
On the Existence of High-Impact Refactoring Opportunities in Programs

Jens Dietrich1 Catherine McCartin1 Ewan Tempero2 Syed M. Ali Shah1

1 School of Engineering and Advanced Technology
Massey University, Palmerston North, New Zealand

Email: {j.b.dietrich,c.m.mccartin,m.a.shah}@massey.ac.nz
2 Department of Computer Science

University of Auckland, Auckland, New Zealand
Email: e.tempero@cs.auckland.ac.nz

Abstract

The refactoring of large systems is difficult, with the pos-
sibility of many refactorings having to be done before any
useful benefit is attained. We present a novel approach
to detect starting points for the architectural refactoring of
large and complex systems based on the analysis and ma-
nipulation of the type dependency graph extracted from
programs. The proposed algorithm is based on the simul-
taneous analysis of multiple architectural antipatterns, and
outputs dependencies between artefacts that participate in
large numbers of instances of these antipatterns. If these
dependencies can be removed, they represent high-impact
refactoring opportunities: a small number of changes that
have a major impact on the overall quality of the system,
measured by counting architectural antipattern instances.
The proposed algorithm is validated using an experiment
where we analyse a set of 95 open-source Java programs
for instances of four architectural patterns representing
modularisation problems. We discuss some examples
demonstrating how the computed dependencies can be re-
moved from programs. This research is motivated by the
emergence of technologies such as dependency injection
frameworks and dynamic component models. These tech-
nologies try to improve the maintainability of systems by
removing dependencies between system parts from pro-
gram source code and managing them explicitly in config-
uration files.

1 Introduction

Software systems are subject to change. However, chang-
ing software is risky and expensive. The development of
methodologies and tools to deal with change, and to min-
imise risks and expenses associated with change is one of
the great challenges in software engineering. Refactor-
ing is a successful technique that has been developed in
order to facilitate changes in the code base of programs.
First developed in the late 90s, code refactoring tools have
become commodities for many programmers, and refac-
toring is one of the main supportive technologies for agile
process models such as Scrum and extreme programming.
The first generation of refactoring tools has focused on
the manipulation of source code, using the structure of the
source code (in particular the abstract syntax tree (AST))
as the data structure that is being manipulated. In recent
years, refactoring has been studied in different contexts, in
particular the refactoring of models representing other as-
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pects of software systems such as design, architecture and
deployment.

The need to refactor systems on a larger scale arises
from changing business requirements. Examples include
moves from monolithic products to product lines, system
integration, or the need to improve some of the “ilities”
of systems such as maintainability, security or scalability.
While the refactoring of systems at the large scale is dif-
ficult, it is a common belief amongst software engineers
that the pareto principle, also known as the 80-20 rule, ap-
plies: a few targeted actions can have an over-proportional
impact.

The main question we would like to answer is, can the
pareto principle apply at all? If the answer to this ques-
tion is no, even with very generous assumptions, then this
would be a very important result with significant conse-
quences for when refactoring can be profitably used. If the
answer is yes, then, due to our assumptions, that would
not necessarily mean efficient refactoring of large scale
systems would always be possible, but it would at least
provide support for pursuing that goal. Our approach is
to create a mathematical model of the systems we would
like to refactor, and examine whether small changes to the
model will have large impacts on the overall quality of the
design.

As a motivating example, consider the program de-
picted in figure 1. The design of this program can be con-
sidered as a graph, the so-called dependency graph (DG).
The vertices in this graph are types, and the edges are re-
lationships between these types. This particular program
consists of four classes A,B,C and D and three name spaces
package1, package2 and package3. It contains several
antipatterns [6] that represent design problems:

1. A circular dependency between the packages 1,2 and
3, caused by the path A→extends B→uses C→uses A

2. A circular dependency between the packages 2 and
3, caused by the path B→uses C→uses D

3. A subtype knowledge pattern where a type references
its own subtype, caused by the edges A→extends B and
B→uses C→uses A

All three antipattern instances can be removed from
the graph with the removal of the single edge B→uses C.
An algorithm for finding this edge is simple: for each
edge, record the number of occurrences in all instances
of each antipattern, then remove one of the the edges with
the highest score. This method would assign the highest
score of three only to the edge B→uses C. All other edges
participate in only one or two pattern instances.

The edge B→uses C indicates a good starting point for
architectural refactoring: changing the structure of the
system without changing its external behaviour. A refac-
toring that gives rise to a new system that is modelled by
the dependency graph DG\ (B→uses C) would be a high-
impact refactoring in the following sense: this particular
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Figure 1: Simple program DG

refactoring removes significantly more (in this case: all)
antipattern instances from the model, and can therefore
be considered more valuable than alternative refactorings.
Such a refactoring would have the highest impact on the
overall quality of the system, measured by the number of
architectural antipattern instances.

In general, there is no guarantee that such a refactoring
can be achieved. However, the fact that a small change
in the model has a large impact on the overall quality of
the design, in this case, suggests that the pareto principle
could apply here. Our aim is to discover whether or not
the pareto principle applies in general.

One particular class of architectural refactorings we
are interested in is modularisation, and in particular the
refactoring of monolithic Java programs into dynamic
component models such as OSGi [1] and its clones and ex-
tensions. This is a very timely issue, as some of the most
complex systems including the Java Development Kit it-
self [2], and the leading commercial application servers
WebLogic and WebSphere [17], are currently being modu-
larised. In our previous work [8], we assessed the scope of
the problem by investigating a set of antipatterns that hin-
der modularisation using an OSGi-style framework. The
work presented here has grown out of this approach. We
aim to generalise from our previous work to develop a
generic approach for using sets of antipatterns to com-
pute refactoring opportunities. The opportunities identi-
fied correspond to operations which are applied to a model
representing the system. After application, the antipattern
analysis is repeated in order to assess whether or not cer-
tain characteristics of the system have improved. It turns
out that, using this approach, we can compute candidates
for high impact refactorings.

