconds. The lowest value for the '.UpdateRate’
"is O which tells the OPC Server go as fast as possible. The maximium is
' 2147483647 milliseconds which is about 596 hours.
Private Sub GroupUpdateRate_Change()

‘Set error handling for OPC Function

On Error GoTo ShowOPCGroupUdateRateError

"If the group has been added and exist then change its update rate
If Not ConnectedGroup Is Nothing Then

ConnectedGroup.UpdateRate = Val(GroupUpdateRate. Text)
End If

GoTo SkipGroupUdateRateError

ShowOPCGroupUdateRateError:

Call DisplayOPC_COM_ErrorValue("Group Update Rate", Err.Number)
SkipGroupUdateRateError:
End Sub

' This sub handles adding an OPC item to a group. The group must be established first before
"any items can be added. Once you have a group added to the OPC Server you

' need to add item to the group. The OPCltems object provides the methods and

' properties need to add item to an estabished OPC group.

Private Sub OPCAddItems_Click()
'Enable start recording button
StartRecording.Enabled = True
'Set error handling for OPC Function
On Error GoTo ShowOPCItemAddError

' In this example we have at most 16 items that we will attempt to add
' to the group.
ItemCount = 16
' Load the request OPC Item names and build the ClientHandles list
Dimi As Integer
Fori=0To 15
' Load the name of then item to be added to this group. You can add
' as many items as you want to the group in a single call by building these
"arrays as needed.
OPCltemIDs(i + 1) = OPCItemName(i). Text

' The client handles are given to the OPC Server for each item you intend
" to add to the group. The OPC Server will uses these client handles

' by returning them to you in the 'DataChange' event. You can use the

' client handles as a key to linking each valued returned from the Server

" back to some element in your application. In this example we are simply
' placing the Index number of each control that will be used to display

" data for the item. In your application the ClientHandle value you use

' can by whatever you need to best fit your program. You will see how

" these client handles are used in the 'DataChange' event handler.
ClientHandles(i + 1) =i

' Make the Items active start control Active, for the demo I want all itme to start active
" Your application may need to start the items as inactive.
'OPClItemActiveState(i). Value = 1

Next i

' Establish a connection to the OPC item interface of the connected group
Set OPCItemCollection = ConnectedGroup.OPCltems

' Setting the ".DefaultIsActive' property forces all items we are about to
"add to the group to be added in an active state. If you want to add them
"all as inactive simply set this property false, you can always make the
'items active later as needed using each item's own active state property.
' One key distinction to note, the active state of an item is independent

' from the group active state. If a group is active but the item is

' inactive no data will be received for the item. Also changing the

' state of the group will not change the state of an item.
OPClItemCollection.DefaultIsActive = True

" Atempt to add the items, some may fail so the ItemServerErrors will need

' to be check on completion of the call. We are adding all item using the

' default data type of VT_EMPTY and letting the server pick the appropriate
" data type. The ItemServerHandles is an array that the OPC Server will

' return to your application. This array like your own ClientHandles array
'is used by the server to allow you to reference individual items in an OPC

' group. When you need to perform an action on a single OPC item you will
'need to use the ItemServerHandles for that item. With this said you need to
' maintain the ItemServerHandles array for use throughout your application.

97

98

' Use of the ItemServerHandles will be demonstrated in other subroutines in

' this example program.

OPClItemCollection.AddItems ItemCount, OPCltemIDs, ClientHandles, ItemServerHandles,
ItemServerErrors

' This next step checks the error return on each item we attempted to
'register. If an item is in error it's associated controls will be
" disabled. If all items are in error then the Add Item button will
' remain active.
Dim AnltemIsGood As Boolean
AnltemIsGood = False
Fori=0To 15
If ItemServerErrors(i + 1) = 0 Then ' If the item was added successfully then allow it to be used.
'OPCItemValueToWrite(i).Enabled = True
'OPCItemWriteButton(i).Enabled = True removed as write button deleted
'OPClItemActiveState(i).Enabled = True
'OPCItemSyncReadButton(i).Enabled = True
AnltemIsGood = True
Else
ItemServerHandles(i + 1) = 0 ' If the handle was bad mark it as empty
'OPCItemValueToWrite(i).Enabled = False
'OPCItemWriteButton(i).Enabled = False
'OPClItemActiveState(i).Enabled = False
'OPCItemSyncReadButton(i).Enabled = False
End If

Next i

' Disable the Add OPC item button if any item in the list was good
If AnltemIsGood Then
OPCAddItems.Enabled = False
Fori=0To 15
OPClItemName(i).Enabled = False ' Disable the Item Name cotnrols while now that they have
been added to the group.
Next i
RemoveOPCGroup.Enabled = False ' If an item has been don't allow the group to be removed until
the item is removed
OPCRemoveltems.Enabled = True
Else
' The OPC Server did not accept any of the items we attempted to enter, let the user know to try
again.
Dim Response
Response = MsgBox("The OPC Server has not accepted any of the item you have enter, check your
item names and try again.", vbOKOnly, "OPC Add Item")
End If

GoTo SkipOPCItemAddError

ShowOPClItemAddError:

Call DisplayOPC_COM_ErrorValue("OPC Add Items", Err.Number)
SkipOPCItemAddError:
End Sub

' This sub handles removing OPC items from a group. Like the 'AddItems' method
" of the OPCltems object, the 'Remove' method allow us to remove item from
"an OPC group. In this example we are removing all item from the group.

99

" In your application you may find it necessary to remove some items from
"a group while ading others. Normally the best practice however it to add
" all the item you wish to use to the group and then control their active
" states individually. You can control the active state of individual items
"in a group as shown in the 'OPCItemActiveState_Click' subroutine of this
"module. With that said if you intend to remove the group you
"should first remove all its items. The 'Remove' method uses the
' ItemServerHandles we received from the 'AddItems' method to properly remove
"only the items you wish. This is an example of how ItemServerHandles are
" used by your application and the OPC Server. As stated above, you can
" design your application to add and remove items as needed but that's not
' necessarily the most effiecent operation for the OPC Server.
Private Sub OPCRemoveltems_Click()
'Reset any recording before removing group
Start = False
StartRecordingButton = False
'Disable start recording button
StartRecording.Enabled = False
If Not OPCItemCollection Is Nothing Then
'Set error handling for OPC Function
On Error GoTo ShowOPCRemoveltemError

ItemCount = 1

' Provide an array to contain the ItemServerHandles of the item
' we intend to remove
Dim RemoveltemServerHandles(16) As Long

" Array for potential error returns. This example doesn't
' check them but yours should ultimately.
Dim RemoveltemServerErrors() As Long

' Get the Servers handle for the desired items. The server handles
" were returned in add item subroutine. In this case we need to get
"only the handles for item that are valid.
Dim i As Integer
Fori=1To 16
"In this example if the ItemServerHandle is non zero it is valid
If ItemServerHandles(i) <> 0 Then
RemoveltemServerHandles(ItemCount) = ItemServerHandles(i)
ItemCount = ItemCount + 1
End If
Next i

" Item count is 1 greater than it needs to be at this point
ItemCount = ItemCount - 1

" Invoke the Remove Item operation. Remember this call will
' wait until completion
OPCltemCollection.Remove ItemCount, RemoveltemServerHandles, RemoveltemServerErrors

' Clear the ItemServerHandles and turn off the controls for interacting
" with the OPC items on the form.
Fori=0To 15
ItemServerHandles(i + 1) = 0 'Mark the handle as empty
'OPCItemValueToWrite(i).Enabled = False

'OPCItemWriteButton(i).Enabled = False removes as write buttoms deleted
'OPClItemActiveState(i).Enabled = False
'OPCItemSyncReadButton(i).Enabled = False

Next i

" Enable the Add OPC item button and Remove Group button now that the
'items are released

OPCAddItems.Enabled = True

RemoveOPCGroup.Enabled = True

OPCRemoveltems.Enabled = False

" Enable the OPC Item name controls to allow a new set of items
' to be entered
Fori=0To 15
OPClItemName(i).Enabled = True
Next i

' Release the resources by the item collection interface
Set OPCItemCollection = Nothing

End If
GoTo SkipOPCRemoveltemError

ShowOPCRemoveltemError:
Call DisplayOPC_COM_ErrorValue("OPC Remove Items", Err.Number)
SkipOPCRemoveltemError:

End Sub

' This sub handles writing a single value to the server using the
"'SyncWrite' write method. The 'SyncWrite' method provides a
" quick(programming wise) means to send a value to an OPC Server. The item
" you intend to write must already be part of an OPC group you have added
"and you must have the ItemServerHandle for the item. This is another example
" of how the ItemServerHandle is used and why it is important to properly
"store and track these handles. The 'SyncWrite' method while quick and easy
" will wait for the OPC Server to complete the operation. Once you invoke
" the 'SyncWrite' method it could take a moment for the OPC Server to return
" control to your application. For this example that's OK. If your application
'can't tolerate a pause you can use the 'AsyncWrite' and its associated
"'AsyncWriteComplete' call back event instead. In this sub we are only
" writing one value at a time. The 'SyncWrite' mehtod can take a list of
" writes to be performed allow you to write entire recipes to the server
"in one shot. If you are going to write more than one item, the
' ItemServerHandles for each item must be from the same OPC Group.
Private Sub OPCItemWriteButton_Click(Index As Integer)

‘Set error handling for OPC Function

On Error GoTo ShowOPCSyncWriteError

' Write only 1 item

ItemCount = 1

' Create some local scope variables to hold the value to be sent.