The rest of the paper is organised as follows. In Section
2 we review related work. We continue in Section 3 with
a short introduction to the framework we have developed
for describing antipatterns, and the algorithmic tools used
to detect these antipatterns. In Section 4 we motivate our
choice of a particular set of antipatterns that hinder mod-
ularisation and discuss the algorithm used to detect po-
tential refactoring opportunities. We then describe the or-
ganisation of an experiment used to validate our approach,
where we analyse a large corpus of open-source Java pro-
grams [25] for instances of four antipatterns representing
modularisation problems. An analysis of the results of our
experiment is presented in Section 5. A discussion of open
questions related to our work concludes this contribution.

2 Related Work

2.1 Antipattern and Motif Detection

In our work, we propose to use sets of antipatterns as start-
ing points for architectural refactoring. These patterns can
be viewed as the equivalent of smells [10] that are used
as starting points for code-level refactorings. While early
work on smells and antipatterns has focused on the anal-

ysis of source code, many of these concepts can also be
applied to software architecture [18]. Research into code-
level antipattern and smell detection has resulted in a set of
robust tools that are widely used in the software engineer-
ing community, including PMD [7] based on source code
analysis, and FindBugs [16] based on byte code analysis.
A closely related area is the detection of design patterns
[13]. Several solutions have been proposed to formalise
design patterns in a platform-independent manner. A good
overview is given in [33].

Garcia et al. describe a set of architectural smells [14]
using a format similar to the original Gang of Four pat-
tern language [13]. These smells are somewhat different
from our patterns. The definitions given by the authors in
[14] do not seem to be precise enough for tool-supported
detection.

Our approach is based on the detection of antipatterns
in the dependency graph extracted from a program. The
use of dependency graphs as a basis for program analysis
has been investigated by several authors (e.g. [19, 4]).

Patterns in graphs can be formalised as motifs. Detec-
tion of graph motifs has been widely studied in bioinfor-
matics, and there is a large body of recent work in this
area. The concept has also been proposed in the context
of complex networks (e.g., Milo et al. [21]). The motifs
used in both of these areas are simpler than those that we
propose, in that we do not only consider local sets of ver-
tices directly connected by edges, but also sets of vertices
indirectly connected by paths.

We have investigated in previous work [9] the potential
of the Girvan-Newman clustering algorithm [15] to detect
refactoring opportunities in dependency graphs.

2.2 Refactoring

Architectural refactorings were first discussed by Beck
and Fowler (“big refactorings”) [10], and then discussed
by Roock and Lippert (“large refactorings”) [18]. Their
work defines the framework for our contribution: starting
with the detection of architectural smells by means of an-
tipatterns (for example, cycles) or metrics in architectural
models, systems are modified to improve their characteris-
tics while maintaining their behaviour. Large scale refac-
torings can be broken down (decomposed into smaller
refactorings). Our approach fits well into this framework;
we compute a sequence of base refactorings that can be
performed step by step, using the dependency graph as
the architectural model.

Our work is related to the use of graph transformations
and graph grammars [27], an area that has been applied in
many areas of software engineering such as model trans-
formations. The manipulations of the graphs we are inter-
ested in are simple: we only remove single edges. This
does not justify the use of the full formalism of a graph
grammar calculus. In work by Mens et al. graph trans-
formations are directly used to detect refactorings [20].
There, the focus is on code-level refactoring and the de-
tection and management of dependencies between those
refactorings.

Simon et al. try to formalise the notion of smells
[30]. The authors use metrics for this purpose, while we
use patterns. Tsanatalis and Chatzigeorgiou have identi-
fied opportunities to apply the “move method” refactoring
[36]. Their proposed algorithm is based on the Jaccard
metric between feature sets and preconditions for the re-
spective refactoring. Their aim is to remove only one par-
ticular smell (feature envy) from programs. Seng at al.
use a genetic algorithm to detect code-level refactorings
[29]. Their work is also restricted to the “move method”
refactoring. O’Keeffe and O’Cinneide represent object-
oriented design as a search problem in the space of alter-
native designs [22]. They use several search algorithms to
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search this space for designs which improve the existing
design with respect to a set of given metrics. The refactor-
ings used to traverse the search space are all inheritance-
related (extract and collapse hierarchies, move feature up
and down the hierarchy) and, therefore, not very expres-
sive.

Bourqun and Keller present a high-impact refactoring
case study [5]. They first define the layered architecture
of the program to be refactored, and then use Sotograph
to detect violations of this architecture. They focus refac-
toring activities on packages associated with those viola-
tions, and validate their approach using violation counts
and code metrics. They present their approach as a case
study using an enterprise Java application developed by
a Swiss telecommunication company. The approach dis-
cussed here can be seen as a generalisation of Bourqun
and Keller’s work [5]: the architecture violations can be
expressed using patterns, and the algorithm to compute
the artefacts to be refactored from the violations can be
recast in our edge-scoring idiom. While our general ap-
proach supports and encourages the use of project-specific
patterns derived from system architecture, we use a set
of general, project-independent patterns for the empirical
study.

3 Methodology

3.1 Motifs

As stated earlier, our approach to detect high-impact refac-
toring opportunities is based on the detection of antipat-
terns in the program dependency graph (DG). In the fol-
lowing paragraphs, we formally define this graph and re-
lated concepts.

A dependency graph DG = (V,E) consists of a set
of vertices, V , representing types (classes, interfaces and
other types used in the programming language), and a set
of directed edges, E, representing relationships between
those types. Both vertices and edges are labelled to pro-
vide further information. Vertices have labels providing
the name, the name space, the container (library), the ab-
stractness (true or false) and the kind (interface, class, enu-
meration or annotation) of the respective type. Edges have
a type label indicating whether the relationship is an ex-
tends, implements or uses relationship.

We formalise architectural antipatterns as network mo-
tifs in the dependency graph. Given a dependency graph,
a motif can be defined as follows:

A motif m = (V R,PR,CV ,CP) consists of four finite
sets: vertex roles (V R) and path roles (PR), vertex con-
straints CV and path constraints CP. If n is the cardinality
of V R, a vertex constraint cV ∈ CV is defined as an n-ary
relation between vertices, cV ⊆ ×i=1..nV . If n is the car-
dinality of PR, a path constraint is cP ∈ CP is defined as
an n-ary relation between sequences of edges (SEQ(E)),
cP ⊆ ×i=1..nSEQ(E). Intuitively, constraints restrict the
sets of possible vertex and path assignments. While ver-
tex constraints are always defined with respect to vertex
labels, there are three different types of path constraints:

1. Source and target constraints restricting, respectively,
the start and end vertices of a path.

2. Cardinality constraints restricting the length of a
path, usually defined using restrictions on the min-
imum and the maximum length of a path.

3. Constraints defined with respect to edge labels.
These constraints have to be satisfied for all edges
within a path.

A binding is a pair of functions 〈instV , instP〉, where
instV : V R→ V and instP : PR→ SEQ(E). A binding as-

sociates vertex roles with vertices and path roles with se-
quences of edges. A motif instance is a binding such that
the constraints are fulfilled, i.e. the following two condi-
tions must be true:

• (instV (vr1), .., instV (vrn))) ∈ cV for all vertex con-
straints cV ∈CV

• (instP(pr1), .., instP(prn))) ∈ cP for all path con-
straints cP ∈CP

3.2 Motif Definition and Detection

The detection of motif instances in non-trivial dependency
graphs is complex. The worst-case time complexity for
the type of motif search that we do is O(nk), where n
and k are the number of vertices in the dependency graph
and the number of roles in the motif, respectively. This
worst-case time complexity is a consequence of the NP-
hardness of the subgraph isomorphism problem, which is
essentially the problem that we must solve each time we
successfully find an instance of a query motif in a depen-
dency graph. Note that the algorithm that we use to de-
tect motif instances returns all possible bindings of vertex
roles, but for each such binding only one selected binding
for path roles. Formally, we consider only classes of in-
stances (instv, instp) modulo (instancep). This means that
two instances are considered as being equal if and only if
they have the same vertex bindings.

To detect motifs in the dependency graph we use the
GUERY1 tool. The tool represents dependency graphs
in memory, and employs an effective solver to instantiate
motifs. The solver used takes full advantage of multi-core
processors, and uses various optimisation techniques. It
is scalable enough to find motifs in large programs with
vertex counts of up to 50000 and edge counts of up to
200000. This kind of scalability is required to analyse
real world programs, such as the runtime library of the
Java Development Kit, consisting of 17253 vertices and
173911 edges.

Listing 1 shows a motif definition. This motif has two
vertex roles V R = { type, supertype} and two path roles
PR = {inherits, uses}. The paths roles have source and
target constraints defined by the from and to attributes
in the connectedby elements, and edge constraints de-
fined in the expressions in line 4. The edge constraints
state that all edges in paths instantiating the inherits
role must be extends or inherits relationships, and
that all edges in paths instantiating the uses role must be
uses relationships. The length of the paths is not con-
strained in this example, but the language would support
this through the minLength and maxLength attributes de-
fined for the connectedBy element. The default values
are 1 for minLength and -1, representing unbound, for
maxLength.

3.3 Edge Scoring

Motif detection in dependency graphs can be used to as-
sess the quality of architecture and design of systems. The
classical example is the detection of circular dependen-
cies between packages, modules and types that has been
widely discussed [32, 24]. In general terms, we aim to
use motifs to formalise antipatterns and smells and thus
facilitate detection of design problems. For a single motif,
the number of separate motif instances in a dependency
graph can be very large. However, edges can simultane-
ously participate in many instances.

This raises the question of whether, for a given set
of motifs representing antipatterns, there are some edges

1http://code.google.com/p/gueryframework/
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1 m o t i f s t k
2 s e l e c t type , s u p e r t y p e
3 c o n n e c t e d by i n h e r i t s ( type>s u p e r t y p e ) and u s e s ( s u p e r t y p e>t y p e )
4 where ” u s e s . t y p e == ’ uses ’ ” and ” i n h e r i t s . t y p e == ’ e x t e n d s ’ | | i n h e r i t s . t y p e == ’ implements ’ ”

Listing 1: The Subtype knowledge motif (STK)

which participate in large numbers of overlapping mo-
tif instances. It also raises the question of whether such
“high-scoring” edges participate in instances arising from
more than one of the motifs in the set. If so, refactorings
of the system resulting in the removal of those edges from
the dependency graph would be an effective way to im-
prove the overall quality of the architecture and design of
the underlying system.

In general, given a dependency graph DG = (V,E), a
motif m = (V R,PR,CV ,CP) and a set of motif instances
I(m) = {(inst i

V , inst i
P)} of m in DG, we define a scoring

function as a function associating edge-instance pairs with
natural numbers, score : E × I(m)→ N. We also require
that a positive score is only assigned if the edge actually
occurs in one of the paths instantiating a path role in the
motif:

∀i : score(e,(inst i
V , inst i

P))> 0⇒∃pr∈PR : e∈ inst i
P(pr).

For a given set of motifs M = {m j} with sets of instances
{I(m j)} of M in DG, the overall score of an edge with
respect to M is defined as the sum of all scores for each
instance of each motif:

scoreM(e) := ∑
m∈M

∑
inst∈I(m)

score(e, inst).

The simplest scoring function is the function that just
scores each occurrence of an edge in a motif instance as 1.
We call this the default scoring function. Given a depen-
dency graph, a set of motifs representing antipatterns and
a scoring function, we can define the following generic al-
gorithm to detect edges in the dependency graph that may
be associated with high impact refactorings of the under-
lying system:

1. Compute all instances for all motifs.

2. Compute the scores for all edges.

3. Sort the edges according to their scores.

4. Remove some edges with the highest scores from the
graph.

5. Recompute all instances for all motifs and compare
this with the initial number to validate the effect of
edge removals.