' These arrays could just as easily contain all of the item we have added.
Dim SyncltemValues(1) As Variant

Dim SyncltemServerHandles(1) As Long

100

101

Dim SyncltemServerErrors() As Long

' Get the Servers handle for the desired item. The server handles
' were returned in add item subroutine.
SyncltemServerHandles(1) = ItemServerHandles(Index + 1)

' Load the value to be written
'‘SyncltemValues(1) = Val(OPCItemValueToWrite(Index).Text)

' Invoke the SyncWrite operation. Remember this call will wait until completion
ConnectedGroup.SyncWrite ItemCount, SyncltemServerHandles, SyncltemValues,
SyncltemServerErrors

GoTo SkipOPCSyncWriteError

ShowOPCSyncWriteError:
Call DisplayOPC_COM_ErrorValue("OPC Sync Write", Err.Number)
SkipOPCSyncWriteError:

End Sub

' This sub handles performing a single synchronous read from a single item
" using the 'SyncRead' method. The 'SyncRead' method like the 'SyncWrite',
" will wait for comletion from the server before returning to your application.
" There are two sources for data an OPC Server can return to your application.
' The first source is from 'Cache’ the other is from 'Device'. The 'SyncRead'
" method allows you to choose where you want to get the data. If you choose
"'Cache' the data has the potential to be old data which you can determine by
"looking at the time stamp on the data. If you know that the data you are
'requesting is actively being scanned by the OPC Server you should be able to
"invoke the 'SyncRead' method using the mode selection of 'OPCCache'. If your
"not sure if the data you desire is being scanned by the server or its out of
' date, you can use the mode selection of 'OPCDevice'. The 'OPCDevice' mode
' commands the OPC Server to go and get this item directly from the device and
"'DO IT NOW'. This pretty much insures that you will receive the most recent
" value for the itme your are requesting. The downside, when reading from the
" device directly the 'SyncRead' method will wait for the device to complete
" that read operation which could include mire time, modem time, or any other
' factor that is required to gather data from the actual device. There are some
" benefits to using a 'SyncRead' in the 'OPCDevice' mode. If you want to
" completely control the data acquisition cycle from your application you can
"add your groups, add your items, make the items inactive, then use the 'SyncRead’
" mehtod to forcibly make the server perform read operations when you want.
" Using this scheme the server would only talk to the the device when you invoke
"either a 'SyncRead' or 'SyncWrite' method.
Private Sub SyncRecording()

‘Set error handling for OPC Function

On Error GoTo ShowOPCSyncReadError

Dim ItemCount As Long

' Provide storage the arrays returned by the 'SyncRead' method

Dim ServerIndex As Long

Dim Values() As Variant

Dim ServerHandles(16) As Long

Dim Errors() As Long

Dim Quality As Variant

Dim TimeStamp As Variant

102

Dim i As Integer
ItemCount = 16

' Get the Servers handle for the desired item. The server handles were
' returned in add item subroutine.
For ServerIndex = 1 To ItemCount
ServerHandles(ServerIndex) = ItemServerHandles(ServerIndex)
Next ServerIndex
' Invoke the SyncRead operation. Remember this call will wait until
' completion. The source flag in this case, 'OPCDevice', is set to
' read from device which may take some time.

ConnectedGroup.SyncRead OPCDevice, ltemCount, ServerHandles, Values, Errors, Quality,
TimeStamp

' Convert variants to Arrays

Dim Qualities() As Long

ReDim Qualities(ItemCount)

If VarType(Quality) = vbArray + vbInteger Then
Dim Buffer() As Integer
Buffer = Quality
Dim ii As Integer
For ii = 1 To ItemCount
Qualities(ii) = Buffer(ii)
Next ii
End If

Dim TimeStamps() As Double
ReDim TimeStamps(ItemCount)

If VarType(TimeStamp) = vbArray + vbDate Then
Dim Bufferl() As Date
Bufferl = TimeStamp
'Dim ii As Integer