Note that this algorithm has several variation points
that affect its outcome:

1. The set of motifs used.

2. The scoring function used.

3. If only one edge is to be removed, the selection func-
tion that selects this edge from the set of edges with
the highest scores.

Depending on the decisions made for these variation
points, the effects of edge removal will be different. How-
ever, the existence of these variation points supports the
customisation of this algorithm in order to adapt it to
project-specific settings. For instance, domain-specific
antipatterns and scoring functions can be used to rep-
resent weighted constraints penalising dependencies be-
tween certain classes or packages.

The selection of the edge from the set of edges with
high scores can also take into account the difficulty of per-
forming the actual refactoring on the underlying system
that would result in the removal of this edge from the de-
pendency graph .

4 Case Study: Detecting High-Impact Refactorings
to Improve System Modularity

To demonstrate the use of our generic algorithm, we
present a case study that is based on a particular set of
antipatterns representing barriers to modularisation. The
presence of instances of these antipatterns in dependency
graphs implies that packages (name spaces) are difficult to
separate (poor name space separability), in particular due
to the existence of circular dependencies, and that imple-
mentation types are difficult to separate from specification
types (poor interface separability). Both forms of separa-
bility are needed in modern dynamic component models
such as OSGi, and in this sense the presence of these mo-
tifs represents barriers to modularity. For more details, the
reader is referred to Dietrich et al. [8].

4.1 Motif Set

4.1.1 Overview

We use the following four antipatterns that represent de-
sign problems in general, and barriers to the modularisa-
tion in particular:

1. Abstraction Without Decoupling (AWD)

2. Subtype knowledge (STK)

3. Degenerated inheritance (DEGINH)

4. Cycles between name spaces (CD)

These antipatterns can easily be formalised into graph
motifs. We discuss each of these motifs in the follow-
ing subsection. For a more detailed discussion, the reader
is referred to Dietrich et al. [8]. We use a simple vi-
sual syntax to represent antipatterns. Vertex roles are rep-
resented as boxes. Path roles are represented by arrows
connecting boxes. These connections are labelled with ei-
ther uses (uses relationships) or inherits (extends or imple-
ments relationships). They are also labelled with a num-
ber range describing the minimum and maximum length
of paths, with “M” representing unbound (“many”). If ver-
tex roles have property constraints, these constraints are
written within the box in guillemets.

4.1.2 Abstraction Without Decoupling (AWD)

The Abstraction Without Decoupling (AWD) pattern des-
cribes a situation where a client uses a service represented
as an abstract type, and also a concrete implementation of
this service, represented as a non-abstract type extending
or implementing the abstract type. This makes it hard to
replace the service implementation and to dynamically re-
configure or upgrade systems. To do this, the client code
must be updated. The client couples service description
and service implementation together.

Techniques such as dependency injection [12] could be
used to break instances of this pattern. Fowler discusses
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how patterns can be used to avoid AWD [11]. This in-
cludes the use of the Separated Interface and the Plugin
design patterns. The visual representation of this pattern
is shown in figure 2.

Figure 2: AWD

4.1.3 Subtype Knowledge (STK)

In this antipattern [26], types have uses relationships to
their subtypes. The presence of STK instances compro-
mises separability of sub- and supertypes. In particular, it
implies that there are circular dependencies between the
name spaces containing sub- and supertype. Instability in
the (generally less abstract) subtype will cause instability
in the supertype, and the supertype cannot be used and un-
derstood without its subtype. The visual representation of
this pattern is shown in figure 3, the definition is given in
listing 1.

Figure 3: STK

4.1.4 Degenerated Inheritance (DEGINH)

Degenerated inheritance [28, 31], also known as diamond,
repeated or fork-join inheritance, means that there are
multiple inheritance paths connecting subtypes with su-
pertypes. For languages with single inheritance between
classes such as Java, this is caused by multiple interface
inheritance. The presence of instances of DEGINH makes
it particularly difficult to separate sub- and superclasses.

The visual representation of this pattern is shown in
figure 4.

Figure 4: DEGINH

4.1.5 Cycles between Name Spaces (CD)

Dependency cycles between name spaces (CD) is a special
instance of cycles between modules [32]. This antipattern
implies that the participating name spaces cannot be de-
ployed and maintained separately. In particular, if these
name spaces were deployed in several runtime modules
(jars), this would create a circular dependency between

Figure 5: CD

those jars. This antipattern is stronger than the usual cir-
cular dependency between name spaces A and B which
requires that there be two paths, one connecting A to B
and the other connecting B to A. CD requires the exis-
tence of one path from A, through B, back into A. The
weaker form of circular dependency can sometimes be re-
moved by simply splitting the names spaces involved. CD
is more difficult to remove as the path must be broken
through refactoring.

The visual representation of this pattern is shown in
figure 5. Note that the cardinality constraint for the
path connecting outside1 and outside2 is [0,M]. This
means that the path can have a length of 0. In this case,
the antipattern instance has a triangular shape and the two
outside roles are instantiated by the same vertex.

4.2 Scoring Functions

In this experiment, we have used the default scoring func-
tion that increases the score by one for each edge encoun-
tered in any path instantiating any path role in each in-
stance for each of the four motifs.

4.3 Data Set

For the validation of our approach we have used the Qual-
itas Corpus, version 20090202 [34]. For many programs,
the corpus contains multiple versions of the same pro-
gram, sometimes with only minor differences between
those versions. We have therefore decided to keep only
one version of each program in the data set. We de-
cided to use the latest version available. There are
two programs in this set that do not have instances for
any antipattern in the set used: exoportal-v1.0.2.jar
and jmeter-2.3.jar. We have removed those two
programs from the data set. We have also removed
eclipse SDK-3.3.2-win32 and jext-5.0 — these pro-
grams already use a plugin-based modularisation model
(e.g., through the Eclipse extension registry and the
Equinox OSGi container) and therefore many of the an-
tipatterns we are interested in will not be present. Fi-
nally, we have removed the Java Runtime Environment
(JRE, jre- 1.5.0 14-linux-i586) — it turns out that
our tools are not yet scalable enough to do a full analysis
due to the size to the JRE. However, we have done a par-
tial analysis of the JRE, the results are discussed below.
This has given us the final set of the 95 programs.