For ii = 1 To ItemCount

TimeStamps(ii) = CDbl(Buffer1(ii))

Next ii

End If

' Save off the value returned after checking for error
For ServerIndex = 1 To ItemCount
If Errors(ServerIndex) = 0 Then
'OPCItemValue(ServerIndex - 1).Text = Values(ServerIndex)
If Values(ServerIndex) = True Then
OPClItemValue(ServerIndex - 1).Text = 1
Else
OPClItemValue(ServerIndex - 1).Text =0
End If
OPClItemQuality(ServerIndex - 1).Text = Qualities(ServerIndex)
Dim Milliseconds As String
Milliseconds = GetMilliseconds(TimeStamps(ServerIndex))
OPClItemTimeStamp(ServerIndex - 1).Text = Milliseconds
'OPClItemTimeStamp(ServerIndex - 1).Text = Format(TimeStamps(ServerIndex), "hh:mm:ss") &
"." & Format$(Milliseconds, "000")
'OPCItemTimeStamp(ServerIndex - 1).Text = TimeStamps(ServerIndex)

103

End If
Next ServerIndex
GoTo SkipOPCSyncReadError

ShowOPCSyncReadError:

Call DisplayOPC_COM_ErrorValue("OPC Sync Read", Err.Number)
SkipOPCSyncReadError:
End Sub

' This Sub sets the active state of an individual item. Like the other methods
' that perform operation on either a single item of list of items, the
' 'SetActive' method requires the ItemServerHandle of the item to be modified.
' Using the active state of an item allows you to control the amount of work
" the OPC Server is doing when communicating with a device. You could add all
' the item you desire to read in an Active state but if some of those items are
" not currently in use you can improve the performance of the OPC Server by making
' those items inactive.
Private Sub OPCltemActiveState_Click(Index As Integer)
‘Set error handling for OPC Function
On Error GoTo ShowOPClItemActiveStateError

' Change only 1 item

ItemCount = 1

' Dim local arrays to pass desired item for state change
Dim ActiveltemServerHandles(1) As Long

Dim ActiveltemErrors() As Long

Dim ActiveState As Boolean

' Get the desired state from the control.

'ActiveState = OPClItemActiveState(Index).Value

' Get the Servers handle for the desired item. The server handles
' were returned in add item subroutine.
ActiveltemServerHandles(1) = ItemServerHandles(Index + 1)

' Invoke the SetActive operation on the OPC item collection interface
OPClItemCollection.SetActive ItemCount, ActiveltemServerHandles, ActiveState, ActiveltemErrors

" Your application should check for errors here.
GoTo SkipOPCItemActiveStateError

ShowOPCltemActiveStateError:
Call DisplayOPC_COM_ErrorValue("OPC Item Active State", Err.Number)
SkipOPClItemActiveStateError:

End Sub

' This sub handles the 'DataChange' call back event which returns data that has

" been detected as changed within the OPC Server. This call back should be

" used primarily to receive the data. Do not make any other calls back into

"the OPC server from this call back. The other item related functions covered

"in this example have shown how the ItemServerHandle is used to control and

" manipulate individual items in the OPC server. The 'DataChange' event allows
"us to see how the 'ClientHandles we gave the OPC Server when adding items are
"used. As you can see here the server returns the 'ClientHandles' as an array.

' The number of item returned in this event can change from trigger to trigger

104

"so don't count on always getting a 1 to 1 match with the number of items
" you have registered. That where the 'ClientHandles' come into play. Using
' the 'ClientHandles' returned here you can determine what data has changed and
"where in your application the data should go. In this example the
"'ClientHandles' were the Index number of each item we added to the group.
' Using this returned index number the 'DataChange' handler shown here knows
" what controls need to be updated with new data. In your application you can
" make the client handles anything you like as long as they allow you to
" uniquely identify each item as it returned in this event.
Sub ConnectedGroup_DataChange(ByVal TransactionID As Long, ByVal Numltems As Long,
ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)
' We don't have error handling here since this is an event called from the OPC interface
Dim SYSTEMTIME As SYSTEMTIMEREC
Dim stUTC As SYSTEMTIMEREC
Dim i As Integer
Dim Dummy1 As Variant
Dim Dummy?2 As Variant
Dim Dummy3 As Variant
Dim Hours As Integer
Dim Minutes As Integer
Dim Seconds As Integer
Dim Milliseconds As Integer
Dim Time As Variant
Fori=1 To Numltems