The dependency graphs extracted from the programs
in the corpus differ widely in size. The largest graph,
extracted from azureus-3.1.1.0, has 6444 vertices
and 35392 edges. The smallest graph, extracted from
ivatagroupware-0.11.3, has 17 vertices and 22 edges.
The average number of vertices in graphs extracted from
corpus programs is 660, the average number of edges
3409.

4.4 Graph Preparation

The dependency graphs can be extracted from different
sources, such as byte code and source code of programs
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written in different programming languages. We have
used the dependency finder library [35] to extract depen-
dency graphs from Java byte code. Dependency graphs
built from byte code are slightly different from graphs
built from source code. For instance, relationships defined
by the use of generic types are missing due to erasure by
the Java compiler2. We do not see this as a problem as
the focus of our investigation is to find refactoring oppor-
tunities to improve the runtime characteristics of deployed
systems.

Graphs are represented as instances of the JUNG [23]
type edu.uci.ics.jung.graph.DirectedGraph. This
has caused some issues related to the repeatability of re-
sults. The GUERY solver we have used to detect motif
instances returns all possible bindings of vertex roles, but
for each such binding, only one selected binding for path
roles. It is possible to override this behaviour and com-
pute all possible path role assignments as well. However,
we have found that this is only feasible for very small mo-
tifs or graphs and that the combinatorial explosion in the
number of possible paths makes a scalable implementa-
tion impossible for graphs of a realistic size. Formally,
we consider only classes of instances (instv, instp) modulo
(instancep), i.e., two instances are considered equivalent
if they have the same vertex bindings.

The problem arising from this is that, when the compu-
tation is repeated, in some cases different path role bind-
ings are computed for the same binding of vertex roles,
since the query engine traverses outgoing/incoming paths
in a different order. This is caused by the internal index-
ing of incoming/outgoing edges in the JUNG API that uses
hashing. For this reason, we have modified the JUNG API
and to represent outgoing and incoming edges as lists with
predictable order. We have also added a method to set a
comparator to sort incoming/outgoing edges for all ver-
tices in the graph. In the experiment presented here we
have used a comparator that sorts edges according to their
betweenness score [15]. If the betweenness value is the
same for two edges, they are sorted by the fully qualified
names of source and target vertices. The objective of us-
ing this particular comparator function is to make it more
likely that edges that are more active in the overall topol-
ogy of the graph will be bound to path roles and thereby
gain an increase in score. Thus, this idea should promote
the identification of edges with high global impact.

5 Results

5.1 Impact of Edge Removal

Figure 6 shows the decline of numbers of antipattern in-
stances after removing the edges with the highest score.
Data were obtained using the simple scoring function
score1.

The number of instances is scaled to 100%. Initially,
all programs have 100% of their antipattern instances. The
values on the x-axis represent the number of edge removal
iterations performed. In each iteration, one edge with the
highest score is removed, and then the antipattern counts
and the edge scores are recomputed. If there is more than
one edge with the same highest score, these edges are
sorted according to the fully qualified names of source and
target vertices, and the first edge is removed. The main
reason for using this selection function is to make the ex-
periment repeatable, and to remove only one edge at a time
in order to observe the effects of single edge removals cor-
responding to atomic architectural refactorings.

The chart is a boxplot. The dots in the middle rep-
resent the medians in the distribution, and the bold bars

2Generic type information is only stored using the signature attribute in Java
byte code, this information can be used for reflection, but is not used by the Java
runtime when loading, linking and initialising classes and objects.
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around the median represent areas containing 50% of the
population.

It is remarkable that the median falls below 50% af-
ter only 8 iterations. This means that for half of the pro-
grams from the data set, only 8 or fewer edge removals
are necessary to remove half of the pattern instances from
the model. This suggests that applying refactorings cor-
responding to these edge removals to the actual programs
would have a similarly dramatic effect. The argument is
purely statistical: this method works well for most, but not
all, programs — the chart shows several outliers.

5.2 Pattern Distribution

The question arises whether high scores are caused by sin-
gle antipatterns, or whether there is an “overlay effect”
— edges have high scores because they participate in in-
stances of more than one antipattern. Analysis shows that
the latter is the case. For the 95 programs analysed, there
are only 15 programs for which the edge with the highest
score only participates in instances of a single antipattern.
For the majority of programs (51/95), this edge partici-
pates in instances of three different antipatterns (figure 7).

Figure 8 shows participation by pattern. For all four
patterns we find a significant number of programs where
the highest scored edge participates in instances of the re-
spective pattern. This is an indication that we picked a
favourable set of patterns in the sense that the combina-
tion of these patterns yields synergy effects when detect-
ing edges corresponding to possible high impact refactor-
ings.

The next question we have investigated is whether the
simultaneous analysis of multiple patterns yields better re-
sults than using one pattern at a time. To answer this ques-
tion we have created a scoring function for each single pat-
tern. This scoring function increases the score of an edge
by one whenever the edge participates in an instance of the
respective pattern, and by zero otherwise. That means that
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Figure 9: Comparison of antipattern instance removal using analysis based on single and combined antipatterns

only this one pattern is used to compute the edge to be
removed. We have then measured how the total number
of pattern instances found for all patterns drops. Figure
9 shows the results for the first 50 iterations — the val-
ues are the means of pattern instances remaining after the
respective number of edge removals. This figure shows
that by using the combined strategy (the data series with
the label “AWD,CD,DEGINH,STK”) better results can be
obtained. The curves representing the single pattern scor-
ing strategies flatten out — indicating that all instances of
the respective patterns are eventually removed, but that a
significant number of instances of other patterns remain.