If SyncRead = 1 Then GoTo Finishl
' Use the 'Clienthandles' array returned by the server to pull out the
"index number of the control to update and load the value.
If ItemValues(i) = True Then
OPCltemValue(ClientHandles(i)). Text = 1
Else
OPClItemValue(ClientHandles(i)).Text = 0
End If
' Find Milliseconds
Milliseconds = GetMilliseconds(TimeStamps(i))
OPClItemTimeStamp(ClientHandles(i)). Text = Format(TimeStamps(i), "hh:mm:ss") & "." &
Milliseconds
' Check the Qualties for each item retured here. The actual contents of the
" quality field can contain bit field data which can provide specific
"error conditions. Normally if everything is OK then the quality will
" contain the 0xCO
If Qualities(i) And &HCO Then
OPClItemQuality(ClientHandles(i)). Text = "Good"
Else
OPClItemQuality(ClientHandles(i)). Text = Qualities(i)
End If
Next i
Exit Sub
Crapped1:
MsgBox "FileTimeToSystemTime Failed"
Exit Sub
Finish1:
End Sub
' Handles displaying any OPC/COM/VB errors that are caught by the exception handler
Sub DisplayOPC_COM_ErrorValue(OPC_Function As String, ErrorCode As Long)
Dim Response

105

Dim ErrorDisplay As String

ErrorDisplay = "The OPC function " + OPC_Function + "' has returned an error of " + Str(ErrorCode)
+ " or Hex 0x" + Hex(ErrorCode)

Response = MsgBox(ErrorDisplay, vbOKOnly, "OPC Function Error")
End Sub

' This sub handles exiting the program and properly disconnecting
' from the OPC server in an orderly fashion. Like the force order
" of the controls on this form, the exit attempts to remove the Items
' from the group, then the group from the server and finally disconnect
' from the server. This is also why each of the subroutines had the test
" to see if the Object to be removed was already set to 'Nothing'.
Private Sub ExitExample_Click()
' These calls will remove the OPC items, Group, and Disconnect in the proper order
Call OPCRemoveltems_Click
Call RemoveOPCGroup_Click
Call DisconnectFromServer_Click
End
End Sub
' Module to memorise start recording activated
Private Sub StartRecording_Click()
Start = False
StartRecording.Enabled = False
' Set start recording memory
StartRecordingButton = True
' Reset recording cycles counter

Cycles =0
ProgressBarl.Value = 1
End Sub

' This sub sets the reading rate of Items
Private Sub Text4_Change()
Timerl.Interval = Text4.Text

End Sub
" This sub records all Item values and stores the results in file named
' C:\temp\data.text.
Private Sub Timer1_Timer()
' Declarations
Dim Dummy As String
Dim Y As Integer
Dim z As Integer
Dim X As Integer
Dim SYSTEMTIME As SYSTEMTIMEREC
' Wait for start recurding button is pressed
If StartRecordingButton Then
If SyncRead = 0 Then GoTo Jumpl
Call SyncRecording 'read Items from OPC server
Jumpl:
' Wait for Start signal from trigger timer
If Start Then
' Variables
Dim i As Integer
i=Cycles * 16
Y=0
X=i
z=i+15

' Copy 16 bits to record array
Fori=XToz
RecValues(i) = CStr(OPCItemValue(Y).Text)
RecTimeStamp(i) = OPCItemTimeStamp(Y).Text
Y=Y+1
Next i
" Increment cycle counter
Cycles = Cycles + 1
ProgressBarl.Value = Cycles
End If
End If
' End recording when 670 samples have been taken
If Cycles = 670 Then
StartRecordingButton = False
Start = False
Cycles =0
Start = False

" Analyse results to determine time between trigger and finish

" Call sub to analyse cycle time
AnalyseCycleTime

Fori=0To 15
' Call sub to analyse sub cycle for all 16 bits
AnalyseSubCycle (i)

Next i

"Write Array to disk
Open "c:\temp\data.txt" For Output As #256
For i =0 To UBound(RecTimeStamp)

Dummy = RecValues(i) & vbTab & RecTimeStamp(i)

Print #256, Dummy
Next i
Close #256
" Enable startRecording button
StartRecording.Enabled = True
End If
Exit Sub
Crapped1:
MsgBox "FileTimeToSystemTime Failed"
Exit Sub
End Sub

' Timer module todetect trigger signal after start recording is activated

Private Sub Timer2_Timer()
' Poll trigger item for true state
If OPCItemValue(Trig).Text = "1" Then
Start = True ' Set start bit
End If
End Sub

' This sub extracts the millisecond value from a UTC based timestamp
Function GetMilliseconds(ByVal varDateTime As Variant) As String

' Declare variables

Dim decConversionFactor As Variant
Dim Dummy1 As Double

Dim Dummy?2 As Double

Dim Dummy3 As Double

Dim TotalmSec As Long

106

Dim Hours As Integer
Dim Minutes As Long
Dim Seconds As Long
Dim Milliseconds As Long
Dim decTime As Variant
" main
Dummy1 = CDbl(varDateTime)
Dummy?2 = Fix(varDateTime)
Dummy3 = varDateTime - Dummy?2
Dummy3 = Dummy3 * 100000000
Dummy3 = Int(Dummy3)
TotalmSec = Dummy3
Hours = Fix(Int(Dummy?3 / 3600000))
Dummy3 = TotalmSec
Minutes = Fix(((TotalmSec - (Hours * 3600000)) / 60000))
Dummy3 = TotalmSec
Seconds = Fix(((TotalmSec - (Hours * 3600000) - (Minutes * 60000)) / 1000))
Milliseconds = Fix((TotalmSec - (Hours * 3600000) - (Minutes * 60000) - (Seconds * 1000)))
GetMilliseconds = Format$(Hours, "00") & ":" & Format$(Minutes, "00") & ":" & Format$(Seconds,
"00") & "." & Format$(Milliseconds, "000")

End Function

' This sub handles the display of start time, end time and overall cycle time

"It uses the data already recorded and searches the RecValues array for the first low
" to high transition on the trigger input and then searches for a low to high transition
"on the end signal. The overall cycle time is then the difference between these 2 results.
Function AnalyseCycleTime()

Dim StartTime As Variant

Dim EndTime As Variant

Dim i As Integer

Dim MinuteStart As Variant

Dim SecondStart As Variant

Dim MillisecondStart As Variant

Dim MinuteEnd As Variant

Dim SecondEnd As Variant

Dim MillisecondEnd As Variant

Dim Minute As Variant

Dim Second As Variant

Dim Millisecond As Variant

Dim TotalMillisecondStart As Variant

Dim TotalSecondsStart As Variant

Dim TotalMillisecondEnd As Variant

Dim TotalSecondsEnd As Variant

' Search record array for time of trigger start, save start time in start field
Dim TestValue As String
TestValue = 1

For i = Trig To UBound(RecValues)
If RecValues(i) = TestValue Then
Textl.Text = RecTimeStamp(i)
Exit For 'stop searching
End If
i=i+15
Next i

107

108

' Search record array for time of end signal, save end time in end field
For i = Finish To UBound(RecValues)

If RecValues(i) = TestValue Then
Text2.Text = RecTimeStamp(i)
Exit For 'stop searching

Else
"If no value found display zero time
Text2.Text = "00:00:00.000"

End If
i=i+15
Next i

"If no end time was found ie end = zero time force start time to zero
If Text2.Text = "00:00:00.000" Then

Textl.Text = "00:00:00.000"
End If

' Calculate seconds for start

MinuteStart = CDec(Left(Right(Text1.Text, 9), 2))

SecondStart = CDec(Left(Right(Text1.Text, 6), 2))

MillisecondStart = CDec(Right(Text1.Text, 3))

TotalMillisecondStart = MinuteStart * 60 * 1000 + SecondStart * 1000 + MillisecondStart
TotalSecondsStart = TotalMillisecondStart / 1000

" Calculate seconds for end

MinuteEnd = CDec(Left(Right(Text2.Text, 9), 2))

SecondEnd = CDec(Left(Right(Text2.Text, 6), 2))

MillisecondEnd = CDec(Right(Text2.Text, 3))

TotalMillisecondEnd = MinuteEnd * 60 * 1000 + SecondEnd * 1000 + MillisecondEnd
TotalSecondsEnd = TotalMillisecondEnd / 1000

' Record overall cycle time in seconds field
Second = TotalSecondsEnd - TotalSecondsStart
Text3.Text = Second

End Function

' This sub handles the analysis of sub cycles.

"It uses the data already recorded to calculate the period of time each signal
' remained in the high state the values calculated are displayed on the cycle times
"result form.