5.3 Dependency on Program Size

The question arises of whether the trend depends on pro-
gram size. To address this issue, we have divided the set
of programs into two new sets, consisting of relatively
small and relatively large programs. The difference be-
tween the larger and smaller halves of the programs is rel-
atively small (to remove 50% of the initial number of an-
tipatterns, the mean of edges to be removed is 8 for larger
programs and 6 for smaller programs). That indicates that
our approach may be particularly useful to guide the refac-
toring of larger programs: the effort (to apply refactorings
corresponding to the removal of edges in the dependency
graph) only increases slowly with program size.

This is surprising, since the number of antipattern in-
stances increases significantly with program size. The av-

erage number of instances in the smaller (larger) half is
335 (15423) for AWD, 2748 (140254) for CD, 153 (1605)
for DEGINH and 27 (356) for STK, respectively. The
large numbers for some antipatterns are caused by the
combinatorial explosion of the number of paths defined
by references (edges in the dependency graph). It turns out
that many of these antipattern instances can be considered
as variations of a much smaller number of “significant”
instances [8].

Figure 10 shows the number of iterations that are nec-
essary to remove 50% of antipattern instances, depending
on program size measured by the number of vertices in the
dependency graph. This chart shows that, for most pro-
grams, only few edge removals are necessary to achieve
the goal. However, there are a few programs that require a
very large number of edge removals.

One of these programs is the spring framework, a well
known dependency injection container. Here, the fact that
there are no high-impact refactorings can be seen as an in-
dicator of good design — those refactoring opportunities
have already been detected and the respective refactorings
have been performed by moving dependencies into con-
figuration files. Those dependencies are not part of the
dependency graph.

5.4 Scalability

We have found that for average size programs our im-
plementation of the algorithm scales very well. Anal-
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Figure 10: Number of refactorings necessary to remove
50% of antipattern instances

program vertices edges iter. 1 iter. 10 iter. 100
azureus-3.1.1.0 6444 35392 717718 275599 73288
jruby-1.0.1.jar 2093 11016 90713 89101 31226
derby-10.1.1.0 1198 11174 27882 8468 3898
xerces-2.8.0.jar 878 4782 3448 1533 738
ant-1.70 752 3326 6553 1838 659
lucene-1.4.3.jar 231 930 479 456 430
junit-4.5.jar 188 648 439 432 426

Table 1: Performance Data (times in ms)

ysis typically finishes within a few seconds or minutes.
We have used a MacBook Pro with a 2.8 GHz Intel
Core 2 Duo with 4GHz of memory. We have used the
Java(TM) SE Runtime Environment (JRE build 1.6.0 17-
b04-248-10M3025) with the Java HotSpot(TM) 64-Bit
Server VM, and a multithreaded solver running on two
threads for analysis. For the largest programs in the data
set, azureus-3.1.1.0, the time needed to finish the ini-
tial iteration was about 12min (717718ms). Table 1 shows
performance data for some selected, widely-used pro-
grams. The time to run an iteration decreases significantly
as more edges are removed, in particular for larger pro-
grams. As more and more edges are removed, the depen-
dency graph becomes more and more disconnected and
the solver has to iterate over fewer sets of paths.

We have also tried to analyse the JRE itself, consist-
ing of the three libraries rt.jar, jce.jar and jsse.jar.
The dependency graph extracted from these libraries is
large, consisting of 17253 vertices and 173911 edges. The
algorithm can still be applied, but computing the first it-
eration alone took approximately 4.5 hours. Note that the
solver algorithm takes full advantage of multi-core proces-
sors and can be easily distributed on grids. We therefore
think that it is still possible to use our approach for excep-
tionally large programs by utilising distributed computing
environments such as Amazon’s EC2.

5.5 Classifying Edge Removals

An edge in the dependency graph represents a dependency
from a source type to a target type in the program. Depen-
dencies arise in a number of ways from the source code.
The edge removal we have performed corresponds to an
actual refactoring that has to be applied to the original
program. We expect that a template based approach can
be used for this purpose, based on the kind of dependency.
For this purpose, we have classified the edges according
to the source code pattern detected that has caused this
dependency.

We classify the edges into eight categories as follows:

1. Variable Declaration (VD): The target type is used

Figure 11: Dependency classification results

to declare a field or a temporary variable.

2. Constructor Invocation (CI): A target type con-
structor is invoked with the keyword new.

3. Static Member Invocation (SMI): Invocation of a
static member (method or field) of the target type.

4. Method Return Type (MR): The target type is used
as a method return type.

5. Method Parameter Type (MP): The target type is
used as a parameter type in the method signature.

6. Method Exception Type (ME): The target type is
used as an exception type with throws keyword.

7. Superclass (SC): The target type is used as a super-
type by using extends keyword.

8. Interface (IN): The target type is used as an interface
by using the implements keyword.

We have analyzed a high-scoring subset of the re-
moved edges in order to classify them according to the
dependencies giving rise to those edges. The edges in the
dependency graph contain one of the three different labels
i.e. uses, extends and implements. A uses edge can
be involved in multiple dependency categories. This is be-
cause a source type can use the target type in a number of
above-mentioned ways.

Figure 11 shows the distribution of the percentage of
non-zero values in every dependency category. We anal-
ysed all 95 programs and in every program the first 30 re-
moved edges, with a few exceptions where the total num-
ber of edges removed was less than 30. We scaled the
non-zero values of every category to 100% with respect
to the number of edges analysed. For example, if, in the
top 30 relationships (edges) SMI is encountered 15 times,
then, for the given program the usage of SMI would be
50%. We can see from figure 11 that most of the depen-
dencies are caused by inheritance relationships, while the
lowest number of dependencies comes from the method
exception types.