Function AnalyseSubCycle(X As Integer)

Dim StartTime As Variant

Dim EndTime As Variant

Dimi As Integer

Dim Y As Integer

Dim MinuteStart As Variant

Dim SecondStart As Variant

Dim MillisecondStart As Variant

Dim MinuteEnd As Variant

Dim SecondEnd As Variant

Dim MillisecondEnd As Variant

Dim Minute As Variant

Dim Second As Variant

Dim Millisecond As Variant

Dim TotalMillisecondStart As Variant

Dim TotalSecondsStart As Variant
Dim TotalMillisecondEnd As Variant
Dim TotalSecondsEnd As Variant

Dim Dummy1 As String
Dim Dummy?2 As String
Dim Dummy3 As String

' Search record array for time of first high signal
Dim TestValue As String
i=X
ForY=1To 12
TestValue = 1

For i =1 To UBound(RecValues)
If RecValues(i) = TestValue Then
Dummy1 = RecTimeStamp(i)
Exit For 'stop searching
Else
Dummy1 = "00:00:00.000"
End If
i=i+15
Next i
If i >= UBound(RecValues) Then ' If end of array is reached end
GoTo Finish
End If
' Search record array for time of, high to low transition
i=i+16
TestValue =0
For i =i To UBound(RecValues)
If RecValues(i) = TestValue Then
Dummy?2 = RecTimeStamp(i)
Exit For 'stop searching
Else
Dummy?2 = "00:00:00.000"
End If
i=i+15
Next i

If Dummy?2 = "00:00:00.000" Then
Dummy1 = "00:00:00.000"
End If
" Calculate seconds for start
MinuteStart = CDec(Left(Right(Dummy]l, 9), 2))
SecondStart = CDec(Left(Right(Dummy1, 6), 2))
MillisecondStart = CDec(Right(Dummyl1, 3))
TotalMillisecondStart = MinuteStart * 60 * 1000 + SecondStart * 1000 + MillisecondStart
TotalSecondsStart = TotalMillisecondStart / 1000

' Calculate seconds for end
MinuteEnd = CDec(Left(Right(Dummy?2, 9), 2))
SecondEnd = CDec(Left(Right(Dummy?2, 6), 2))
MillisecondEnd = CDec(Right(Dummy?2, 3))
TotalMillisecondEnd = MinuteEnd * 60 * 1000 + SecondEnd * 1000 + MillisecondEnd
TotalSecondsEnd = TotalMillisecondEnd / 1000

109

110

' Calculate difference between start and end transitions
Second = TotalSecondsEnd - TotalSecondsStart

'Record times on form and compare with best case and tolerance
Select Case Y
Case 1
Form1.Sub1(X) = Second
If CDec(Form1.Sub1(X).Text) > (CDec(Form3.Sub1(X).Text) - CDec(Form2.Sub1(X).Text)) And _
CDec(Form1.Sub1(X).Text) < (CDec(Form3.Sub1(X).Text) + CDec(Form2.Sub1(X).Text)) Then
Form1.Sub1(X).BackColor = &HC000&
Sub1(X).BackColor = &HC000&
Else
Form1.Sub1(X).BackColor = &HFF&
Sub1(X).BackColor = &HFF&
End If
Sub1(X) = Second
Case 2
Form1.Sub2(X) = Second
If CDec(Form1.Sub2(X).Text) > CDec(Form3.Sub2(X).Text) - CDec(Form2.Sub2(X).Text) And _
CDec(Form1.Sub2(X).Text) < CDec(Form3.Sub2(X).Text) + CDec(Form2.Sub2(X).Text) Then
Form1.Sub2(X).BackColor = &HC000&
Sub2(X).BackColor = &HC000&
Else
Form1.Sub2(X).BackColor = &HFF&
Sub2(X).BackColor = &HFF&
End If
Sub2(X) = Second
Case 3
Form1.Sub3(X) = Second
If CDec(Form1.Sub3(X).Text) > CDec(Form3.Sub3(X).Text) - CDec(Form2.Sub3(X).Text) And _
CDec(Form1.Sub3(X).Text) < CDec(Form3.Sub3(X).Text) + CDec(Form2.Sub3(X).Text) Then
Form1.Sub3(X).BackColor = &HC000&
Sub3(X).BackColor = &HC000&
Else
Form1.Sub3(X).BackColor = &HFF&
Sub3(X).BackColor = &HFF&
End If
Sub3(X) = Second
Case 4
Form1.Sub4(X) = Second
If CDec(Form1.Sub4(X).Text) > CDec(Form3.Sub4(X).Text) - CDec(Form2.Sub4(X).Text) And _
CDec(Form1.Sub4(X).Text) < CDec(Form3.Sub4(X).Text) + CDec(Form2.Sub4(X).Text) Then
Form1.Sub4(X).BackColor = &HC000&
Sub4(X).BackColor = &HC000&
Else
Form1.Sub4(X).BackColor = &HFF&
Sub4(X).BackColor = &HFF&
End If
Sub4(X) = Second
Case 5
Form1.Sub5(X) = Second
If CDec(Form1.Sub5(X).Text) > CDec(Form3.Sub5(X).Text) - CDec(Form2.Sub5(X).Text) And _
CDec(Form1.Sub5(X).Text) < CDec(Form3.Sub5(X).Text) + CDec(Form2.Sub5(X).Text) Then
Form1.Sub5(X).BackColor = &HC000&
Sub5(X).BackColor = &HC000&
Else

111

Form1.Sub5(X).BackColor = &HFF&
Sub5(X).BackColor = &HFF&
End If
Sub5(X) = Second
Case 6
Form1.Sub6(X) = Second
If CDec(Form1.Sub6(X).Text) > CDec(Form3.Sub6(X).Text) - CDec(Form2.Sub6(X).Text) And _
CDec(Form1.Sub6(X).Text) < CDec(Form3.Sub6(X).Text) + CDec(Form2.Sub6(X).Text) Then
Form1.Sub6(X).BackColor = &HC000&
Sub6(X).BackColor = &HC000&
Else
Form1.Sub6(X).BackColor = &HFF&
Sub6(X).BackColor = &HFF&
End If
Sub6(X) = Second
Case 7
Form1.Sub7(X) = Second
If CDec(Form1.Sub7(X).Text) > CDec(Form3.Sub7(X).Text) - CDec(Form2.Sub7(X).Text) And _
CDec(Form1.Sub7(X).Text) < CDec(Form3.Sub7(X).Text) + CDec(Form2.Sub7(X).Text) Then
Form1.Sub7(X).BackColor = &HC000&
Sub7(X).BackColor = &HC000&
Else
Form1.Sub7(X).BackColor = &HFF&
Sub7(X).BackColor = &HFF&
End If
Sub7(X) = Second
Case 8
Form1.Sub8(X) = Second
If CDec(Form1.Sub8(X).Text) > CDec(Form3.Sub8(X).Text) - CDec(Form2.Sub8(X).Text) And _
CDec(Form1.Sub8(X).Text) < CDec(Form3.Sub8(X).Text) + CDec(Form2.Sub8(X).Text) Then
Form1.Sub8(X).BackColor = &HC000&
'Sub8(X).BackColor = &HC000&
Else
Form1.Sub8(X).BackColor = &HFF&
'Sub8(X).BackColor = &HFF&
End If
Case 9
Form1.Sub9(X) = Second
If CDec(Form1.Sub9(X).Text) > CDec(Form3.Sub9(X).Text) - CDec(Form2.Sub9(X).Text) And _
CDec(Form1.Sub9(X).Text) < CDec(Form3.Sub9(X).Text) + CDec(Form2.Sub9(X).Text) Then
Form1.Sub9(X).BackColor = &HC000&
Else
Form1.Sub9(X).BackColor = &HFF&
End If
'Form1.Sub9(X) = Second
Case 10
Form1.Sub10(X) = Second
If CDec(Form1.Sub10(X).Text) > CDec(Form3.Sub10(X).Text) - CDec(Form2.Sub10(X).Text) And
CDec(Form1.Sub10(X).Text) < CDec(Form3.Sub10(X).Text) + CDec(Form2.Sub10(X).Text)
Then
Form1.Sub10(X).BackColor = &HC000&
Else
Form1.Sub10(X).BackColor = &HFF&
End If
'Form1.Sub10(X) = Second

112

Case 11
Form1.Sub11(X) = Second
If CDec(Form1.Sub11(X).Text) > (Form3.Sub11(X).Text) - CDec(Form2.Sub11(X).Text) And _
CDec(Form1.Sub11(X).Text) < (Form3.Sub11(X).Text) + CDec(Form2.Sub11(X).Text) Then
Form1.Sub11(X).BackColor = &HC000&
Else
Form1.Sub11(X).BackColor = &HFF&
End If
'Form1.Sub11(X) = Second
Case 12
Form1.Sub12(X) = Second
If CDec(Form1.Sub12(X).Text) > CDec(Form3.Sub12(X).Text) - CDec(Form2.Sub12(X).Text) And
CDec(Form1.Sub12(X).Text) < CDec(Form3.Sub12(X).Text) + CDec(Form2.Sub12(X).Text)
Then
Form1.Sub12(X).BackColor = &HC000&
Else
Form1.Sub12(X).BackColor = &HFF&
End If
'Form1.Sub12(X) = Second
End Select
Next Y

Finish:
End Function

' Show Tolerance form t
Private Sub Tol_Click()
Form2.Show

End Sub