In order to see how often we have multiple refer-
ence types, we calculated the participation of the first re-
moved edge for every program in different dependency
categories. We found that 41% of the programs have edges
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that participate in multiple dependency categories. This
suggests that refactoring of these programs will be more
challenging.

5.6 Implementing Edge Removals

The algorithm presented here operates only on models (the
dependency graphs), not programs. The refactorings rec-
ommended by the algorithm are operations to remove arte-
facts from the model rather than from the program itself.
The question arises as to how these refactorings can be im-
plemented so that the actual program can be transformed.

In general, implementing refactorings of the program
corresponding to edge removals in the dependency graph
is a difficult problem as it requires a very detailed under-
standing of the design of the respective program. There
are situations when nobody has this understanding, for in-
stance if projects evolve, many people are involved, par-
ticipants change, and design is neither documented nor
planned. However, there are some edge removals that
can easily be interpreted. The first edge tagged for re-
moval from the Java Runtime Environment (OpenJDK
version 1.6.0 b 14 for Windows) is the reference from
java.lang.Object to java.lang.Class. This is caused
by the fact that all classes reference Object and Class
has outgoing edges as well. It is probably very difficult
and not necessarily desirable to refactor the JRE in or-
der to get rid of this particular edge. However, the sec-
ond and third targeted edges are references from AWT
to Swing: java.awt.Component uses javax.swing.-
JComponent and java.awt.Container uses javax.-
swing.JInternalFrame. These references point to a real
problem. While it is understandable that Swing references
the older AWT toolkit, it is hard to see why AWT has
to reference the newer Swing toolkit. This makes it im-
possible to deploy AWT applications without the more
resource-demanding Swing. There are several use cases
for this: AWT uses the more efficient platform widget
toolkits, and AWT applets are at least partially compati-
ble with Microsoft Internet Explorer.

It is interesting to see that those two references are not
present in the alternative Apache Harmony [3] implemen-
tation of the Java development kit (version 6.0, r917296-
snapshot). This implies that it is really possible to “break”
the respective edges in the model without compromising
the behavioural integrity of the respective system. In this
case, a comprehensive set of test suites is used to ensure
compatibility between Apache Harmony and the Open-
JDK, which is the reference implementation of the Java
Development kit.

Another interesting example is azureus-3.1.1.0, the
largest program in the data set. It has a large initial number
of pattern instances in the model (846147) that suddenly
drops to 271166 (32.05% of the initial count) after only 5
edge removals. The first five edges removed are:

The first edge is a reference from the plu-
gin manager interface org.gudy.azureus2.plugins.-
PluginManager that orchestrates the application to its
concrete subclass org.gudy.azureus2.pluginsimpl.-
local.PluginManagerImpl. There are five references in
the compilation unit, all sharing the same structure: static
method calls are delegated to the implementation class.
These dependencies can be easily removed through the use
of a service registry: the plugin manager can obtain the
name of the implementation class from the registry, load
this class and invoke the respective method using reflec-
tion. The next four edges are similar, and can be removed
using the same strategy.

We believe that it may not be possible to auto-
mate, or even always implement, the refactorings rec-
ommended by the proposed algorithm. Actual refactor-
ing is about manipulating program source code or mod-

els close to source code (such as abstract syntax trees),
and is therefore programming language dependent. How-
ever, we can observe certain patterns causing depen-
dencies between classes which occur in all mainstream
programming languages. These are the categories dis-
cussed in section 5.5. For some of these categories,
there are common refactoring techniques that can be ap-
plied. These include the use of design patterns and dy-
namic programming techniques that have been developed
to avoid or reduce dependencies, such as factories, prox-
ies, service registries and dependency injection contain-
ers. These techniques are particularly useful to remove
dependencies between client classes and service imple-
mentation classes. Examples include general-purpose
frameworks such as the Spring framework, Guice, the
java.util.ServiceLoader class, OSGi and its exten-
sions such as declarative services and the Eclipse exten-
sion registry, and specialist solutions such as the JDBC
driver manager and the JAXP Document Builder Factory.

Often, referenced types can be replaced by their super-
types if those supertypes define the part of the interface
of the type that is being referenced by the client. This
is possible in all modern mainstream programming lan-
guages that use dynamic method lookup. For instance, if a
(Java) method references a method with a parameter type
java.util.ArrayList, the parameter type can usually
safely be replaced by java.util.List.

There are limitations to this approach that make it un-
likely that this can be completely automated. In particu-
lar, the use of dynamic programming techniques such as
reflection makes it sometimes difficult to predict the be-
havioural changes caused by these transformations. This
implies that firstly, refactoring activities must be safe-
guarded by verification techniques, such as post refactor-
ing testing; and secondly, that it is an empirical question to
find out to what extent these refactorings can be automated
in real world systems.

A comprehensive study to determine to what extent
refactorings corresponding to our edge removal operations
can be automated is subject to further research.

6 Conclusion

We have presented an algorithm that can be used to detect
potential high-impact refactorings based on the participa-
tion of references in sets of antipatterns that are seen as
design flaws. We have validated our approach by using
a set of four antipatterns that are known to compromise
modularisation of programs, applied to a set of 95 pro-
grams. The main result presented in this paper is that,
in most cases, the algorithm will be able to detect high-
impact refactoring opportunities.

We have demonstrated that the respective refactorings
can be applied without changing the program behaviour,
for some examples, using the largest and most complex
programs in our data set. We did not discuss an ac-
tual algorithm to automatically perform refactorings cor-
responding to edge removal. This question has to be ex-
plored in future investigations. We believe that the classifi-
cation of dependency types in section 5.5 is a good starting
point for such a study. We have realistic expectations here
— while we expect that in many cases the refactorings
are easy to describe and can be automated (for instance,
by introducing dependency injection or replacing concrete
type references by references to interfaces), this will not
always be the case. The research challenge is to define
refactorings that can be automated in restricted situations
where certain prerequisites are fulfilled, and then to find
the weakest prerequisites. The difficulty of performing
dependency-breaking refactorings represents a cost that
could be taken into account when defining the scoring
functions used in our approach.
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Investigating alternative combinations of antipattern
sets and scoring functions is an interesting and promising
field. There is no evidence that the combination we have
used is optimal. Unfortunately, the validation for each set
of parameters against the corpus is computationally ex-
pensive and takes several hours to complete, this makes a
trial and error approach difficult.

There are several interesting theoretical aspects related
to this work that can be explored further. For instance,
how does the pattern density found in the dependency
graphs of typical Java programs compare to that for ran-
domised graphs? For the simpler notion of motifs used
in bio-informatics, a study of this kind has been done by
Milo et al. to detect the Z-score [21].

References

[1] OSGiTM— the dynamic module system for Java.
http://www.osgi.org/.

[2] Project jigsaw. http://openjdk.java.net/projects/jigsaw/.

[3] Apache Harmony, 2010. http://harmony.apache.org/.

[4] D. Beyer, A. Noack, and C. Lewerentz. Efficient
relational calculation for software analysis. IEEE
Transactions on Software Engineering, 31(2):137–
149, 2005.

[5] F. Bourqun and R. K. Keller. High-impact refactor-
ing based on architecture violations. In Proceedings
CSMR ’07.

[6] W. J. Brown, R. C. Malveau, and T. J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. Wiley, March 1998.

[7] T. Copeland. PMD Applied. Centennial Books,
2005.

[8] J. Dietrich, C. McCartin, E. Temero, and S. M. A.
Shah. Barriers to Modularity — An empirical study
to assess the potential for modularisation of Java pro-
grams. In Proceedings QoSA’10, 2010.

[9] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson,
and M. Duchrow. Cluster analysis of Java depen-
dency graphs. In Proceedings SoftVis’08, pages 91–
94, 2008.

[10] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA,
1999.

[11] M. Fowler. Patterns of Enterprise Application Archi-
tecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[12] M. Fowler. Inversion of control containers
and the dependency injection pattern, 2004.
http://martinfowler.com/articles/injection.html.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Boston, MA,
USA, 1995.

[14] J. Garcia, D. Popescu, G. Edwards, and N. Medvi-
dovic. Identifying architectural bad smells. In Pro-
ceedings CSMR’09, pages 255–258, Los Alamitos,
CA, USA, 2009. IEEE Computer Society.

[15] M. Girvan and M. E. Newman. Community structure
in social and biological networks. Proc Natl Acad Sci
U S A, 99(12):7821–7826, June 2002.

[16] D. Hovemeyer and W. Pugh. Finding bugs is easy.
In Proceedings OOPSLA ’04, pages 132–136, New
York, NY, USA, 2004. ACM.

[17] C. Humble. IBM, BEA and JBoss adopting OSGi.
http://www.infoq.com/news/2008/02/osgi jee.

[18] M. Lippert and S. Roock. Refactoring in Large Soft-
ware Projects: Performing Complex Restructurings
Successfully. Wiley, 2006.

[19] R. Martin. OO Design Quality Metrics: An Analysis
of Dependencies.
http://www.objectmentor.com/resources/
articles/oodmetrc.pdf, May 1994.

[20] T. Mens, G. Taentzer, and O. Runge. Analysing
refactoring dependencies using graph transforma-
tion. Software and Systems Modeling, 6(3):269–285,
September 2007.

[21] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Sim-
ple building blocks of complex networks. Science,
298(5594):824–827, October 2002.

[22] M. O’Keeffe and M. O’Cinneide. Search-based soft-
ware maintenance. In CSMR ’06: Proceedings of the
Conference on Software Maintenance and Reengi-
neering, pages 249–260, Washington, DC, USA,
2006. IEEE Computer Society.

[23] J. O’Madadhain, D. Fisher, S. White, and Y.-B.
Boey. The JUNG (Java universal network/graph)
framework. Technical Report UCI-ICS 03-17, Uni-
versity of California, Irvine, 2003.

[24] D. L. Parnas. Designing software for ease of ex-
tension and contraction. In Proceedings ICSE ’78,
pages 264–277, Piscataway, NJ, USA, 1978. IEEE
Press.

[25] Qualitas Research Group. Qualitas corpus version
version 20090202, 2009.

[26] A. J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[27] G. Rozenberg, editor. Handbook of graph grammars
and computing by graph transformation: volume I.
foundations. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1997.

[28] M. Sakkinen. Disciplined inheritance. In Proceed-
ings ECOOP’89, pages 39–56, 1989.

[29] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. In GECCO
’06: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 1909–
1916, New York, NY, USA, 2006. ACM.

[30] F. Simon, F. Steinbrueckner, and C. Lewerentz. Met-
rics based refactoring. In Proceedings CSMR’01,
page 30. IEEE Computer Society, 2001.

[31] G. B. Singh. Single versus multiple inheritance
in object oriented programming. SIGPLAN OOPS
Mess., 5(1):34–43, 1994.

[32] W. Stevens, G. Myers, and L. Constantine. Struc-
tured design. pages 205–232, 1979.

[33] T. Taibi, editor. Design Patterns Formalization Tech-
niques. Idea Group Inc., Hershey, USA, 2007.

CRPIT Volume 122 - Computer Science 2012

46



[34] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li,
M. Lumpe, H. Melton, and J. Noble. Qualitas cor-
pus: A curated collection of java code for empirical
studies. In 2010 Asia Pacific Software Engineering
Conference (APSEC2010), Dec. 2010.

[35] J. Tessier. Dependency finder.
http://depfind.sourceforge.net/.

[36] N. Tsantalis and A. Chatzigeorgiou. Identi-
fication of move method refactoring opportuni-
ties. IEEE Transactions on Software Engineering,
99(RapidPosts):347–367, 2009.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

47



CRPIT Volume 122 - Computer Science 2012

48




